
Mathematica Bohemica

Gerd Herzog
On one-sided estimates for row-finite systems of ordinary differential equations

Mathematica Bohemica, Vol. 124 (1999), No. 1, 67–76

Persistent URL: http://dml.cz/dmlcz/125972

Terms of use:
© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/125972
http://dml.cz


124(1999) MATHEMATICA BOHEM ICA No. 1, 67 76 

ON ONE-SIDED ESTIMATES FOR ROW-FINITE SYSTEMS OF 

ORDINARY DIFFERENTIAL EQUATIONS 
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Abstract. We prove an existence and uniqueness theorem for row-finite initial value 
problems. The right-hand side of the differential equation is supposed to satisfy a one-sided 
matrix Lipschitz condition with a quasimonotone row-finite matrix which has an at most 
countable spectrum. 
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1. INTRODUCTION 

Let (F, || • ||) be a real or complex Frechet space where || • ||: F -> RN denotes 
a polynorm on F, i.e., {|| • ||j : j € N} is a separating family of seminomas inducing 
the Frechet space topology of F. Especially, for a sequence E = ((Ej,\ • |j))°Lj 

of Banach spaces we consider the Frechet space (Fi?,!! • ||) with FE = PI Ej ar>d 
3=1 

||(a:;)glj||. = \XJ\ ., j e N. For a continuous function / : [0,T] x F -} F and u0 e F 
we consider the initial value problem 

(1) u'(t) = f(t,u(t)), «(0) = «0. 

Now let A = (ciij)i,jeN be a row-finite matrix, i.e., a,-j € C, i, j € N and for every 
i £ N is BO' € N: ciij ^ 0} < oo. 

The row-finite matrices are exactly the continuous endomorphisms of the Frechet 
space (CN , | | • | |), ||a;|| = (\XJ\)°°=1 and, according to a theorem of Ulm [20], the 
spectrum 

a (A) = {A £ C: A - XI is not invertible} 



is either at most countable or has an at most countable complement C \ c(-4). For 
this and further properties of row-finite matrices we refer to [5], [6], [9], [10], [11], 
[12], [23], 

In the sequel we will call a row-finite matrix A = (fly)i,jeN monotone if ciij € 
[0,co), i, j 6 f_, and we will call A quasimonotone if o,j 6 R, i, j _ N and oy ^ 0, 

i±3-
Now we define mappings m-.: F x F -^ UN and m+: F x F -+ UN as 

r i r IN + M l - I N I m±.i;,'i;]= hm - — . 

The j - t h coordinate of m± will be denoted by m,j±, j e f_. The existence of these 
limits as well as the properties of the functions m± are consequences of the properties 
of convex functions on linear spaces (see [14], p. 36-46). Especially, for x,y,z £ F 
we have that 

|m±[_,j/]| < IIJ/U, 

m-[x,y] < m+[x,y], 

m±[x,y + z] < m±[x,y] + \\z\\. 

Here and in the sequel inequalities between elements of RN are intended component­
wise. Now, if I C R is an interval and _: I -¥ F is differentiable from the left-hand 
side or from the right-hand side at to € I , then ||M|| : / -4 UH has the same property 
and 

| | - IF_(to)=m_Nio),u '_(to)] , 

||u||+(to) = m+[u(t0),u+(t0)], 

respectively. 
Now let / : [0, T] x F —> F be a continuous function. If there is a quasimonotone 

row-finite matrix!/ with m±[x-y,f(t,x)-f(t, y)] ^ L\\x-y\\, (t,x),(t,y) e [0,T]xF 
we will say that / is L±-dissipative. 

According to a theorem of Lemmert [12] we have 

T h e o r e m 1. I f / : [ 0 , T ] x F - + . is L+-dissipative with a(L) at most countable, 
then problem (1) iias at most one solution. 

R e m a r k . The same assertion holds if / is L_-dissipative. 

According to [8] we have 

Theo rem 2. If f: [0, T] x F -»• F is L--dissipative with a(L) at most countable 
and if there exists jo 6 N sucji that 

{/(*,_): (t,x) £ [0,T] x F,M\i^Ci,j = l , . . . , / o } 



is bounded for every (cit..., Cj„) e [0, cx>)N, then problem (1) is uniquely solvable on 
[0, T] and the solution depends continuously on the initial value. 

