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Summary. In this paper, we give some results concerning the colouring of the product 
(cartesian product) of two graphs. 
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INTRODUCTION 

Graphs, considered here, are finite, undirected, without loops or multiple edges, 

and [1] is followed for terminology and notation. The product (also called cartesian 

product [2]) Gi x G2 of two graphs Gi and G2 with vertex sets V and V2, respectively, 

has the cartesian product V x V2 as its set of vertices. Two vertices (ui,u2) and 

(vi, v2) are adjacent, if m = vx and u2 is adjacent to v2 or u2 = v2 and ui is adjacent 

to «i . 

Let Vi = { i>n , f i 2 , . . . , t>ipi}, V2 = {v2i,v22,... ,v2p2}, and let qt denote the num­

ber of edges of G;, i = 1, 2. The graph Gi x G2 has pi -p? vertices and pi • q2 +p2 • q\ 

edges. This graph, which is isomorphic to G2 x Gi , containsp2 disjoint "horizontal" 

copies G n , Gi 2 , . . . , GiP 2 (ordered from top to bottom) of Gi and pi "vertical" 

copies G 2 i , G2 2 , . . . , G2 p i (ordered from left to right) of G2 . A horizontal copy Gu 

and a vertical copy G2j- have only one vertex (v\j,v2i) in common. 

The vertex-chromatic number y(G) of a graph G is the minimum number of colours 

required to colour the vertices of G in such a way that no two adjacent vertices have 

the same colour. The edge-chromatic number 7'(G) is defined similarly. The total-

chromatic number l"(G) of G is the minimum number of colours required to colour 

the elements (vertices and edges) of G in such a way that no two adjacent elements 
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(two vertices or two edges) and no two incident elements (a vertex and an edge) have 

the same colour. 

By a proper colouring of, for example, vertices of G we mean an assignment of 

colours to vertices of G in such a way that adjacent vertices receive different colours. 

The colour of an element e of G will be denoted by c(e). The notation c(u, v) will 

be used for the colour of the point (u, v). We mention the well known result: 

7 ( d x G2) = max{ 7 (Gi ) , 7 (G 2 )} . 

M A I N RESULTS 

Let A(G) denote the maximum degree among the degrees of vertices of G. Con­

cerning 7 ' (G) , Vizing [3] has shown that 

A(G) «: 7 ' (G) ^ A(G) + 1. 

Since 

A(Gi x G 2 ) = A ( G i ) + A(G2) , 

we have 

Corollary. A(Gi) + A(G2) < 7 ' (G i x G2) < A(Gi) + A(G2) + 1: 

If the edge-chromatic number of Gi, i = 1, 2, equals its maximal degree, we shall 

show that 7 ' ( G i x G2) equals the maximal degree of Gi x G2. 

Theorem 1. If <y'(G;) = A(G,), i = 1, 2, then 7 ' (G i x G2) = A(Gi) + A(G2) . 

P r o o f . Clearly, we have 

7 ' ( G i ) + 7 ' ( G 2 ) ^ 7 ' ( G i x G 2 ) . 

The converse is true for every pair of graphs Gi and G2 . To see this, colour the edges 

of each horizontal copy, properly, with colours 1, 2, . . . , 7 ' ( G i ) and each vertical copy, 

properly, with colours 7 ' ( G i ) + 1, 7 ' (G i ) + 2, . . . , 7 ' ( G i ) + 7 ' ( G 2 ) . • 

Assuming that 7 ' (G , ) = A(Gj), i = 1, 2, one might think that 7 ' (G i x G2) = 

A(GX) + A(G2) + 1 . Let Gi = G2 = K$ - x, where Kn is the complete graph of order 

n, and K„ - x denotes Kn minus one edge. Thus, -y'(Gi) = 7 ' (G 2 ) = A(Gi) + 1. 

But 7 ' ( G i x G2) is shown to be A(Gi) + A(G2) = 8. The graph (K5 -x)x (K5 - x) 

is the smallest graph with the above property. 
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Given two graphs Gi and G2 , we have 7 ( G i ) ^ 7 " ( G 2 ) or 7(G2) ^ 7"(Gi) . 

Suppose that 7(Gi) > 7"(G2) . Then 

7 " ( G i ) ^ 7 ( G i ) > 7 " ( G 2 ) ^ 7 ( G 2 ) 

imply 7 (G 2 ) < 7 " ( G i ) . 

T h e o r e m 2. If 7(Gi) ^ 7"(G2) , then we have 

A(Gi) + A(G2) + 1 ^ 7 " ( G i x G2) ^ 7 " ( G 2 ) + 7 ' ( G i ) . 

P r o o f . The first inequality is obvious. Colour the elements of G2i and the 

edges of each horizontal copy, properly, with colours 1, 2, . . . , 7 (Gi) , . . . , -f"(G2) 

and colours 7"(G2) + 1, 7"(G2) + 2 , . . . , i'(G2) + 7 ' (Gi) , respectively. Suppose 

that c(vu,v2i) = 1. Then, colour the vertices of G n with colours 1, 2, . . . , 7 (Gi) , 

properly, in such a way that the vertex (vn,v2i) receives colour 1. Next, consider 

G2j, j = 2, 3, . . . , pi and let e be an element of G2j. There is an element e' of 

G2i corresponding to e. Let c(e) = c(vij,v2i) +c(e') — 1 (mod 7"(G2)) . Now, it is 

an easy matter to check that this colouring is a proper colouring of the elements of 

Gi x G2, completing the proof. • 

The bounds given in Theorem 2 cannot, in general, be improved, that is, for two 

positive integers m and n there exist two graphs Gi and G2 with 7 ' (Gi) = m, 

7 " ( G 2 ) = n and 7 " ( G i x G2) = 7 ' ( G i ) + 7 " ( G 2 ) . Indeed, let Gx = K\,m and 

G2 = i£"i>n-l, where Km,n denotes the complete bipartite graph of order m + n. 

Incidentally, for these graphs, A(Gi) + A(G2) + 1 equals 7 " ( G i x G2), too. 

The second inequality in the theorem cannot be changed to an equality, as can be 

seen by considering C\ x G4, where Cn, n ^ 3, denotes the cycle of length n. 

If 7 ( G i ) <. 7 " ( G 2 ) and 7(G2) < 7"(Gi) , then we have 

7"(Gi x G2) <. min{ 7"(G 2) + 7 ' (G i ) , 7 " (G i ) + i(G2)}. 

References 

[1] F. Horary: Graph Theory. Addison-Wesley, Reading, 1969. 
[2] G. Sabidussi: Graph multiplication. Math. Z. 72 (1960), 446-457. 
[3] V. G. Vizing: On an estimate of the chromatic class of a p-graph. Diskretnyj Analiz 3 

(1964), 25-30. (In Russian.) 

Author's address: Danuf Marcu, Str. Pasului 3, Sect. 2, 70241-Bucharest, Romania. 

71 


		webmaster@dml.cz
	2020-07-01T12:35:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




