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Abstract. “We prove an existence and uniqueness theorem for Tow-finite initial value
problems. The right-hand side of the differential equation is supposed 1o satisfy a one-sided
matrix Lipschitz condition: with a quasimonotone row-finite matrix which has an at.most
countable spectrum,
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1. INTRODUCTION

Let (F;]| - 1]) be a real or complex Fréchet space where || ||::F - R denotes
a polynorm on F,ie., {|i -|l;: 4 € N} is a separating family of seminorms inducing
the Fréchet space topology of F. Especially, for a sequence E = ((&;,] - ij));l

-
of Banach spaces we consider the Fréchet space {Fg, || - ||) with Fg'= [] E; and
i=1

Izl = o
we consider the

j € N."For a continuous function-f: [0,T] x F:~3 F.and ug € P
tial value problem

] w(t) = f(tu(®), w(0)=uo.

Now let 4 = (aij)i,jen be a row-finite matrix, i.e., a;; € C,'4,.j € N and for every
i€ NisH{j € Niai; #0} < oo.

The row-finite matrices are exactly. the continuous endomorphisms-of the Fréchet
space (CY, [ - 1), llzll = (ir,l)il and, according to a theorem of Ulm [20], the
spectrum

o(A) = {A € C: A~ A\ is not invertible}
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is either at most countable or has an at most. countable complement C\ o(4). For
this and further properties of row-finite: matrices we refer to [5], [6], [9], [10], [11],
[12], [23]).

In the sequel we will call a row-finite matrix A ‘= (ai;): jen: monotone if a;; €
[0,00), 4,5 € N, and we will call A quasimonotone if a;; € R, i, 5 € N and a;; 2 0,
i g

Now we define mappings m_: F'x = RN and my: F x F — RN as
Nl ARyl ~ liell

mfey] = s -401 T

The j-th coordinate.of my. will be denoted by mji, j € N. The existence of these
limits as well as the properties of the functions 4 are consequences of the properties
of convex functions on linear spaces (see [14], p. 36-46). Especially, for z,y,2 € F
we have that

|myfe, yliﬂylf
n_fz,y] <m.
mzlr,y+ 2zl <m [11’]4‘” il

Here and in the sequel inequalities between elements of ®Y are intended component-
wise.- Now; if I C R'is-an interval and u: I — F-is differentiable from‘the left-hand
side or from the right-hand side at to € I, then Jull ;-] — RY has the same property
and

Jlull”_(to) = m_ [u(io), v’ (to)],
lull’.(to) = my.[u(to), u (t0)],
respectively.

Now let f:[0,T] x F.— F.be a continuous function. If there is a quasimonotone
row-finite matrix L with ma[e—y, f(t, )~ f(t,)] < Lllz=yl|, (¢, 2), ¢, v) € [0, T]x F
we will say that f-is Ly -dissipative.

According to-a theorem of Lemmert [12] we have

Theorem 1. If f:[0,T]x F.— F is L, -dissipative-with o(L) at most.countable,
then problem (1) has at most one solution.
Remark. The same assertion holds if f is L_-dissipative.
According to [8] we have
Theorem 2, If f:[0,T)x F — Fis L_-dissipative with o(L) at most countable
and if there exists jo € N such that
{{t2): (t2) € [0.T) x Fllzl; S¢5j= 1. o}
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is bounded for every (¢, .\, ¢;,) € {0,00)"; then problem (1) is uniquely solvable on
[0, and the solution depends continuously on the initial value.

Remarks:

1. Both theorems fail without the presupposition that o(L) is at most countable
(for examples see 4], [8], {11]).

2..For the assertion in Theorem 2, in'case that L is a diagonal matrix, and for
differential equations on closed subsets of F, see [16], [17].

