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THE DIRECTED DISTANCE DIMENSION OF ORIENTED GRAPHS 

GARY CHARTRAND, MICHAEL RAINES, PING ZHANG, Kalamazoo 

(Received January 26, 1998) 

Abstract. For a vertex v of a connected oriented graph D and an ordered set W = 
[wi, W2,.. •, ii'k} of vertices of D, Ihe (directed distcince) representation of v with respect 
to W is the ordered fc-tuple r(v \ W) = (d(v, u>i),d(v, u-2), •.. ,d(i\ wk)), where d(v, wt) is 
Ihe directed distance from v to wL. The set W is a resolving set for D if every two distinct 
vertices of D have distinct representations. The minimum cardinality of a resolving set for 
D is the (directed distance) dimension dhn(D) of D. The dimension of a connected oriented 
graph need not be defined. Those oriented graphs with dimension 1 are characterized. We 
discuss the problem of determining the largest dimension of an oriented graph with a fixed 
order. It is shown that if the outdegree of every vertex of a connected oriented graph D of 
order n is at least 2 and dim(D) is defined, then dim(D) ^ n — 3 and this bound is sharp. 

oriented graphs, directed distance, resolving sets, dimension 

MSC 1991: 05C12, 05C20 

1. INTRODUCTION 

For an oriented graph D of order ?i, an ordered set W = {wi,w2,... ,Wk} of 

vertices of D, and a vertex v of D, the A:-vector (ordered t-tuple) 

r(v | W) = (d(v,wi),d(v,u<2) d(v,Wk)) 

is referred to as the (directed distance) representation of v with respect to W, where 

d(x,y) denotes the directed distance from x to y. that is, the length of a shortest 

directed x — y path in D. Since directed x — y paths need not exist in D, even if 

D is connected (its underlying graph is connected), the vector r(v | II') need not 

exist as well. If r(v | II') exists for every vertex e of D. then the set W is called a 

resolving set for D if every two distinct vertices of D haw distinct representations. 

A resolving set of minimum cardinality is called a basis for D and this cardinality is 



the (directed distance) dimension dim(T>) of D. Of course, not every oriented graph 

has a dimension. An oriented graph of dimension k is also called k-dimensional. 

To determine whether an ordered set W = {U>I,K,'2 u'k} of vertices in an 

oriented graph D is a resolving set, we need only show that the representations of 

the vertices of V(D) - W are distinct since r(u>t j IK) is the only representation 

whose ith coordinate is 0. 

The directed distance dimension of an oriented graph is a natural analogue of 

the metric dimension of a graph that was introduced independently by Harary and 

Melter [2] and Slater [3], [4], This concept was also investigated in [1] as a result of 

studying a problem in pharmaceutical chemistry. 

D 
Figure 1. An oriented graph D with dimension 2 

In the oriented graph D of Figure 1, let Wi = {w,t>}. The five representations 

of the vertices of D with respect to Wx are r(u | Wi) = (0,2), r(v | Wt) = (1,0), 

r(w | Wi) = (2,1), r(x | Wx) = (2,1), and r(y \ W\) = (1,3). Since x and w have 

the same representation, W\ is not a resolving set for D. 

The five representations of the vertices of D with respect to W2 = {u,v,w} are 

r(u | W2) = (0,2,2), r(v | W2) = (1,0,3), r(w | W2) = (2,1,0), 

r(x\W2) = (2,1,1), r ( y | W 2 ) = (1,3,3) 

Since these five 3-vectors are distinct, W2 is a resolving set for D. However, W2 

is not a basis for D. To see this, let VK3 = {x,y}. Then r(u | W3) = (1,3), 

r(v | W3) = (2,1), r(w | FK3) = (3,1), r ( s | PK3) = (0,2), and r(y \ W3) = (2,0), 

which are distinct as well. So W3 is a resolving set for D. Since there is no 1-element 

resolving set for D, it follows that W3 is a basis and dim(D) = 2. 

Now let T be the tournament shown in Figure 2. Table 1 gives all 2-element 

choices for W and shows that for each such choice, there exist two equal 2-vectors, 

thus showing that dim(T) ^ 3. However, dim(T) = 3 since {vi,vs,V(,} is a basis 

for T. Figure 3 shows an oriented graph D containing T as an induced subdigraph. 

The set W = {x,y} is a basis of D, so dim(D) = 2. Hence we have the possibly 
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unexpected property that the 3-dimensionai tournament; T is an induced subdigraph 

of the 2-dimensional oriented graph D. 