R e m a r k s : 

1. Both theorems fail without the presupposition that a(L) is at most countable 
(for examples see [4], [8], [11]). 

2. For the assertion in Theorem 2, in case that L is a diagonal matrix, and for 
differential equations on closed subsets of F, see [16], [17]. 

3. According to an example in [8], there is a Frechet space (F, || • ||) and a linear 
continuous operator f:F-+F with m+[x,f(x)] = 0, :i; e F, for which the 
problem u'(t) = f(u(t)), u(0) = «o is locally unsolvable for some uo 6 F. 
Hence in general (and unlike the case in Banach spaces) L±-dissipativity does 
not imply local existence of solutions for problem (1). 

We now consider a Frechet space (FE, \\ • ||) which is the direct product of Banach 
spaces (Ej,\ • \j), j e N. Let Pm: FE -> FE denote the projection P m ( ( i 3 ) ^ 1 ) = 
(xlt.. . a m ,0 ,0 , ...),meN, and let / = (fj)^i : [0,T] x FE -» FE be continuous. 
We call the function / , or the system of differential equations in problem (1), row-
finite if there is a mapping ip: H -> N with 

fs(t,x)=fj(t,PyU)(x)), (t,x)e[0,T]xFB, jeN. 

Row-finite systems of differential equations are an important type of differential 
equations in Frechet spaces with various applications, for example, in polymerization 
chemistry, in semidiscretization of partial differential equations, in the study of delay-
equations, and in modelling birth-death processes (see e.g. [2], [3], [5], [22] and the 
references given there). 

In the sequel we will prove the following theorems: 

Theorem 3. If f: [0,T] x FE -> FE is L--dissipative, then f is row-finite. 

Theorem 4. If f: [0,T] x FE —> FE is L--dissipative with ff(L) at most count­
able, and if /([0,T] x M) is bounded for every bounded set M C FE, then problem 
(1) is uniquely solvable on [0, T] and the solution depends continuously on the initial 
value. 

R e m a r k s : 
1. Theorem 4, as well as Theorem 2, can be considered to be generalizations of 

Martin's theorem on ordinary differential equations in Banach spaces (see [14], 
p. 227-237). For a survey on existence and uniqueness results for Cauchy prob­
lems in locally convex spaces we refer to [1] and [13]. 
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2. The existence part of Theorem 4 is relevant as well if FE is a Montel space, 
i.e., if dimUj < oo, j e W. According to an application of Tychonov's fixed 
point theorem, initial value problems with bounded right-hand sides are always 
solvable in Montel spaces (for FE = RN, see [19]), but if / is unbounded, 
problem (1) can be locally unsolvable. Consider, for example, in R^ the initial 
value problem u'fo) = u](t) +j, _3-(0) = 0, j e N (cf. [1], [4]). 

3. If FE is a Montel space then /([0,T] x M) is bounded for every bounded set 
M C FE since / is continuous. 

4. The proof of Theorem 4 will show that the solution of problem (1) can be ap­
proximated by the solution of the truncated system (cf. [2], Chapter 7, Galerkin 
approximation). 

In case FE is a Montel space we will get the following assertion as an easy conse­
quence of Theorem 4. 

Theorem 5. Let FE be a Montel space. Letg: [0,T]XFE -+ FE be L--dissipative 
with <?(L) at most countable, and countinuous. Further let h: [0, T] x FE —> FE be 
continuous with /i([0,T] x FE) bounded, and let f := g + h. Then problem (1) is 
solvable on [0,T]. 

R e m a r k . Theorem 5 also holds for general spaces FE if g ([0, T] x M) is bounded 
for every bounded set M C FE and II([0,T]XFE) is assumed to be relatively compact. 
This can be considered a generalization of a theorem of Volkmann [21] on ordinary 
differential equations in Banach spaces (cf. also [18]). For the techniques to prove 
this assertion see [4], [8] and [21], 

We will finally give some applications of our theorems to stability of solutions of 
u'(t) = f(t,u(t)), t 6 [0,co), and to solvability of the problem u'(t) = f(t,u(t)), 
w(0) = u(T). Moreover, we will combine Theorem 5 with a uniqueness condition for 
certain L_-dissipative right-hand sides where L is allowed to have an uncountable 
spectrum. 