3. According to. an example in [8], there is a Fréchet space (F,| - ||) and a linear
continuous operator f: F — Fowith-myz, f(2)] = 0, € F, for which the
problem w'(t) =:f(u(t)), u(0) = uo_ is locally unsolvable for some ug € F.
Hence in general: (and. unlike the case in Banach spaces) L4 -dissipativity does
not imply local existence of solutions for problem (1).

We now.consider a Fréchet space (Fg, |- ||) which is the direct product of Banach
spaces (Ej,| 1), 5.€ N. Let P : Fi — Fp denote the projection Pn ((z;)32,) =
(T1,..2m, 0,0,..), m €N, and let f = (f;)%,: [0,T] x Fp — Fp be continuous.
We call the function f, or the system of differential equations ‘in problem (1), row-
finite if there is a mapping ¢: N — N with

filts2) = fi(t, Py (), (Lz) €[0,T) % Fe,” jEN.

Row-finite systems of differential equations are an important type of differential
equations in Fréchet spaces with various applications, for example, in polymerization
chemistry, in semidiscretization of partial differential equations, in the study of delay-
equations, and in modelling birth-death processes (see e.g. (2], [3], [5], [22] and the
references given there).

In the sequel we will prove the following theorems:

Theorem 3. If f:[0,T] x Fgp— Fg. is L_-dissipative, then f is row-finite.

Theorem 4. If f: [0,T) x Fg — Fg is.L_-dissipative with o(L) at most count-
able, and if f([0,T)x M) is-bounded for every bounded set M-C Fg, then problem
(1)-is uniquely solvable on [0, T] and the solution depends continuously on the initial
value.

Remarks:

1:"Theorem 4, as well as Theorem 2, can be considered to be generalizations of
Martin’s theorem on ordinary differential equations in ‘Banach spaces. (see {14],
p. 227-237). For a survey on existence and uniqueness results for Cauchy prob-
lems in locally convex spaces we refer-to [1} and [13].
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2.°The existence part of Theorem 4 is. velevant as well if Fy; is:a Montel spacc,
ic., ifidim Ej < o0, j € N. According to-an application: of Tychonov’s fixed
point theorem, initial value problems with hounded right-hand sides are always
solvable in Montel spaces (for: Flp = &Y, see [19]), but'if :f is unbounded,
problem (1) can be locally unsolvable. Consider; for example, in RY the initial
value problem w5 (t) = w3 (1) + 7, u;(0) = 0, j € N (c£ [1], [4]).

. If Fg is a Montel space then f([0,T] x M) is bounded for every bounded set
M C Fg sincef is continuous.

5

N

.- The proof of Theorem 4 will show that the solution of problem (1) can be ap-
proximated by the solution of the truncated system (cf. [2], Chapter 7, Galerkin
approximation).

In case Fr is 'a Montel space we will-get the following assertion as an easy: conse-
quence of Theorem 4.

Theorem 5. Let Fz be a Montel space. Let g: [0, T|x Fg = Fp be L_-dissipative
with o(L) at most countable, and countinuous. Further let 1: [0, T} x Fg'— Fg be
continuous with h([O,T] x Fi) bounded, and let f 1= g+ h. Then problem (1) is
solvable on [0,T].

Remark. Theorem 5 alsoholds for general spaces Fg if g ([0, 7]x M) is bounded
for every bounded set M 'C Fg and h([U, T)x FL) is assumed to be relatively compact.
This.can be considered a generalization of a theorem of Volkiann {21} on ordinary
differential equations.in Banach spaces. (cf. also [18]). For the techniques to prove
this agsertion see [4], [8] and [21].

We will finally give some applications of our theorems to stability of solutions of:
w'(t). = f(t,u(t), t € [0,00), and to solvability of the problem /() = f(¢,u(t)),
u(0) = u(T). Moreover, we will combine Theorem 5 with a uniqueness condition for
certain: L_-digsipative right-hand sides where L is allowed to have an uncountable
spectrum.