Figure 2. The tournament T 

Figure 3. The digraph D 

There is a fundamental question here—one whose answer is not known to us, but 

one which deserves further study. What is a necessary and sufficient condition for 

the dimension of a digraph D to be defined? Certainly, if D is strong, then dim(D) is 

defined. Also, if D is connected and contains a vertex such that D — v is strong, then 

dim(-D) is defined. This last statement follows because if odi> > 0, then V(D) — {v} 

is a resolving set; while if id v > 0, then V (D) is a resolving set. There are numerous 

other sufficient conditions for dim(D) to be defined. 
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w equiv alent ÆCtOГ̂  

{vi,v2} r(vs 
\W) = = r(v7 W) = = (1,2) 

{vi,v3} r(vв 
W) = = r(v7 W) = = (1,D 

{vi,v4} r(vъ \W) = = r(v7 
W) = = (1,2) 

{V1,VЬ} r(v6 
W) = --r(v7 W) = -(1,2) 

{vi,vв} r(v2 
W) = = r(v3 

W) = = (2,2) 
{vi,v7} r(V5 W) = -r(v6 W) = (1,1) 
{v2,v3} r(vi W) = - r(vв 

W) = (1,1) 
{v2,v4} r(vь 

W) = -- r(v7 
W) = (2,2) 

{v2,vъ} r(v% W) = - r(f 5 
W) = (1,2) 

{v2,Vђ} r(v4 W) = = r(v W) = (2,1) 
{b'2,V7} r(v4 W) = - r(vъ W) = (2,1) 
{v3,v4} r(v\ W) = -- r(v2 

W) = (1,1) 
{vз,vь} r(vв W) = -r(v7 W) = (1,2) 
{vз,v&} r(vi W) = -. r(v2 W) = -(1,2) 
{vз,v7} r(v2 W) = •-r(v6 

W) = (1,1) 
{v4,v&} r(v2 

W) = - r(v3 
W) = -(1,1) 

{v4,v6} r(vi W) = r(v2 W) = (1,2) 
{v4,v7} r(vi W) = r(v3 W) = (1,2) 

{v5,vв} r(v2 
W) = r(v3 W) = (1,2) 

{V5,V7} r(v2 
W) = - r(v4 W) = (1,1) 

{vв,v7} r(v4 
W) = ~ r(vъ W) = -(1,1) 

Table 1. 

2. 1-DIMENSIONAL ORIENTED GRAPHS 

In this section we characterize those oriented graphs having dimension 1. We also 
describe some properties of bases for 1-dimensional oriented graphs. 

Theorem 2.1. Let D be a nontrivial oriented graph of order n. Thendim(D) = 1 
if and only if there exists a vertex v in D such that 

(i) D contains a hamiltonian path P with terminal vertex v such that idr; v = 1; 
and 

(ii) if the hamiltonian path P in (i) is of the form 

Vn-l,Vn-2,...,Vi,V, 

then, for each pair i, j of integers with 1 ^ i < j 4 n — 1, t ie digraph D — E(P) 

contains no arc of the form (vj,Vi). 
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Proof . Assume that dim(D) = 1. Let W = {v}, v € V(D), be a basis 
of D. Then the distance d(u,v) from u to v is defined for each vertex u in D 
and the set {d(u,v); u £ V(D)} = {0,1, . . . ,n — 1}. Thus, we may assume that 
V(D) — {v,vi,V2, • • • ,vn-i) where d(vi,v) = i (1 ^ i Si n — 1). Clearly, idi> = 
1. Since d(vn-i,v) — n — 1, there exists a hamiltonian path in D, namely P : 
vn-i,vn-2, • • • ,vi,v, so (i) holds. Furthermore, if there exists a pair i,j of in­
tegers (1 ^ i < j ^ n — 1) such that the arc (vj,Vi) is in D — E(P), then 
j 7̂  i + 1 and d(i>j,i>) = d(i>;_|_i,i>) (shown in Figure 4). This contradicts the fact 
that {d(u,v); u 6 V(D)} consists of n distinct integers, so (ii) holds. 

Vi+l 

Vi-i Vi-2 
Figure 4. 

