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EXISTENCE OF NONOSCILLATORY AND OSCILLATORY
SOLUTIONS OF NEUTRAL DIFFERENTIAL EQUATIONS WITH
POSITIVE AND NEGATIVE COEFFICIENTS

JOHN.R. GRAEF,) Bo YANG,? Mississippi State, B..G. ZHANG,? Qingdao

(Received. October. 7, 1997)

‘Abstract. In this paper, we study.the existence of oscillatory and nonoscillatory solutions
of neutral differential equations of ‘ihe form

(2(t) ~ ex(t ~ 1) & (P(t)z(t~ 8) — Q(t)z(t ~ 6)) =0

where ¢ > 0,7 >0,8 > &> 0 are constants, and P,.Q € C(R,R).. We obtain
some sufficient and some necessary conditions for the existence of bounded and unbounded
positive solutions, as well as some sufficient. conditions for the existence of bounded and
unbounded oscillatory solutions.

Keywords: neutra] differential equations, nonoscillation, oscillation, positive and negative
coefficients

MSC1991:-341K40, 3415

1.-INTRODUCTION

In this paper, we consider the following neutral differential equations with positive
and negative coefficients

(L1 (2(t) —cx(t — 'r))' + Pt)a(t—0) - Qt)z(t —5) =0
and
(1.2) (z(t) — et ~ 1‘))’ = P(t)z(t - 0) — Q(t)z(t — 4),
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where ¢ > 0,7>0, 0 > 8.2 0 are constants, and P, Q € C(R* R*). Equality
(1.1) has ‘been investigated by Ladas and Qian [2,°6], Yu {9], Yu and Wang [8],
and Lalli and Zhang {7]. However, results on the existence of positive solutions and
the ‘existence of oscillatory solutions of (1.1) ‘and (1.2) are rclatively scarce.in the
literature.

In Section 2, we obtain conditions for the existence of both bounded positive so-
lutions and bounded oscillatory solutions for (1.1) with ¢'= 1, and in Section 3, we
obtain conditions for the existence of unbounded positive solutions. for (1.1) with
¢ = 1."Section 4 contains conditions for the existence of both bounded positive solu-
tions and bounded oscillatory solutions for (1.1} with ¢ € (0,1), while in Section 5, we
obtain conditions for the existence of both bounded positive solutions and ‘hounded
oscillatory solutions for (1.2). In Section 6, we consider (1.1) and (1.2) in the case
¢>:1.-Obviously, since the equations under consideration are linear, there are cor-
responding conclusions for negative solutions.

The following hypotheses will often ‘be used in the remainder of this paper:

(H1) 7> 0and 8> 6> 0 are constants;
(H2) P Qe C(RY, R
(H3) P(t) = P(t)~ Q(t - 6.4+0) > 0.

The following lemma is taken from Zhang and Yu [10].

Lemma 1.1, Suppose that f-€ C([to,0), R*) and r > 0. Then

G oo
> f)dt <oo
im0 Y tutir

is equivalent to

/mt.f(t,)dt<oo.

to

2. BOUNDED SOLUTIONS-OF (1.1) WiTH c =1
In:this section, we consider the equation
(2.1 (x(t) —a(t — 1'))' + P(i)x(t —0) — Q(i)z(t — &) = 0.

Theorem 2.1. Inaddition to (H1)-(H3), assume that

(HY) / TP di < o0,
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and
(H5) / Qt)dt < 0.

Then (2:1) has-a bounded positive solution, and for any continuous periodic oscil-
latory function.w(t) with period 7, there is a bounded. oscillatory solution x(t) such
that

(22) x(t) = w(t) -+ R(t)

fort > T, where R(t) is a contintous real fanction, | R(t)| < aM, M= min{maxw(t),
max(—w(t))}} a € (0,1), and 1" is sufficiently large.

To prove the above theorem, we need to establish the following lemma.