2. P R O O F OF THEOREM 3 

Since L = (kjhj&t is row-finite, there exists a function ip: N -+ N with kj = 0, 
j > sp(i), i € K and <p(i) >. i, i e N. We claim that fj(t,x) = fj(t,PvU)(x)), 
(t,x) G [0,T] x FB, j € IU Assume that this is not true for some jo - N. Then there 
exists (t0,x0) e [0,T] x FB with a := fja(t0,x0) - fja(t0,P9{jtl)(xo)) # 0. Since / is 
continuous we can manage |o| iu < 1. For any h < 0 and (t,x), (t,y) e [0,T] x FB we 
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l{h«-y*< + hU'j„(t,x) - ./>('•, ;v))|Ju - k,„ - i/jj.J 
< m.;„_[.i: -;</,/(/, :r) - / ( / , ! / ) ] 

'£ tint 1*1 - yili + • • • + . ,j„p(,-„)!:'^(j„! ~ ?A»(.i„)l*'(J<>)' 

which implies for Xju ^ yj0 and /i = — \xju - y-jA. that 

l _ | r l _ _ _ _ _ l _ _ ( / (l, x)-fi0(t, y)) I 
(2) I l"io-Wo U l./„ 

5$ / j „ i l-i-'t - 2/i 11 H + ^ ( : i « ) l : ! V( i „ } ~ I V U ' " ) U J „ ) ' 

Now there is a sequence (cr/,-)^_] in Eg with xk -» :i.-0 in F/; as A; -> oo and with 

•"':;.:ji, — :tQjo « 

|:';/=j„ -xojAk |a|j„ 

in _^„ as k -+ oo. Since < (̂i) ^ ?', 2 G N, we get from (2) that 

HR~~°L
 = £ » f1 ~ I T S ^ ! 1 " ~ (/A.('o,-i--*) - /i„(<o,/V(io)(*o))) [ J < 0-

Since |o|jn < 1, this yields that |«.[,•„ <. 0, which is a contradiction. ~ 

R e in a r k . If in Theorem 3 the function / is assumed to be L+-dissipative, then 
the proof is much easier. 

3. PKOOF OF THEOREM 4 

For the proof of Theorem 4 we need some preparations. For the first proposition, 
see the references in our introduction. The topological dual space of (Chl, || • Jj) is the 

space Cm of all finite complex sequences. We consider the duality (x,y) — ~] :i:;?/,, 
j= i 

x G Cis!, y G Cf,j. The complex column-finite matrices are exactly the endomorphi.sms 
of Cm, and if A is a row-finite matrix the transposed matrix ,4 is column-finite, and 
we have (Ax,y) — (x,ATy), x G C f\ y G CM. In the sequel, <-',- always denotes the 
sequence (difjfl^, i G N. 

Proposi t ion 1. Let A be a row-finite matrix. The following assertions are equiv­
alent. 



1. <T(A) is at most countable. 
2. AT is locally algebraic, i.e., {(AT)kej-. k e N0} is linear dependent for every 

j e N. 
3. e M exists, t e R, and it is a matrix function with continuous entries that has 

at most finitely many functions in every row which are not identically zero. 

R e m a r k. If L is quasimonotone with <r(L) at most countable, then etL is 
monotone, t e [0,oo) (cf. [12]). 

The next proposition shows that in the proof of Theorem 4 we can assume without 
loss of generality that L is monotone. 

P ropos i t i on 2. Let L — (kj)i,jeN be a quasimonotone row-finite matrix with at, 
most countable spectrum and let Lp = (Xij)ij^m denote the monotone matrix with 
Ay = kj, i ^ j and A.,- = max{/,,, 0}. TJien <r(Lp) is at most countable. 

P r o o f . Let j 6 N be fixed and let U denote the linear hull of {(LT)kej: k € N0 } 
in RM. By Proposition 1 we get dimfJ < oo. Now let 7 := max{|J;j|: i € N: 3y £ 
U: y{ # 0} . The linear hull of {(LT + yl)kej: k e N0} in RN equals U and therefore 
0 sj (LT)kej sj (LT + -yl)kej, k € N0. Therefore {(LT)key. k € M0} is linear 
dependent (in R^ as well as in CM) for every j e N. Hence <r(Lp) is at most countable, 
according to Proposition 1. • 

The next proposition is a consequence of a result due to Lemmert [12] on row-finite 
differential inequalities. 