Conversely, assume that there is a vertex v in D such that (i) and (ii) hold. 
We show that W = {v} is a resolving set of D. Since d(u,v) is defined for each 
u e V(D), it suffices to show that the set {d(v-i,v); 1 ^ i < n — 1} consists of n - 1 
distinct integers. Suppose that this is not the case. Then there exist integers i,j 
(1 ^ i < j < n - 1) such that d(vj,v) = d(vt,v) — L Let Pi be a Vi - v path and P2 

a Vj — v path in D such that Pi and P2 have the same length I. Since id i> = 1, there 
exists a vertex vk ^ v in D that belongs to both Pi and P2. Assume that vk is the 
vertex with largest index k such that the path vk,vk-i,... ,v-i,v is on both Pi and 
P2 (see Figure 5). 

Let (vkl,vk) e J.(Pi) and (vk2,vk) € E(P2) where (vkl,vk) ^ (vk2,vk). Clearly, 
fci > k and _2 > fc- ft follows that at least one of these arcs is in D — E(P), but this 
is a contradiction to (ii). D 

We now present some facts concerning bases in 1-dimensional oriented graphs. 

Theorem 2.2. Let D be a digraph of order n with dim(D) = 1. Furthermore, 
Jet vi and v2 be distinct vertices of D with d(vi,v2) = 2 sudi that both {vi} and 
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{v2} are bases of D. Ifv is a vertex of D such that (vi,v), (v,v2) £ E(D), then {v} 

is also a basis of D, 

P r o o f . To show that {v} is a basis of D, we show that for each u 6 V(D), 

the distance d(u,v) is defined and the set {d(u,v); u € V(D)} consists of n distinct 

integers. 

First notice that id'o = 1, for otherwise there exist distinct vertices x and y of D 

such that d(x,v) = d(y,v) = 1. Since idv2 = 1, by Theorem 2.1, we have 

d(x,v2) = d(y,v2) = d(x,v) + 1 = 2 

This contradicts the fact that {v2} is a basis of D. 

Furthermore, suppose that there exist vertices u, w in D such that d(u, v) = 

d(w,v). Since idf = 1, each u — v path contains the arc (vi,v) as its terminal 

arc, as does each w — v path, so 

d(u,vi) = d(w,vi) = d(u,v) — 1 

Again, this contradicts the fact that {vi} is a basis of D. D 

We now have an immediate consequence of Theorem 2.2. 

C o r o l l a r y 2 .3 , If D is a 1-dimensional oriented graph of order n ^ 3 such £.hat 

{v} is a basis of D for every vertex v in D, then D is a directed cycle. 

P r o o f . Let V(D) = {vi,v2,... ,vn}. By Theorem 2.2, id-y = 1 for every vertex 

v of D. Moreover, D contains a hamiltonian path P. We can assume that 

P: vn,vn-i,... ,v2,vi 

Next, we show that D contains the cycle 

Cn • vn ,!>„_! , . . . , v2, Vi, vn 

Since idi>n = 1, there exists a unique vertex v such that (v,vn) e E(D). If v ^ vi, 

then (vi,vn) 6 E(D) for some i (2 < i < n - 1). Since {t>„} is a basis of D, there 

exists a hamiltonian path in D with terminal vertex vn. However, since every vertex 

has indegree 1, the only possible path in D with vn as its terminal vertex is 

P': vn-i, vn-2, • • •, Vi+i, Vi, vn 

Since P' has length n — i, it is not a hamiltonian path. This contradicts the fact that 

{vn} is a basis. So D contains the cycle Cn. Furthermore, since idv = 1, D cannot 

contain any arc except those in Cn. So D = Cn. D 
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We can improve Corollary 2.3 slightly. 

Corol lary 2.4. If D is a 1-dimensionaJ oriented graph of order n ^ 3 such that 

\{v; {v} is a basis of D}\ >- n - 1 

then D is a directed cycle. 

P r o o f . Let V(D) = {u,t;i,v2> • • -,vn-\}. Without loss of generality, we assume 

that {vi} is a basis of D for 1 < i < n — 1. By Corollary 2.3, it suffices to show that 

{v} is a basis as well. 