Lemma 2.2. Suppose the Liypotheses. of Theoren: 2.1 hold.- Then the equations
(2.3)
(2(®) =zt =) + Pt (2 (t=0) + 23T +w(t - )~ Q(t) (2(t = 8) £ 2M +w(t —9)) =0

and
(24). () =zt =)+ PO (a(t - 8) +23) — Q1) (2(t — §) + 27) = 0
have bounded positive solutions w (t)-and u(i), respectively, such that

[u(t)] < 2aM and |u (1)] < faM

for:t > T, where M = ma.x‘w(t_)} and Tis sufficiently:large.

Proof. The proof for (2.3) is.quite similar to that for. (2.4), so.we only give the
details of the proof for.(2.4).
Choose T sufficiently large such that

s oo
aM
(2.5) > /
im0/ THir

o0
yz] 1 1
P(i)dt + n./q"_a Q) dt < 6

where n = {2=2] + 2 and [] denotes the greatest integer function. Set

00 ot
40 p(.s)ds+417/ Qs)ds, t>T,
04

¢
(t=T+7)H(T)/r, TergtgT,
0, t<T ~r.

H(t)=
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Clearly, H € C(R, R*).  Define
o
YW =) Ht =i, t>T
=0
It is obvious that y-€ C([T;00), RT). with y(t) — y(t =) = H(t) and 0 < y(1) <
taM < M, t > T. Define a set X by
X={zeC(T,00),R):0<z(t) <y(t),t >T}
and an operator.S on X by
13
z(t—r) +/ Qs)(x(s —0) + 2M) ds
':H t>2T+m,
(52)(t) = 4 / P(s)(zls ~ 0) + 27) ds,
t
(S2)(T 1) ety + (O (1 = 7)€ T +m,
where m = max{6,7}. It is easy to see that
(Sz)(t) Syt =)+ H(E) =y(t), t2T+m
and
(Sz)(t) <y(t), T<t<T+m,
for any z € X, i.e., SX C X. Define asequence of functions {zx(t)} 7 as follows:
xo(t) =y(t), t 2T,
ap(t) = (Szel)(8), 22Ty k=12,
By induction, we can prove that.
0 <ap(t) Sap1 () Sylt), t2T0 k=12,
Then there exists-a function u € X:such that Llim 2 (1) = u(t) for t 2 T. Clearly,
tmr 00
u(t) > 0.on [T, 00). By the Lebesgue dominated convergence theorem, we have
12 00,
w(l) = ult 1) + / Qs){uu(s = ) + 237) ds + / B(s) (u(s — 6) + 23) ds
o048 L
for't 2 T + m. Moreover,
(u(t) = ut = 1)) = Q(t) (u(t = 6) + 25) — P(t)(u(t — 0) + 277),
ie., u(t) is a bounded positive solution of (2.4) with 0 < u(t) < M. This com-

pletes the proof of the lemma. a
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Proof of Theorem 2.1. Let

Ut) = 2M +u(t)
and
Uy (1) = 2M +w(t) +u (1),

where u(t), u; (1) are defined by Lemma 2.2. It is easy-to see that U(t).and Ui (t) are
both bounded positive solutions of (2,1), Because (2.1) is linear,

a(t) =Ui(t) —~U() =w(t) + (u(t) —u(t)), t2T

is also a solution of (2.1). Tt is clear that z(t) is oscillatory and satisfies.(2.2), so the
proof of the theorem is complete. 0

Example 23." Consider the neutral differential equation
(2.6) (z(t) —z(t =) + Pt = 1) = Qs (Nx(t) =0, t:2 5,

where

S 6 et -2
PO gre-g ™ 2O woyern

We have Py(t) = Pi(¢) = Q1(t = 1) 2 0 fort 2 5,
o0 oo
/ Q1(s)ds < 00, and / sPy(s)ds < 00.
By Theorem 2.1,7(2.6) has a bounded positive solution. In fact,
z()=1-172

" ‘is such.a solution of (2,6).

