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A NOTE ON ONE OF THE BERNSTEIN THEOREMS

Jutf BRABEC, Praha

(Received September 17, 1992)

Summary. One of the Bernstein theorems asserts that the class of bounded functions of
the exponential type is dense in the space of bounded and uniformly continuous functions.
This theorem follows from a convergence theorem for some interpolating operators on the
real axis.
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1. PRELIMINARIES AND NOTATION

An entire function is said to be of the exponential type if there are A, B € R such
that

I£(2)| < AeBl#

for all z € C.
The type of the function f is the number

o = limsup ln_lf(_z_)l
|z]—=00 |Z|

We denote by Cyp the normed space of all bounded and uniformly continuous
real (or complex) functions on the real axis with topology induced by the uniform
norm

71l = sup{|f()I; = € R},
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and by B, the class of all entire functions of the exponential type less than or equal
to o which are bounded on the real axis R. We put

Bo = | B,.
20

For every function f € B, the so called Bernstein’s inequality

711 < oliAl

can be proved (cf. e.g. [1]). It follows from this inequality that every function from
By is uniformly continuous. Thus B, C Cyp.

Using Cauchy’s method of decomposition meromorphic functions into simple frac-
tions we can deduce the well known fact that for all z € R

= sin(oz — kx) _
@ 2 by !

and the series on the left hand side of (1) is absolutely and locally uniformly conver-
gent in C. (We define !'—'z‘—i =1 for z = 0.) The function f, € Cyp:

folz) = *f s (%1_:) sin?(oz — kn)

Rt (oz — kr)?

is a function of exponential type since the following estimate holds (where z = re'?,
mx < or < (m + 1)x, m 2> 0 integer):

400 | .
sinoz
<
@I <Al 30 |—p
k=-00
. 2 m42, 2 i ?
sin oz sinoz sinoz
—||f||( Z ——in +2 pr— z oz — kn )
lklgm=1 lk|=m k3m+3

m-1
: 1 or
=2|smdz|20( E m) +0(e*")
k=

+ 2|sin ﬂ-‘|zo( 2 (or - kﬂ)z)

k=m+3
= O(ezor).
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So we can introduce correctly an interpolating operator T, : Cup — B, for every
o > 0 by the formula

_ Ba] kx sin®(oz — k)
(2 (T,f)(z) = k;_:wf (_a.) W.

We shall prove a convergence theorem for the operators (2).

2. CONVERGENCE THEOREM

Theorem. For each function f € Cyp
Tof = f for 0— o0

in the strong topology of the space Cyp.

Proof. Let uschoose any € > 0. Because f is uniformly continuous there exists
6 > 0 such that for z1,z2 € R, |1 — 22| < §, we have |f(z;) — f(z2)| < §. Let us
choose any real number z and divide all integers into disjoint sets A,, n=0,1,...:

Ay = {keZ;n6<|z—’%"|<(n+1)a}.

It is easy to sce that card A, < 22. Using (2) we then have
- 5 1 (5) e

k-w[f‘” - (BT
2L [o-s (B

<3 +Z > [f(z)—f(f}) agg_;_n;;_)

n=1'k€EAqn
<& A 201£1l < 2Ilfll
2 a? §k§ n2§? <3 Z nn2é
N 21t"f|| 47‘"f"
=5+ 36s <€ for 0>01=—— TP
Hence ||Tof — f]]| = 0 for 0 — 00 and the proof is complete. a
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3. REMARK

The theorem that has just been proved yields Bo, = Cyp. This result is well-
known as the Bernstein theorem (see e.g. [2]).The reader can compare our proof with
that of (3].
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Souhrn
POZNAMKA K JEDNE BERNSTEINOVE VETE

Jmi BRABEC

V énku je definovin soubor operdtorii (T¢)o>0 vztahem (1) a dokizano, ze Tof — f
(¢ — o0) v prostoru omezenych a stejnomérné spojitych funkci s topologii indukovanou

stejnomérnou normou.
Z této véty plyne, Ze v tomto prostoru je husti ttida celych funkci exponencidlniho typu

omezenych na redlné ose (coz je jedna z Bernstejnovych vét).

Author’s address: Katedra maten_natiky elektrotechnické fakulty CVUT, Technickd 2,
166 27 Praha 6, Czech Republic.

324



		webmaster@dml.cz
	2020-07-01T11:48:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