We claim that odu > 0. Suppose that this is not the case. Then for each vertex 

u (7= v), the distance d(v,u) is not defined, which contradicts the fact that {u} is 

a basis of D. Hence, there is a vertex x (^ v) such that (v,x) 6 E(D). Since {a;} 

is also a basis of D, then by Theorem 2.1(i), D contains a hamiltonian path with 

terminal vertex x and idx = 1. This implies that there exists a vertex y distinct from 

x and v such that (y,v) € E(D). It follows that d(y,x) - 2 and by Theorem 2.2, 

{v} is also a basis of D. • 

The bound in Corollary 2.4 cannot be improved in general. For example, con­
sider the oriented graph D of order n in Figure 6. Since {«*} is a basis for D for 
1 ^ i < n — 2, dim(D) = 1. However, neither {vn-i} nor {vn} is a basis D. So 
\{v; {v} is a basis of D}\ = n — 2 and D is not a directed cycle. 

Figure 6. An oriented graph with (n - 2) 1-element bases 

There is only one 1-dimensional oriented tree of every order. 

T h e o r e m 2.5. For every oriented tree T, dim(T) = 1 or dim(T) is undefined. 

Furthermore, if dim(X) = 1, then T is a directed hamiltonian path. 



Proof. There are certainly oriented trees whose dimension is undefined, for 
example, any orientation of a star jfifi,*, where t ^ 3. Now let T be an oriented tree 
whose dimension is defined. Since T contains no cycles, for every pair x, y of vertices, 
whenever d(x,y) is defined, d(y,x) is undefined. Thus dim(T) = 1. 

If dim(T) = 1, then, by Theorem 2.1, T contains a hamiltonian path P and so 
T = P. a 

3. ON ORIENTED GRAPHS WITH LARGE DIMENSION 

We have characterized those oriented graphs with dimension 1. But how large can 
the dimension of an oriented graph of order n be? In this section, we describe upper 
bounds for the dimension of a connected oriented graph in terms of lower bounds for 
the outdegrees of its vertices. The outdegree of every vertex in the oriented graph 
D of Figure 7 is 2, yet dim(D) is undefined. Such examples exist regardless of the 
outdegrees. 

Figure 7. The oriented graph D 

Theorem 3.1. If D is a connected oriented graph of order n ^ 3 with odv > 1 
for all v 6 V(D) such that dim(D) is defined, then dim(D) < n - 2. 

Proof. Let D be an oriented graph satisfying the hypothesis of the theorem. 
Certainly dim(D) ^ n — 1. Assume, to the contrary, that dim(D) = n — 1. Let 
W = {i>i,i>2, • • • ,vn~i} be a basis for D and let V(D) - W = {x}. Since oda; ^ 1, 
assume, without loss of generality, that x is adjacent to vi. Also, since od«i ^ 1, 
we may assume that V\ is adjacent to v2. Since dim(D) = n - 1, r(vi | W — {vf}) = 
r(x I W — {vi}) for 1 ^ i ^ n — 1. Since x is adjacent to v\, it follows that V2 is 
adjacent to v\, but this contradicts the fact that D is an oriented graph. • 

We now describe a class of oriented graphs. For k > 2, let Dk be an oriented 
graph with vertex set 

V(Dk) = {u,V,Wl,W2,---,Wk} 

and let E(Dk) consist of the arc (u,v) and the arcs (v,Wj) and (WJ,U) for 1 < j ^ k. 
The oriented graph Dk is shown in Figure 8. Then Dk has order n = k + 2 and 
od« ^ 1 for all v 6 V(Dk)- We claim that dim(D*) = n - 3. 
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Figure 8. The oriented grapli PA- with minimum outdegree 1 

First we show that dim(-Dfc) < n — 3. Let W = {w2,ws,... ,Wk}, where then 

\W\ = n - 3. The distances d(u, w2) = 2, d(u,w2) = 1, and d(wi,w2) = 3 show that 

W is a resolving set for Dk and so dim(Dk) ^ n - 3. On the other hand, at least 

k — 1 of the vertices wx,w2, u>k must belong to every resolving set of Dk since 

the distance from any two of these vertices to every other vertex of Dk is the same. 

Hence dim(Dk) *? n — 3 and so dim(D) = n — 3. Of course, this does not show that 

sharpness of the bound in Theorem 3.1. except that if Di is the directed 3-cycle, 

then dim(Di) = 1 = n - 2. 

We can, however, improve the bound in Theorem 3.1 if we require that the out­

degree of every vertex is at least 2. 

T h e o r e m 3.2. If D is a connected oriented graph of order n ^ 5 with odt> ^ 2 

for all v e V(D) such that d im(P) is defined, then dim(D) ^ n - 3, 

P r o o f . Suppose, to the contrary, that D contains a basis B of cardinality n - 2. 