Example 2.4.: Consider the neutral differential equation

@7 (al) - et - 20) T Pt~ 3n) — Qa(t)a(t — ) =0, t 3 6r,

where 2
Cdmt-w) (- i)
P = 2i-2m? (t-En2-1
and 2 2 2
) = 4ﬁ3c — 6t + 4r (t —m)

(tt=—2m))P (t-mE—1"
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Now Py(t) = Py(t) = Qa(t — #r) > 0 for ¢ > 6r,

/ Q2(s)ds < oo ~and / sPy(s)ds < 0.
By:Theorem 2.1, (2.7) has a bounded oscillatory solution, in fact,
a(t)= (1 -t sint

is such a solution of (2.7).

Remark 2.5 According to a result of Jaro§ and Kusano [5; Theorem 1], if for
some 1€ (0,1),

28) /:O BE(P() +Q(s)) ds < 00,

then(2.1) has oscillatory solutions.  Clearly, their condition is much stronger than
conditions (H4)-(H5) of Theorem 2.1.: For example, (2.8) is not satisfied for (2.7).
The following result gives a necessary condition for the existence of bounded pos-
itive solutions-of (2.1).
Theorem 2.6. Assume that (H1)-(H3) and (H5) hold. If (2.1) has a bounded
positive solution, then (H4) holds.

Proof. Let z(t) be a bounded positive solution of (2.1). Then there exists L'> 0
and g > 0 such that 0.< z(t). < L on [tg, 00).: Setting

u(t) = 2(0) —alt = 1) = /‘ 0(s)2(s = 8) ds,
Emf46
we have
(2.9) y'(t) = ~P(t)a(t —0) <0, t=t.

We claim that y(t) > 0 eventually. Assume, to the contrary, that y(t) < 0.eventy-
ally. Then there exist ¢; >t and « > 0-such that y(#) < —a on [t;,0), 50

o(t) S —a+a(t—r)+ / Q(s)z(s—6)ds
+5

t
t—#.
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for't > t;. By-induction, we have

1y ir

k
oty +Er) € ~ha +a(t)+ > Q(s)z(s —8)ds

= Jtrin=b46

oo
< ~ka +x(ty) + nL/ Q(s)ds,
faer)

where n.= ﬂ:—‘ﬂ +2,k=1,2,.."Then z(t; +kr) < 0 for sufficiently large k, which
is.a contradiction.

Hence, we have

1
(6) > alt=7) +/ Qs)z(s = 6)ds > a(t =)
terf4-6
eventually. Thus, there exist J >0 and ¢, > t;'such that z{t)-> J-on {t2,00). From
{2.9), we see that
y'(t) < =P(t)J, fort >tz =ty +0.
Integrating, we obtain -
w027 [P,
t

and so
3 % - OO —
z(t) 2zt —1) +/ Q(s)a(s —6)ds+ J/ P(s)ds 2 2(t —7) + J/ P(s)ds
1045 t t
for t:>.t3. This implies that
koo
(2.10) L2 afts +hr) 2 alts) +JY P(s)ds,

o Jeir
for k =1,2,... Letting k£ — 00.in (2.10), we obtain
" noo
Z P(s)ds < o0,
o1 Jiatir
which is equivalent to
oo
/ sP(s)ds <
by Lemma 1.1. This completes the proof of the theorem. n)
The following corollary is immediate.

Corollary 2.7. Assume that (H1)--(H3) and (HS) hold.: Then (2.1) has a bounded
positive solution if-and only if (H4) holds.
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3. - UNBOUNDED ‘SOLUTIONS. FOR (1.1) WITH ¢ =1

Definition 3.1.. A solution z(t) of (2.1) is called a positive (negative) A-type
solution if it can be expressed in the form

(3.1) z(t) = ot + (1),

where a >0 {a < 0) is a.constant, 3 : [tz,00) — R is a bounded continuous function,
and ¢, > 0.

Theorem 3.2, Assume.that (H1)~(H3) hold,

(H6) /w 2P(1)dt < oo,
and
(H7) / = 1Q(t) dt < co.

Then (2.1) has a positive A-type solution.