P ropos i t i on 3 . Let L be a quasimonotone row-finite matrix with at most count­
able spectrum, g € C([a,b], RN), and u: [a, b] -> RN is continuous and differentiable 
from the left-hand side with 11(a) sj w € RN. TJien 

uL(t)^Lu(t)+g(t), te(a,b] 

imphes 

u(i) < e(t~a)Lw + j e(t-T)Lg(r) dr, t e [a, b]. 

P r o o f of Theorem 4. According to Proposition 2 we assume without loss of 
generality that L is monotone. For k 6 N let fk: [0, T] x Fj; -*• FE be defined as 
fkj — fj, j = 1, • • •,k, and fkj = 0, j > k. Since L is monotone we have 

ro_[i - y,fk(t,x) - fk(t,y)] «= L\\x - y\\, 

(t,x), (t,y) e [0,T] x FE, ke M. Since /([0,T] x M) is bounded for every bounded 
set M C FE, Theorem 2 can be applied. According to Theorem 3, we have that / is 
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row-finite. Let tp: N -> N be such that fj(t,x) = fj(t,Plfi(j)(x)), (t,x) e [0,T] x FE, 
j € N. For fixed k € N we can choose jo = max <p(i)- Then by Theorem 2 we have 

a unique solution uk: [Q,T] -> i*g of the initial value problem u'(t) = fk(t,u(t)), 
u(0) = u0. For i . l e M we have 

\\uk-ui\\'jt) = m-[uk(t)-u,(t),u'k(t)-u't(t)] 

= m_[uk(t)-ul(t),fk(t,Uk(t))-fk(tMt))+fk(t,ul(t))-fl(tMt))} 

£ L\\uk(t) - u , ( t ) | | + ||/*(t,u,(t)) - / ,(t ,u,(t)) | | , t £ (0,T]. 

By Proposition 3 we get 

||u*(t) - u , ( t ) | | < f z{t~T)l \h (T, Mr)) - / , ( T , U , ( T ) ) II dr, t e [0,T]. 
,/o 

Now consider the Frechet space 

(C([Q,T],FE),\I-

Since L is monotone we have 

| | i ** -« j | | | $e 7 , - | | / J t ( . , u , ( - ) ) - / , ( - , u , (0 ) l . 

Moreover, |/ fc(-,u,(-)) - fi(-M-))l\ = 0, j = 1, . . . ,min{fe,l}. Therefore (u*)£i 
is a Cauchy sequence in C([0, T], FB), and u = lim uk is a solution of problem (1). 
Now let u: [0,T] -> FE and v. [0,T] -» F B fulfil u'(t) = f(t,u(t)), u(0) = u0 and 
u'(() = f(t,v(t)), v(Q) = VQ, respectively. Then \\u - v\\L(t) < L\\u(t) - v(t)\\, 
t e (0,T], which implies |[u - v\ sj e r L | |« 0 - i>0|| by Proposition 3. Therefore the 
solution of problem (1) is unique and depends continuously on the initial value. • 

4. PROOF OF THEOREM 5 

According to Proposition 2, we assume without loss of generality that L is mono­
tone. Since h is bounded there exists b _ [0,oo)N with ||ft(t,a;)|| ^ 6, (t,x) € 
[0,T] x FE. We consider the operator Q: C([Q,T],FE) -> C([Q,T],FE), where Q(v) 
is the solution of u'(t) = g(t,u(t)) +h(t,v(t)), «(0) = «0 , which exists and is unique, 
according to Theorem 4. Here again C([Q,T],FE) is endowed with the polynorm 

| u | = ( max u(t) .) . Since L is monotone, according to Proposition 3, for v, 
Vi6[0,Tj" 3 / j=i 

weC([0,T],FE) 

\\\Q(v)-Q(w)\\\^eTL\\\h(;v(-))-h(;w(-))\\\, 



which implies that Q is continuous and 

\\\Q(v)l\<\\\Q(0)\\\ + 2eTH. 