Let B = {vi,v2,...,vn-2}, and V(D) -B = {x,y}. For each i (1 < i ^ n - 2), 

B - {(';} is not a resolving set. Hence for each such i. some two of the three vertices 

x, y, Vi have the same representations with respect to B — {vi}. We consider two 

cases. 

Case 1: For some i (1 $; i ^ n — 2), x and y have the same representations with 

respect to B — {i>,-}. Assume, without loss of generality, that x and y have the same 

representations with respect to W = B - {vn-2}- Then x and y have the same 

out-neighbors in W. Since x and y have distinct representations with respect to B, 

exactly one of x and y is adjacent to vn-2; for if neither x nor y is adjacent to vn-2, 

then d(x,vn-2) = d(y,vn-2). Therefore, we may assume that y is adjacent to v„-2-

Let 15'*' = {i'i, v2,... ,vn-i, t 'n-o}. Two of x,y. and vn--$ have the same repre­

sentations with respect to W. However, y is adjacent to vn-2 and x is not, so x 

and y do not have the same representations with respect to W. Thus there are two 

possibilities. 
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Subcase 1.1: r(x \ W) = r(vn-3 | W). We claim that x is adjacent to at most one 

of v\, v2 vn-2. Suppose that This is not the case. Then we can assume without 

loss of generality that x is adjacent to v\ and v2. Then r(?>i | B - {v\}) = r(x | B -

{v\}) otr(v\ | B-{v,}) = r(y | B-{v\}). Similarly, r(v2 | B-{v2}) = r(x | B-{v2}) 

or r(v2 | B - {v2}) = r(y | B- {v2}). Since the out-neighbors of y in W are the same 

as the out-neighbors of a; in W, we have that v2 is an out-neighbor of i>i and that i>i is 

an out-ueighbor of t>2. Since D is an oriented graph, this is impossible, so, as claimed. 

x is adjacent to at most one of v\, v2,..., vn-2. Now, since od ./• ^ 2, it follows that ,r 

is adjacent to y and exactly one vertex from V\, v2,. • •, vn-2, say i'i. However, since 

for 1 s: i ^ n-3, r(i<i | B-{v-i}) = r(x \ B-{i>,-}) or r(vi | B - { e ; } ) = r(y | B-{v,}), 

it follows that t>i is an out-neighbor of every vertex in the set {x,y, v2, v3,... ,vn-3}, 

so od-wi < 1, which contradicts the assumption that every vertex in D has out-degree 

at least 2. 

Subcase 1.2: r(y | IV) = r(('„_3 | W). We first suppose that ,r is adjacent to 

some vertex in W, say v\. Because of the assumptions in Case 1 and Subcase 1.2, 

it follows that y and t>n_3 are also adjacent to v\. However, since for 2 ^ i ^ n - 3, 

r(vi \B-{vi}) = r(x | B-{vt}) or r(vt \B-{vi}) = r(y \ B-{ i ' ; } ) , it follows that v\ 

is an out-neighbor of every vertex in the set {x, y,v2,v-.i vn -3, vn-2}, so od v\ = 0. 

which is a contradiction. Therefore, x is not adjacent to any of v\,v2, vn-4,vn-2. 

Thus, since od.r ^ 2, it follows that x must be adjacent to both y and u„_3. But 

y is adjacent to i>„ ^3 as well, because x and y have the same representations with 

respect to W. Since x is not adjacent to any of v\, v2,..., vn-i, it follows that y 

is not adjacent to any of v\,v2 ,vn-4- Now r(y \ W) = r(vn-3 | W), so it 

follows that i>n_3 is not adjacent to any of v\, v2,..., vn-4. All of this implies that 

odu„_3 = 1, which is a contradiction. 

Case 2: For every i (1 ^ i ^ n — 2), x and y have distinct representations with 

respect to B — {t>;}- We next prove that every vertex of B is an out-ueighbor of 

x or y but at most one vertex of B is an out-neighbor of both x and y. To prove 

this, we first show that among the out-neighbors yi,y2, yi, of y in B, at most 

one yi has the same representation as y with respect to B — {(/,•}. Suppose that 

this is not the case. Then we may assume that r(ij\ | B - {y\}) = r(y | B - {//j}) 

and that r(y2 \ B - {y2}) = r(y | B - {y2}). The first equality tells us that y2 is 

an out-neighbor of y\ and the second equality tells us that y\ is an out-neighbor of 

y2, contradicting the fact that D is an oriented graph. Similarly, among the out-

neighbors x\,x2,...,i'e of x in £>, at most one xj has the same representation as x 

with respect to B — {XJ}. 