Proof. Choose T sufficiently large such that

o F i 1t
; mfp(i)(””‘”*”Lﬂ(ﬂ(tﬂ)u <1,

where n = [4=%] + 2. Set

o0 .
/ P(s)(1 4 5)ds + / Q)1 +5)ds, 12T,
t t—B+48
HU= 3 (¢ T+ r)H(D)r, T—r<t<T,
0, tLT—r,

and observe that H € C(R, R¥). Define

y(t) = i}](t —ir), 12T

=0

1t is obvious that y € C([T,c0), RT) with y(t) —y(t —7) = H({) and 0.<y(t) <1
for t 2 T. Define the set X by

X ={zeC([T,00),R): 0 2(t) Cy(t),t 2 T}
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and an operator S-on X by

L

2(t—p) + - Q(s)(x(s —6) +s—-6)ds
o Z:‘M t2T+m,
(52)(1) = + / P(s)(x(s — ) +5—6)ds,

Ji

(ST + M Tty Ty (L~ 7). teIT,T+m],

where m = max{6, 7}. Clearly, SX C.X.
; o0
Define a sequence of functions {Zx(t)} o 8 Tollows:

2o{t) =y(t), 12T,
() = Sw=)(), 2T, k=12,
By induction, we have
0<an(t) S () Sylt), t2T k=12

Then there ‘exists a function u € X such that Alil'lxulw ap(t) = u(t), for t 2 T. Itis
obvious that u(t) > 0 on [T, oc). By the Lebesgue dominated convergence theoren,
we have u'= Su. It is easy to see that a(t) = t + u(t) is a positive A-type solution
of (2.1), and this. completes the proof. n]

Similar to Theorem 2.6 and: Corollary 2.7,-we have the following results.

Theorem 3.3. Assume that (H1)-(H3) and (H7) hold. If (2.1) has-a positive
A-type solution, then (H6) holds.

Corollary: 3.4. Assume that (H1)~(H3) and (HT) Lold. Then (2:1) has a positive
A-type solution if and only if (H6) holds.
4. BOUNDED SOLUTIONS -OF (1.1) WiTH ¢:€ (0,1)
In this section, we consider:the equation
(4.1) (e(t) —ez(t = 1)+ P)a(t ~ 6) — QD)a(t.— ) = 0,

where ¢ € (0,1).- Our first result in this section is analogousto Theorem 2.1. Here,
condition {H4) gets replaced by (H8) below.




Theorem 4.1. Suppose that ¢ € (0, 1), conditions (H1)~(H3) -and (H5) hold, aud
sl 0,
(H8) > / ¢

=0 T4

: P(s)ds < oo forsome T > 0.

Then (4.1) has a bounded positive solution, and for any: continuous periodic oscilla-
tory function w(t) with period r, (4.1) has a bounded oscillatory solution

(4.3) a(t) = ¢ (w(t) +R(D),

where |R(t)| < aM and o € (0,1).

The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. Under the hypotheses of Theorem 4.1, the equations
(x(t) = ex(t =) + P(t)(z‘(l ~8) + (2M 4wt - e>)c‘-:—ﬁ)
(4.4) — 6
- Q(t)(x(t —8) + (2M +w(t— 6))07’") =0

and
(45) (2(t) —ca(t=1)) +P(t)(£(t ) +2171c’+”) Q) (;v(t ~9) +2A7c’*?-“) =0
have bounded positive solutions uy (t) and u(t), respectively, such that
Iu(t)1 < %(U‘VIC% and |u1(t)| < %ai\/fc%,
Proof.:We give only the outline of the proof for the case of (4.5). Consider the
integral equation
(4.6)
tmd — RN —amt

2(t) = ca(t—1)+ Q(s+6) (x(s) +2McF) ds+/ P(s)(a(s—0)+2Mc v ) ds.

t-0 t
Letting z(¢) = 2(t)e™+, (4.6) becomes
.7

i) b W— p— et
2t =2(t=n)+] Qs +06){a(s)+2Mc 7 Y ds+ /[ P(s)(2(s = 0) +2M)c™ ds.

-0 t

To complete the proof of the lemma, it is sufficient to prove that (4.7) has a bounded
positive solution z(t) such that |2()| < § M, fort.> T, where T'is sufficiently large.