2. 'PROOF OF THEOREM 3

Since L = (lij)i,jen:is row-finite, there exists a function ¢: N = N with 1;; = 0,
7> (i), ive Ny and @(i) >4, i € N.. We claim that f5(t,2) = f;(t, P (@),
(t,7) € [0, T} x F, j'€ N. Assume that this is not true for some jo € N. Then there
exists (to; 7o) € [0, 7] x Fg with a = f;,(fo, 20) = fi, (to, Po(ie)(%0)) # 0. Since fis
continuous we can manage Ja|;, < 1. For any h < 0 and (2, 2), (t,9) € [0,T] x Fg we
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hiave

1y o
Tl = Y +h{f;

fulte)l, =l = 1/;\.\',;,)
S fr= g f ) = [t y)

Shgtlan =yfo o Lo et — Yelin) i)

which implies fora;, # y;, and b=~ ~ Uyul) that
: i oy

|
e

0 " Yia

mp——h - (j‘,;,,(t,,;l:) = fi, (s y) i

i

it =l Ao 5 Lo Ty = Yetin |,,o<;'u)'

)

in Fgowith @ - 29 in Fp as k - oo and with

Now:there is a sequence

Lhgy — T05, a

[0 = Tog Lo - Jals

in Bj, as k — oc. Since (i) > 4, ¢ €N, we get-from(2) that

) <0,
S

Since Jal;, < 1. this yields that {al;, <0, which is a contradiction. [}

1| = tim (1 = | (i (0, ) — i 0, Potin(20)

TP T

Remark. Ifin‘Theorem 3 the function fis assumed to be L -dissipative, then
the ‘proof is much easier.

3. Proor or THEORE

ions. For:the first proposition,
)15 the

= L Y.
=4
ctly the endomorphisms

1s column-finite, and
squel, v -always denotes the

For the proof of Theorem 4 we need some prepar:
see the references in our introduction. The topological dual space.of (T

space O -of all finite complex sequences. We consider the duality (1)

2 € CYy € Cy. The complex column-finite matrices ar
of Cyoand if Ads a row-finite matrix the transposed i
we have (Aa,y) = (a2, A ), e CUye Inthe se
sequence (6;;)7%,,3-€ N.

Proposition 1. Let A 'be avow-finite maitrvix. The following assertions are-equiv-

alent.




e

. a(A) is at most countable.

. AT is locally algebraic, ie., {(AT)*e;: k.€ No} is linear dependent for every
JEN, |

. et exists, t € R, and it is a matrix function with continuous entries that has
at most finitely many functions in every row which are not identically zero.

)

w

Remark. If L is quasimonotone with o(L) at most countable, then e’ is
monotone, ¢ € [0,00) (cf. [12]).

The next proposition shows that in the proof of Theorem 4 we can assume without
loss of generality that L is monotone.

Proposition 2. Let L = (lij)i jen be a quasimonotone row-finite matrix with at
most countable spectrum and let L, = (Ai;)i jen denote the monotone matrix with
AMij=1ij, £ # § and Ay’ = max{ly;,0}. Then o(L,) is at most countable.

Proof. Let j € N be fixed and let U denote the linear hull of {(LT)*e;: k€ No}
in Ry. By Proposition 1 we get dim U< co. Now let 7 := max{|li|: i € N: 3y €
U:y; #0}. The linear hull of {(LT +~I)*e;: ke N }in Ry equals U and therefore
0 < (Ly)ke; < (LT +9D)Fej, k€ No. Therefore {(LT)*e;: k € Np}is linear
dependent (in Ry as well as in Cy) for every j € N.- Hence ¢(L,,) is at most countable,
according to Proposition 1. m}

The next proposition is a consequence of a result due to Lemmert [12] on row-finite
differential inequalities.

