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Summary. In [1] ideals and congruences on semiloops were investigated. The aim of this 
paper is to generalize results obtained for semiloops to the case of left divisible involutory 
groupoids. 
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The concept of a semiloop was introduced in [1]: An algebra A = (A,\,-,e) of 

type (2,2,0) is called a semiloop if it satisfies the identitites 

x \x = e, 

x-(x\y)=y, 

x\(x-y)=y. 

In other words, semiloops are just right uniquely divisible groupoids with a right 

unit e. Of course, there exist semiloops which are not loops, see [1]. It was also 

shown that the variety S of all semiloops is congruence-permutable and congruence 

regular. 

The concept of an ideal in an algebra with a nullary operation e was introduced 

in [4] and intensively studied by A. Ursini and H. P. Gumm in [3]. Recall that 

an (n + m)-ary term p(xi,..., xn,yi,..., ym) of an algebra A with a nullary op­

eration e is called an ideal term in yi,... ,ym if p(xi,..., xn, e , . . . , e) = e is an 

identity in A. A subset / of A is called an ideal of A if for any ideal term 

p(xi,...,xn,yi,...,ym) in yi,...,ym and for every ai,...,an e A,bi,...,bm £ I 

we have p ( o i , . . . ,an,bi,... ,bm) e I. An algebra A is said to be ideal determined if 
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every ideal / of A is a kernel of a unique conguence 0 / e Con A, i.e. / = [e]e,- A 

variety V is called ideal determined if each A e V has this property. 

Let us remark that for any O 6 Con A, [e]@ is an ideal of A. Moreover, the set of 

all ideal terms of A forms a clone IT(.4). We have either IT(^4) = {e}, the trivial 

case, or IT(A) is infinite. If the clone IT(.4) has a finite base, A is said to have a 

good theory of ideals, see [4]. 

It was also shown in [1] that every semiloop is ideal determined and has a good 

theory of ideals. Moreover, [1] contains the explicit description of the 4-element base 

of IT(,4) for AeS. 

However, some considerations on groupoids have suggested that some properties 

of semiloops are superfluous for such a good congruence and ideal properties. So 

we try to weaken the properties of semiloops to obtain a simpler case of groupoids 

which still satisfy these conditions. Our work can be regarded as a way to obtain 

the essence of congruence and ideal properties. 

Definition. Let A = (A, \, •, e) be an algebra of type (2,2,0). A is called a left 

divisible involutory groupoid if the following identities hold in A: 

x-(x\y)=y, 

x \ x = e. 

Evidently, every loop or semiloop is a left divisible involutory groupoid but not 

vice versa. Denote by LDIG the variety of all left divisible involutory groupoids. 

Now we can list some important congruence properties of varieties of LDIG. Recall 

that an algebra A with a miliary operation e is called e-regular if O = $ for each 

0 , $ e Con A whenever [e]e = [e]$. A is called e-permutable if [e]eo$ = [e]*oe for 

each 0 , $ e Con A. 

In [3] it has been proved that a variety V with a miliary operation e is ideal 

determined if and only if it is e-regular and e-permutable. 

Propos i t ion 1. The variety of all LDIG is e-permutable and e-regular, so it is 

ideal determined. 

P r o o f . It is a straightforward consequence of ideal determination of the variety 

of all semiloops. • 

In what follows we will give an explicit construction of the congruence ©# corre­

sponding to an ideal H and list the basis of the clone IT(LDIG). For ,4 € LDIG.and 

%£B,C QA denote 

B-C = {bc;beB,ceC} and B \ C = {b\ c; b e B,c e C}. 
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If e.g. B = {b} is a one-element set, then we will write briefly b • C instead of {6} • C, 

etc. 

L e m m a 1. Let 0 be na equivalence on an algebia A e LDIG. Then 0 is a 

congruence iff [a ] e • [6]e C [a • b]e and [a ] e \ [6]e Q [a \ 6 ] e for every a,b e A. 

P r o o f . The conditions are nothing else than the substitution property of the 

relation 0 . • 

T h e o r e m 1. Let 0 jt H C A for A e LDIG. Then the following conditions are 

equivaient: 

(1) the lelation &H defined by (x,y) e @H iff x • H = y • H is a congiuence with 

the kernel H; 

(2) H is a subalgebia of A satisfying the conditions 

(x-y)\[(x-H)-(yH)]CH and (x\y)\[(x • H)\(y H)] C H. 

P r o o f . (1) => (2): Evidently, @H is a congruence with classes x • H for x 6 A. 

Then by Lemma 1 we obtain 

(x-H)-(y-H)C(xy)-H and (x • H) \ (y • H) C (x \ y) • H. 

The former inclusion gives 

(x-y)\[(x-H)-(yH)]C(x-y)\[(x-y)-H]. 

If z e (x-y) • H, then (z, x • y) e&H and so 

((x -y)\z, (x -y)\(x- y)) = ((x -y)\z,e)e eH, 

i.e. (x-y)\z e [e]eH =e-H = H (since H is the kernel of QH). 

We have proved (,-r • y) \ [(x • H) • (y • H)] C H. Analogously, the inclusion 

(x • H) \ (y • H) C (x \ y) • H implies (x \ y) \ [(x • H) \ (y • H)] C (x \ y) \ [(x \ y) • H]. 

If z e (x \y)- H, then (z, x \ y) e &H, so 

((x\y)\z,(x\y)\(x\y))=((x\y)\z,e)eQH, i.e. (x \ y) \ z e [e]&H = H, 

which proves (x\y)\ [(x • H) \ (y • H)] C H. 

(2) =^ (1): Suppose z e (x • H) • (y • H). Then by the conditions (2) we have 

(x • y)\z = h e H. From this we conclude 

(x • y) • ((x • y) \ z) = z = (x • y) • h e (x • y) • H, 
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i.e. (x-H)-(y-H) C (x-y)-H. Analogously, if z e (x-H)\(y-H), then (x\y)\z = heH, 

which yields 

z = (x \ y) • h e (x \ y) • H. 

We have proved (x • H) \ (y • H) C (x \y) • tf, so by Lemma 1 the relation QH is a 

congruence. 

It suffices to show e • tf = [e]eH = tf. Since tf is a subalgebra of A, e • H C tf. 

Conversely, let h e tf. Then there exists an element a e S with e • a = h (e.g. a = 

e\h). But then e,h e tf implies a = e\h e H, which proves hee-H and e• tf C tf. 

D 

T h e o r e m 2. Let .4 eLDIG and % ^ I C A. Then the following conditions are 

equivalent: 

(1) / is an ideai of A; 

(2) / is closed under the following ideal terms: 

Pi(yi,y2) =2/i -1/2, 

P2(yi,y2) = 2/1 \2/2. 

P 3 ( Z I , Z 2 , J / I , I / 2 ) = (zi -x 2 ) \ [ (2 ; i - y i ) - ( x 2 -2/2)], 

p 4 (x i , 12,2/1,2/2) = ( x i \ x 2 ) \ [ ( a ; i • 3/l) \ (X2; » ) ] • 

P r o o f . (1) => (2) is evident. 

(2) =* (1): By Theorem 1 it suffices to show that if / is closed under the terms 

Pi, P2, P3, P4 then / is a subalgebra of A with (x • y) \ [(x • tf) • (y • tf)] C tf and 

(x \ y) \ [(x • tf) \ (y • tf)] C tf. The terms pi , p 2 ensure that / is a subalgebra of A, the 

t e r m p 3 gives (x-y)\[(x-I)-(y-I)] C / and the term p4 gives (x\y)\[(x-I)\(y-J)] C / . 
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