Hence Q(C([0,T],FE)) is bounded. Since g([0,T]xM) is bounded for every bounded 
set M C FB, we have that {(Q(v))': v e C([0,T],FE)} is bounded in C([0,T],FE). 
Therefore Q(C([0,T],FE)) is equicontinuous. Altogether Q(C([0,T],FE)) is rela­
tively compact, since FE is a Montel space, and, according to Tychonov's fixed point 
theorem, there is a solution of problem (1). D 

5. APPLICATIONS 

Let L be a quasimonotone row-finite matrix with a(L) C {z 6 C: Re(z) < 0}, 
which implies that a(L) is at most countable. Then a(etL) C {z e C: \z\ < l}, t e 
(0, oo), and Theorem 4 together with Proposition 3 leads to the following assertions: 

1. If / : [0,oo) x FE -+ FB is £_-dissipative, then u'(t) = f(t,u(t)), u(0) = u0 is 
solvable on [0, oo) for every MO € FE, and \\v(t) -w(t)|| ^ etL\\v(0)~w(0)\\ -> 0 
as t -+ oo for any two solutions v, w oiu'(t) = f(t,u(t))-

2. If/: [0,T]xFE -*• FE is i_-dissipative, then \\v(T)-iv(T)\\ ^ e^^ |J^(0>—w(0) [[ 
for any two solutions v,w of u'(t) = f(t,u(t)). Hence, according to Lemmert's 
fixed point theorem (see [12]), the problem u'(t) = f(t,u(t)), u(0) = u(T) has 
a unique solution. 

3. As a consequence of 1. and 2. we get: If / : [0, oo) x FE -+ FE is £_-dissipative 
and if f(t,x) = f(t + T,x), (t,x) 6 [0,oo) x FE, then u'(t) = f(t,u(t)) has 
a unique T-periodic solution which is asymptotically stable. 

Next, let FE be a Montel space, let g,h satisfy the conditions in Theorem 5, and 
let / := g + h be 5_ dissipative, where 5 is a quasimonotone row-finite matrix with 
arbitrary spectrum. Remember that g is L_-dissipative with a(L) at most countable. 
According to Theorem 5, problem (1) is solvable on [0,T]. From [7], Theorem 2, we 
get uniqueness conditions for the solution of problem (1) in this case (for other types 
of matrix Lipschitz conditions we refer to [15]). These uniqueness conditions in [7] 
are proved for £+-dissipativity, but they hold for £_-dissipativity with analogous 
proofs. To this end let Sp denote the positive part of S as in Proposition 2 and let 
D := SP- S. Moreover, let 6 e [0,oo)N such that \\h(t,x) - h(t,y)\\ ^ b, (t,x), 
(t,y) e [0,T]xFE. Then the solution of problem (1) is unique if one of the following 
conditions is satisfied: 

1. There exist a e [0, oof and (3 > 0 with 

l-T 
(Sp)" / eTLbdr ^ finnna, neU. 



2. The diagonal matrix D is invertible, and there exist a e [0, co)N and 0 > 0 with 

rT 

(D^Sl)n I eTLb&T^ilnnna, neU. 
Jo 

E x a m p l e . We consider the Frechet space (RN, || • ||) with ||.-r|| = ( l ^ i l ) " ^ , and 
the following row-finite initial value problem: 

«i(<) = -7i7i+isinh(ui(t)) - ^ • / ( 2 j ' " 1 ) ( i ) + 7 i a r c t a n ( « i + 1 ( t ) ) + f l j ( t ) , 

Wj(0) = u0j, j e N, with 7,- > 1, §j e C([0,T],R), j G N, and u 0 G RN- Setting 
g(t,x) = -7i7i+i sinhfaj) -x Jj

( 2-'~1 ), ft(t,x) = 7j arctanfo+i) +&•(*)> a n d / : = 
g + h, we have that 5 is L_-dissipative and that / is S_-dissipative, with L — 
diag(-7j7i+i) and 

/-7i72 7ł 0 0 0 •̂  
0 -7273 72 0 0 •• 
0 0 -7з74 7з 0 •• 
0 0 0 -747.5 74 •• 

V І ; : ;••••• 

We have that a(L) = {-7j7i+i= 3 6 N}, and a(S) = C (cf. [10]). Moreover, 
\\h(t,x) - h(t,y)\\ s= 7 1 ( 7 ^ =: 6. We have 

{D^SlY1 j eTLb&T =£ ( i c ) ^ , n e N, 

and therefore our problem is uniquely solvable on [0,T]. Note that a fast to —00 
tending diagonal of S is helpful for uniqueness. The initial value problem w,-(t) = 
7j arctan(u,-+i(t)), Uj(0) = u0j, j e M, can have an infinite number of solutions, 
if (7i)|2-i is growing fast (see [7]). 

A c k n o w l e d g e m e n t . The author wishes to express his sincere gratitude to 
Prof. Roland Lemmert for many helpful remarks to improve this paper. 
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