Proposition 3, Let L be a quasimonotone row-finite matrix with at most count-

able spectrum, g € C([a,b], RY); and u: [a,] — RN is continuous and differentiable
from the left-hand side with u(a) < w € RN, Then

ul (1) < Lu(®) +g(t), t.€(a,0)
implies
4
u(t) € ey +/ ey dr, e, b
Proof - of Theorem 4. According to Proposition 2 we assume without loss of
generality that L-is monotone. For -k € Nlet fi:[0,T]'x Fr — Fg be defined as
fri=1Fd =1,k and fi; =0, 7> k. Since L is monotone we have

m_[z—y, fi(t, ) = frlt;y)) < Lijz —yll,

(t,2), (t,) € [0,T] x Fg, k€ N. Since f([0,T] x M) is bounded for every bounded
set M C Fg, Theorem 2 can be applied. ~According to Theorem 3, we have that f is
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row-finite. Let ¢: N = N be such that: f5(t,2) = f;(f, Pos)(2)),.(t,7) € [0,T] x FE,

7-€N. For fixed k € N we can choose jo = max. (i), Then by Theorem 2 we have
=1,

a unique solution w;: [0,T] = Fg of the initial value problem w'{(t) = f (t,u(t)),

u(0) = uo. For k,1. € N.we have

fuw = il (8) = mfus () = wi(t), wi(8) = wi (1))

=z [ue(t) = w (), fi (6w ) — fi(bw () + fi(tw®) = At w(@)]
< Llur(®) ~w @] + || fe(tw®) = filtw®)], te (0,7

By:Proposition-3 we get
L.
Jur(t) = win)]| < / oD (o (r) = fi(raa(m) ] dr, 1€ [0, T).
0
Now consider the Fréchet space
] [ = %
(C(O.71 Fe), - ). Nk = ((mass o))~ -
Since L'is monotone we have
e = wll < e i (2w C)) = A uO) ).
Moreover, |l fi(-,w()) — fz(-,m(-))]][}. =:0,4=1....;min{k,1}. Therefore (1),
is a Cauchy. sequence in C([0, 7], Fg), and u = klim uy, is a solution of problem (1).
sy 00
Now let u:[0,T] = Fg and v: {0, T} — Fg fulfil w'{t): = f({,u(t)), ©(0) = uo and
V) = f{t,v(t)), v(0) = o, respectively.” Then {lu—vli” (). < Llu(t) — v,

t. € (0,7], which implies JJu — v] <'e”*|lup — o]l by Proposition 3.- Therefore the
solution of problem (1) is unique and depends continuously on the initial value. O

4. PROOF OF THEOREM 5

According to Proposition 2, we assume without loss of generality that L.is mono-
tone. - Since h is bounded ‘there exists b € [0,00)" with ||h(t,z)| < b, (t,2) €
[0,T] x Fg. We consider the operator Q: C([0,T], Fg) — C([0,T)], F), where Q(v)
is the solution of w'(t) = g(t,u(t)) + h(t,v(t)), v(0) =, which exists and is unique,
according to Theorem 4. Here again C([0,T], Fg) is endowed with the polynorm
Jlulf = (g&)}}”u(t) [[])::1 Since L is monotone, according to Proposition 3, for v,
w e (0,7, Fr)

o) - @)l < T4 {jh(000) - A, wO),
3



which implies that @ is continuous and
llow < fle@lf +2¢™ .

Hence Q(C([0,T), Fiz)) is bounded. Since g([0, T} x M) is bounded for every bounded
set M C Fig, we have that { (Q(v))": v € C([0,7), Fg)} is bounded in C([0, T, Fi).
Therefore Q(C{[0,T), F)). is equicontinuous.. Altogether Q(C([0, T}, Fi)) is rela-
tively compact, since Fg is.a Montel space, and, according to Tychonov’s fixed point
theorem, there is a solution of problem (1). a

5. APPLICATIONS

Let L be a quasimonotone row-finite matrix with (L) C {z € C: Re(z) < 0},
which implies that o (L) is at most countable. Then o(e**) C {z € C:]z| <1}, t €
(0,00), and Theorem ‘4 together with Proposition 3 leads to the following assertions:

1. If : [0,00) X Fg — Fg is L_-dissipative, then u/(t) = f{t,u(t)), u(0) = uo is

solvable on [0, 00) for every ug € Fig, and ||u(t) —w(t)|| < e'#|[v(0) =w(0)|| = 0

as £ — oo for any two solutions v, w of w'(t) = f (t,u(t)).