Next, we show that for each i (1 ^ i ^ n - 2), at least one of x and y is adjacent to 

i>,-. This follows from the fact that if neither x nor y is adjacent to i'i, then no other 
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vertex Uj from B — {•<•;} can be adjacent to Ui since r(vj | B — {('_;}) = r(x | B - {i'j}) 

or ;-(t'j | B-{VJ}) = r(y | £?—{<';}). Thus idu; = 0, which is impossible since rf(c, i\) 

must be defined for all z 6 V(J-). Finally, x and i/ are simultaneously adjacent to 

at most one vertex vf (1 «C i ^ n — 2), for if va and _(, are distinct out-neighbors of 

both x and y, then u a and r_. are out-neighbors of each other, which is impossible. 

This creates a natural partition of the vertices of B into either two or three subsets, 

depending on whether there exists a vertex to which .r and y are simultaneous!)' 

adjacent. We now consider these two subcases. 

Subcase 2.1: There exists a unique common out-neighbor of x andy. 

We assume, without loss of generality, that r „_ 2 is an out-neighbor of both x 

and y. Furthermore, we can assume, without loss of generality, that the set A" = 

{iii,i '2,. • •, vk} consists of the out-neighbors of .<• and not y, and that the set Y = 

{I't+i, i 't+2,. . . , _ n _ 3 } consists of the out-neighbors of y and not x. We further 

assume, without loss of generality, that the representations of y and i'„_2 with respect 

to B — {v„_2} are the same. Therefore, there is no vertex in vj £ Y for which the 

representations of y and VJ with respect to B — {VJ} are the same. Therefore, for 

every __,- € Y, the representations of x and Vj with respect to B — {UJ} are the same. 

Since x is adjacent to every vertex in X, every vertex in Y is adjacent to every 

vertex in I U { I I „ - 2 } . Now, there is at most one (>,- e X for which the representations 

of :r and «,• are the same with respect to B - {(';}. Therefore, if |A"| ^ 2, there exists 

at least one vertex .'; e X for which the representations of y and c; with respect to 

B — {i<;} are the same. Hence, such a vertex e,; is adjacent to every vertex in Y. but 

this implies that D is not an oriented graph since for any vj € 1", there is an arc 

from m to Vj and an arc from vj to •.,-. Therefore. |A"j sC 1. But if |A"| = 1, then vi 

is the only vertex that could possibly be an out-neighbor of <>„_2. This contradicts 

the assumption that the out-degree of every vertex in D is at least 2, so |A"| = 0. We 

have already seen that every vertex in Y U {x} is adjacent to vertex i'„_2, so even if 

|A"| = 0, we have that od?>„_2 = 0, which cannot occur. 

Subcase 2.2: No vertex is a common out-neighbor of x and y. 

We assume, without loss of generality, that the set A = {i ' i , i_, • • •, ('A-} consists 

of the out-neighbors of _ and not y, and that the set Y = { I ' H I . D H Z . i'n-2} 

consists of the out-neighbors of y and not _. Recall that there is at most one vi € X 

such that the representations of v; and x with respect to B - {(',-} are equal and at 

most one Vj € Y such that the representations of vj and y with respect to B - {c,-} 

are equal. This produces three possibilities to consider. 

Subcase 2.2.1: For every Vi € A" and vj 6 Y, the representations of (•; and y with 

respect to B — {();} are the same and the representations of vj and x with respect to 
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B - {VJ} are the same. Then every vertex in Y is adjacent to every vertex in A', 

and every vertex in X is adjacent to every vertex in Y. This contradicts the fact 

that D is an oriented graph as long as X and Y are both nonempty. However, if X 

or Y is empty, then oda.' ^ 1 or ody 4 1, respectively, which is a contradiction. 

Subcase 2.2.2: There is exactly one vt 6 A' for which the representations of i>; 

and x with respect to B — {vi} are equal and there is no Vj e Y for which Vj and y 

have the same representations with respect to B — {i>j}. (Note that this subcase is 

symmetric to the case when there is exactly one Vj e Y for which the representations 

of Vj and y with respect to B — {vj} are equal and for which there is no «» € X such 

that Vi and x have the same representations with respect to B — {vi}.) Now every 

vertex in Y has the same out-neighbors as x, namely the vertices in the set X. So if 

Y 7̂  0, then every vertex in Y is adjacent to every vertex in A'. Furthermore, every 

vertex in X - {vi} has the same out-neighbors as y. So if |A'| > 2, then there is at 

least one vertex in A' which is adjacent to every vertex in Y. But this produces a 

contradiction since D is an oriented graph. Note that if Y = 0, then y is adjacent to 

at most one vertex, namely x, and this is a contradiction. 