If we choose T large enough that

00

Ry Sy 2. aM
,.;,/THTC g P(s)ds—*—n[r Q(s)ds < T677E"

where E = ¢=+ > 1, then the temainder of the proof is similar to the proof of
Lemma 2.2 and will be omitted. O
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In view of Lemma 4.2, 'we can. prove Theorem 4.1 using a technique similar to
that used to prove Theorem 2.1; we omit the details here. Next, ‘we give an explicit
condition to guarantee that (H8) holds.

Corollary 4.3. If, in addition to (H1)-(H3) and (H5), we. have
(H9) / P(s)ds <o,

then the conclusion of Theorem 4.1 holds.

Proof. It suffices to show that (H9) implies (H8). Set j = [5%]; then t —r <
TAHjr<tand T +r << T+ (G + 1) Let

00 e ’
I= / S P(s) ds.
j};jn Topjn
Then
1 Tl R
1<~ / dt / ¢
S z() g S

1 T (1) oo i
L / / FEE Pls) ds = -/ at / S B de
€. Tepejr toer t—r

/ dt/ P )ds-——/ P(s)ds/ At
e P ‘ Ty

< —/ P(s)ds/ cFidu =1 P(s)ds,
e J e 0 T—r

oo
v where = le— / ¢ du. Therefore, (H9) implies (H8), and the proof is complete.
T Jo
0
5. SOLUTIONS OF (1.2) wrtH ¢ € (0,1]
In this section, we first consider (1.2) with ¢ =1, namely,
(5:1) (2(t) =2t =) = POzt —8) — Q)z(t — ).

‘Analogous to Theorem 2.1, we have the following result.




Theorem 5.1. Suppose conditions (H1)~(H5) hold.- Then (5.1) has a bounded
positive solution, and for any continuous periodic oscillatory. function w(t) with pe-
riod v, there is a bounded oscillatory solution z(t) such that

(5.2) z{t) = w(t) + R(t)

fort > T, where R(t) is a continuous.real function, ]R([,){ < oM, M= min{maxw(i),
ma.x(—w(t))}, « €(0,1), and T is sufficiently large.

In order to. prove the -above theorem, we need the following lemma, which is
analogous to Lemma 2.2,

Lemma 5.2. Under-the hypotheses of Theorem 5.1, the equations
(5.3) (z(®)—2(t—n))" = P(1) (2(t=0)+2M+w(t~0)) ~Q(t) (2(t—8)+2M +w(t—3))
and
(5.4) ((t) = 2(t = 1) = P@)(x(t = 0)+ 2M) — Q(t) (x(t — §) +2M)
have bounded positive solutions u1(t) and u(t), respectively, such that
|u@)| < saMand fui(8)] € saM
fort 2T, where M = ma.xlw(t)[ and Tis sufficientlylarge.

Proof. We only give a proof for (5.4). Choose T sufficiently large so that (2.5)
holds. Define a set X by

X ={xeC([Ty0);R): 0. a(t) S jaM,t > T}
and a sequence of functions {4 (t)}req by

2oty =0, t2T,

L7 o
zpoa(t ) + / Q(s)(zra (s —0) +2M) ds
t':“"“" t 2T +m,
w(t) = +/ P(s)(zr-1(s = 6) +2M) ds,
ttr
(T +m),

t e T, T+ml,

where m = max{0,0 -}, k = 1,2,... Clearly, 21(t) > 0 = mp(t), t > T. By
induction, we have

(5.5) @o(t) < - <ap(t) CTpr () <oy Tt T k=120
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Tt is obvious that 29(t) < %(JM for-t > T. Suppose
) StaM, 12T, k=01 .p-1;