I £ {0, T x Fe — Fi is L_-dissipative, then [|o(T) —w(T)|| € e”*|u(0)=w(0)]|
for any. two solutions v,w of u/(t) = f(t,u(t)). Hence, according to Lemmert’s
fixed point theorem (see [12]), the problem u'(t) = (¢, u(t)), u(0) = u(T) has
a unique solution.

3.:As a consequence of 1. and 2. we get: If f:.[0,00) x Fg-— Fg is L_-dissipative

and if f(t,z) = f(t +T,2), (t,&) € [0,00) x Fg, then v'(t) = f{t,u(t)) has

a unique T-periodic solution which is asymptotically stable.

I

Next, let Fr'be a Montel space, let ¢, h satisfy the conditions in - Theorem 5, and
let f:= g+ h be S_ dissipative, where S is a quasimonotone row-finite matrix with
arbitrary spectrum. Remember that g is L_-dissipative with o:(L) at most countable.
According to Theorem 5, problem (1) is solvable on {0, 7). From [7], Theorem 2, we
get uniqueness conditions for the solution of problem (1):in this case (for other types
of matrix Lipschitz conditions we refer to [15]). These uniquenessconditions in [7]
are proved for L, -dissipativity, but they hold for L_-dissipativity with -analogous
proofs. - To this end let S, denote the positive part of S as in:Proposition 2 and let
D :=8, — 8. Moreover, let b [0, o0)V such that Hh(t,m) - h(t,y)[[ < b, (t,2);
(t,y) € [0,T] x Fg. Then the solution of problem (1) is unique if one of the following
conditions is satisfied:

1. There exist o € [0,00)Y and .2 0 with

T
(Sp)" / elodr <Bnta, nEN.
Jo




2. The diagonal matrix D is invertible, and there exist € [0,00)¥ and 8 2 0 with
: T
(D“S,f)"/ e’ Lhdr < Bla, neN.
o

Example.  We consider the Fréchet space (R, || -||) with ||z} = (|zj|);z1, and
the following row-finite initial value problem:

ui{t) = ~;5541 sinh (u; () — u;/mfl)(t) + v arctan{uj4 (b)) + g; (t),

u;(0) = uoj, 7 €N, with v; = 1, ¢; € C([0,TLR), 7 € N, and up € RY. Setting
g(t, ). = —¥; Y541 sinh{z;) — z}/(zj—l), h(t,z) = 7; arctan(z;41) +g;(t), and f =
g+ h, we have that g is L..-dissipative and that fis S_-dissipative, with L =
diag(=7;7+1) and

N " 0 0 0
0 =y iy 0 0
S 0 O v 0

0 0 0 TYAYs Y4

We have that o(L) = {~v;7+1: 4 € N}, and ¢(S) = C (cf. [10}).. Moreover,
It )~ Lt )| € 7(35)52, = b We have

neN,

T
(07" [ i< 7,0
o
and therefore our problem is uniquely solvable on {0,7]. Note:that a fast to —oo
tending diagonal of 'S is helpful for unigueness. The initial value problem w}(t) =
Vi arcﬂau(ujﬂ(t)), 1;(0). = uoj, j € N, can have an infinite number of solutions,
if (v4)52, is growing fast (see [7]).

Acknowledgement.: The author wishes to express his sincere gratitude to
Prof. Roland Lemmert for many helpful remarks to'improve this paper:
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