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Summary. We examine the asymptotic behavior of T-periodic solutions of the singularly 
perturbed differential equation \xy" = f(t, y) as a small parameter fi tends to zero. 
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1. INTRODUCTION 

The problem of existence of a T-periodic solution for differential equations was 

examined by Mawhin [2, 3], Fucik [1, 2] and others applying various methods. We 

establish sufficient conditions for existence of T-periodic solutions for the singularly 

perturbed semilinear differential equation ny" = f(t, y) which converge to a solution 

of the reduced problem (RP, for short) f(t, u) = 0 as the small parameter \i tends to 

zero, using the method of upper and lower solutions. We will consider the second-

order differential equation 

(1) w" - / (* ,») 

where / e C ^ R 2 ) is a T-periodic function in the variable t and n is a small pos­

itive parameter. This is a singular perturbation problem because the order of the 

differential equation drops when n becomes zero. We can think of this equation 

as the mathematical model of nonlinear dynamical systems with a high-speed back 

coupling. 

73 



Without loss of generality we can consider the interval [0,T]. Denote 

(2) Ds(u) = {(t,y): 0 < t < T, \y - u(t)\ < d(t)}, 

where d(t) is the positive continuous function on [0, T] such that 

d(t) = |u(0) - u(T)\ + S for 0 <. t <. 8/2 and T - S/2 ^ t ^ T 

and 

d(t) = 8 iorS^t^T-S, 

8 is a small positive constant and u € C2 is a solution of RP. 

2. MAIN RESULT 

The following theorem is the main result of this paper. 

Theorem. Let f 6 CX(R2) beT-periodic. Letu e C2(R) be aT-periodic function 
such that f(t,u(t)) = 0 on R. Let 8 > 0 be such that 

(3) S/gj/) >m>0 for every ^ y) e Ds (U). 
Sy 

Then there exists /i0 such that for each n £ (0,/Uo] the problem (1) has a unique 
T-periOdic solution defined on R which converges uniformly to the solution of RP 
f(t, u) = 0 as n tends to zero. 

E x a m p l e . Consider the problem uy" = y + arctan y + sin 2rct. The function 
f(t,y) = y + arctan y + sin27tt is a T-periodic function for T = 1 and satisfies the 
condition (3) for m = 1. By virtue of Theorem, its unique 1-periodic solution tends 
uniformly to the solution of RP on R. 
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3. P R O O F OF T H E O R E M 

Theorem follows easily and immediately as a special case of the following lemma. 

L e m m a 1. Consider the periodic boundary value problem 

(1') ny" = f(t,y), * 6 [ 0 , T ] 

y(0, ii) - y(T, u.) = 0, y'(0, u) - y'(T, n) = 0. 

Let a function f £ C 1 (Ds(u)) satisfy the condition (3) where Ds(u) is defined in (2). 

Then there exists u0 such that for each u 6 (0, no] the problem (V) has a unique 

solution, satisfying the inequality 

-Vu -V2- Cu ^ y(t, fl) — u(t) < V\2 +V2+CU 

for u(0) > u(T) and 

v\2 -v2-Cu^. y(t, n) - u(t) ^ -vu +v2 + Cu 

for u(0) ^ u(T), where 

„ (t ,,\ - U.'im ^(r^M-im/n)1^)] + expKm/M)1!2^ - t)] 
v2(t,U)-\u(0)-u(T)\ 2 ( m / M ) 1 / 2 ( 1 _ e x p [ _ ( m / A t ) 1 / 2 r ] )  

and C ^ max{ |u" ( t ) |m _ 1 : t e [0,T]} is a positive constant. 

P r o o f . We apply the method of upper and lower solutions. As usual, we say 

that a € C2([0,T]) is a lower solution for (1') if a(0,u) - a(T,u) = 0, a'(0,n) -

a'(T,n) ^ 0, and ua"(t,u) ^ f(t,a(t,u)) for every t 6 [0,T]. An upper solution 

P e C2([0,T]) satisfies P(0, M) - P(T, a) = 0, £'(0,/ .) - P'(T,u) ^ 0 and aP"(t,u) ^ 

f(t,P(t,n)) for every t £ [0,T]. The proof is based upon the following lemma. 

L e m m a 2 (compare with [4], Theorem 3). Let f £ C([0,T] x R). If a, P are 

respectively lower and upper solutions for (1') such that a ^ P on [0,T], then there 

exists a solution y of(V) with a ^ y < fi on [0,TJ. 

For u(0) ^ u(T) we define the lower solutions by 

a(t, u) = u(t) -V11-V2-T 



and the upper solutions by 

P(t,u) =u(t) + vl2 + v2 + r 

(in the case w(0) < u(T) we proceed analogously). 
Here T(u) = HT/m, where r is a constant which will be defined below. One 

can easily check that the functions a, fi satisfy the boundary conditions required 
for the lower and upper solutions of (1') and a < fi on [0,T]. Now we show that 
fwc"(t,n) Z f(t,a(t,n)) and nl3"(t,u) ^ f(t,P(t,fi)) on [0,T]. By Taylor theorem 
we obtain 

f(t,a(t,a))=f(t,a(t,u))-f(t,u(t)) 

= m^)\vu(t,u)+v2(t,u)+T(u)), 

where (t,0(t,n)) is a point between (t,a(t,n)) and (*,u(*)), (t,8(t,(i)) e Ds(u) for 
sufficiently small n, for instance if n e (0,uo]. Then 

ixa"(t, fi) - f(t, a(t, /i)) ^ /JU" - uv"x - fiv2 + m(vu + v2 + T) ^ ~n\u"\ + fir 

(because nv"t = mvu and uv2 = mv2 on [0,T]) for every t 6 [0,T\. If we choose a 
constant r such that T ^ |M"(*)|, * £ [0,T] then ua"(t,n) ^ f(t,a(t,u)) in [0,T]. 
The inequality for /? can be proved similarly. The existence of solutions of (1') 
satisfying the just stated inequalities follows from the above considerations. Since / 
is increasing in the variable y the solution of (1') is unique. • 

R e m a r k . We note (on the basis of Lemma 1) that if f(0,y) ^ f(T,y) (i.e. 
«(0) ^ u(T)) then there are initial and endpoint nonuniformities (i.e. the solution y 
of (1') tends uniformly to a solution u of RP on every compact set K C (0,T), but 
\y'(0,n)\ (=\y'(T,n)\) -> oo as u -> 0). 

References 

[1] S. Fucik and V. Lovicar: Periodic solutions of the equation x"(t)+g(x(t)) = p(t). Casopis 
Pest. Mat. 100 (1975), 160-175. 

[2] S. Fucik and J. Mawhin: Periodic solutions of some nonlinear differential equations of 
higher order. Casopis Pest. Mat. 100 (1975), 276-283. 

[3] J. Mawhin: Nonlinear perturbations of Fredholm mappings in normed spaces and ap­
plications to differential equations. Trabalho de Matematica, No. 61. Universidad de 
Brasilia, 1974. 

[4] V. Seda: On some non-linear boundary value problems for ordinary differential equa­
tions. Arch. Math. (Brno) 25 (1989), 207-222. 

Author's address: Robert Vrdbel', katedra matematiky MTF STU, 917 24 Trnava, Slo­
vakia. 

76 


		webmaster@dml.cz
	2020-07-01T12:36:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