we will show that

In fact, for t.2 T+ m,

1+7

zp(t) = Tpen (t+7) + /

Q(s)(vp—1(s = 8) + 27) ds
t—B+6+r
o
+ / P(s)(xp-1(s —8) +2M) ds
tr
Pt

= go{t +pr)+ ; Avrivd Q(8) (wp—j(s — 8) + 217) ds

3 / T P(s) {2y (5 — 0) o+ 2T s

j=1tT
P tjr 4 o0
sm( / QUs)ds + / P(s) ds)
J-; 1~ 0-+8+j7 J};’ g
< oM

by condition (2.5), i.e., {zk (t)}:';o C X In view of (5.5), there exists a function u €
X ‘such that JClixn zx(t) = u(t), fort > T. By the Lebesgue dominated convergence
00
theorem, we have
b -
u(t+T)+/ Q(s)(u(s —8) + 2M) ds
o S t>T+m,
whz + / P(s)(u(s —6) +2M) ds,
thr
u(T +1m), t € [T, T+ m],
i.e., u(t) is a solution of (5.4). This completes the proof of the lemma.
In-view of Lemma 5.2, we can prove Theorem 5.1 by using an'argument similar to
the one used to prove Theorem 2.1. We will omit the details. O

Example 5.3, Consider the equation

1 e—l+eTH? -t
(e() = 2(t—2) = 92(emie) o(t=2)- 2(”:7“#],/2)

z(t=1), 20

All the hypotheses of Theorem 5.1 are satisfied, and z(t) = 1 + e™*2 is a bounded
positive solution.

99



Similar to Theorem 2.6, we have the following result for-(5.1).. The proof is only
slightly different from the proof of Theorem 2.6.

Theorem 5.4. Assume that (H1)~(H3) and (H5) hold. If (5.1) has a bounded
positive solution z(t) such that Iitlginf x(t) > 0, then (H4) holds.
o0
Corresponding to Theorem 3.2, we have the following result. on A-type solutions.
Theorem 5.5. If.(H1)-(H3), (H6), and (H7) hold, then (5.1) has-a positive A-
type solution.

Next, we consider the equation
(5.6) (2(t) —cx(t =)' = P()2(t —0) ~ Q(t)x(t ~ 6).
For the case where ¢ € (0,1), we have the following counterpart to Corollary 4.3.

Theorem 5.6. Suppose that ¢ € (0,1) and (H1)~(H3), (H5), and (H9) hold. Then
(5.6) “has a bounded positive solution, and for any continuous periodic oscillatory
function w(t) with period v, (5.6) has a bounded oscillatory solution

2(1) = eF(w(t) + R(1),

where |R(t)| < .aM and'a € (0,1).

The proof of Theorem 5.5 is easily modeled after the proofs of Lemma 4.2 and
Theorem 4.1 (taking into account the variation in approach used in Lemma 5.2), and
then applying the proof of Corollary 4.3 to conclude that (H9) implies (H8).

6. THE CASE'¢>1

‘We conclude this paper with results for equations (1:1) and (1.2) in'the case ¢ > 1.
In view of our results in Sections 4 and-5, the proof. of the following theorem can
easily be constructed.

Theorem 6.1. Suppose that ¢ >1 and conditions (H1)~(H3),:(H5), and (H8)
hold. “Then(1.1) and(1.2) each have an unbounded positive solution, and for any
continuous: periodic oscillatory function w(t) with period r, they have unbounded
oscillatory solutions of the form

() =k (w(t) + R(1),

where |R(t)| < aM and o € (0,1).
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Our final result gives an explicit condition to guarantee. that (H8) holds in the
case.c>1,

Corollary 6.2. Suppose ¢ > 1 and conditions (H1)~(H3) and (H5) hold.. If
(H10) / ¢ P(s)ds < oo,

then the conclusion of Theorem 6.1 holds.

Proof. It suffices to prove that (H10) implies (H8). Set j = [:%]. Then
t=r <T+jr<tand T+jr <t ST+ +1)r: For

. o weT =g
I= Z/ ¢ P(s)ds,
i=adTHir

we have

1 & TG+, oo L
<= 3 2 P(s) ds
Ig z Z/ (11‘/ c (s)ds

e S Ttir

oo oo
= l/ dt/ c
T 4T 1
1o s 1o o=Thr
=~ P(s) ds/ crodi =~ P(s)ds/ crdu
"I Tmr Tt T J Ty (]
1 SR S,
< — = ’
< 1110./7‘_76 P(s)ds,

2, A=
=K ¢ P(s)ds,
Jr—r

where K= (Inc- Cz:_-)—x_ Therefore (H10) implies (H8), and the proof is complete.
]
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