Assume now that \X\ 4 1 (so \Y\ ^ 2). If \X\ = 1, then i>; = v\ and since every 

vertex in Y is adjacent to Vi, the vertex Vi is adjacent to no vertex except possibly 

y. Hence, odvi 4 1, which is a contradiction. If X = 0, then x has no out-neighbors 

except possibly for y, but this contradicts the assumption that the out-degree of x 

is at least 2. 

Subcase 2.2.3: There exists exactly one V{ e X for which the representations of Vi 

and x with respect to B — {vt} are the same and exactly one Vj G Y for which the 

representations of Vj and y with respect to B — {VJ} are the same. First, suppose 

that |AT| ^ 2 and |Y | ^ 2. Then there exists at least one vertex v 6 X for which 

the representations of v and y with respect to B - {v} are the same. Therefore, v is 

adjacent to every vertex in Y. Similarly, there is at least one vertex w 6 Y for which 

the representations of w and x with respect to B — {w} are the same. Therefore, w 

is adjacent to every vertex in X. However, since n 6 A' and w G Y, it follows that 

v is adjacent to w and w is adjacent to v. This contradicts the fact that D is an 

oriented graph. 

Next suppose that \X\ = 1, that \Y\ > 2, and that X = {v\}. Then the out-

neighbors of x are y and v\. Furthermore, v\ is an out-neighbor of every vertex in 

Y — {VJ}. The only possible out-neighbors of v\ are y and Vj. However, if Vj is 

adjacent to VJ, then x is adjacent to VJ, which contradicts the fact that Vj f X. 

Therefore, odu,- < 1, contradicting the fact that every vertex in D has out-degree at 

least 2. The case where |Y | = 1 and \X\ ^ 2 is similar. D 
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The sharpness of the bound in Theorem 3.1 is not illustrated by the digraph Dk 
shown in Figure 8 since the outdegrees of most vertices of Dk are 1. We can, however, 
show that the upper bound in Theorem 3.2 is sharp. Let Fk be an oriented graph 
with vertex set 

V(Fk) = {ui,U2,Vi,V2,Wi,W2, • • • ,wk} 

and let E(Fk) consist of (1) the arcs (ut,Vj) for 1 ̂  i,j ^ 2 and (2) the arcs (vi,Wj) 
and (WJ ,«;) for 1 ̂  i ^ 2 and 1 ̂  j ^ k. The oriented graph Fk is shown in Figure 9. 
Then Fk has order n = k + 4 and the property that od« > 2 for all v e V(Fk). We 
claim that dim(Fk) = n — 3. 

Figure 9. The oriented graph Fk with minimum outdegree 2 

First we show that dim(Fk) ^ n — 3. Let W = {ui,«i,a>2,tt)3,... ,u)jj, where 
then \W\ = n — 3. The distances d(«2,«,2) — 2, (i(i'2,«!2) = 1, and d(wi,u)2) = 3 
show that W is a resolving set for Ffc and so dim(Ft) < n — 3. Next we show that 
dirn(Fs) > n — 3. Let W be a resolving set for Ft. Certainly at least A: — 1 of the 
vertices w\,W2,... ,wk must belong to W since the distance from any two of these 
vertices to every other vertex of Fk is the same. Moreover, at least one of «i and 
«2 must belong to W since the distance from «i and u2 every other vertex of Fk is 
the same. For the same reason, at least one of vx and v2 must belong to W. Hence 
dimfFfe) ^ n — 3 and so dim(Ft) = n - 3. 

No additional restriction on the outdegrees of the vertices of an oriented graph 
yields an improved bound, however. Let r ^ 2 be an integer. In the oriented graph 
of Figure 8, replace «i, «2 by the r vertices «i,«2, • • •, ur and v\, V2 by the r vertices 
vi,V2,... ,vr and add the appropriate arcs. The resulting oriented graph Hk has 
odt> > r for all v € V(Hk), but dim(fffc) = n - 3. 
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