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EXTENSIONS OF THE REPRESENTATION THEOREMS 

OF RIESZ AND FRECHET 

J. C. PRANDINI, Sao Paulo 

(Received June 8, 1992) 

Summary. We present two types of representation theorems: one for linear continuous 
operators on spaces of Banach valued regulated functions of several real variables and the 
other for bilinear continuous operators on cartesian products of spaces of regulated functions 
of a real variable taking values on Banach spaces. We use generalizations of the notions 
of functions of bounded variation in the sense of Vitali and Frechet and the Riemann-
Stieltjes-Dushnik or interior integral. A few applications using geometry of Banach spaces 
are given. 

Keywords: Riesz type representation theorem, Frechet type representation theorem, regu­
lated functions 

AMS classification: 46B99, 46E15, 46E40 

1. INTRODUCTION 

We extend the Riesz type representation theorem for linear continuous function-
als on the space of continuous real valued functions of several variables to the case 
Banach space valued regulated functions of several variables. The second topic con­
cerns the extension of the representation result of Frechet for bilinear continuous 
functionals on the cartesian product of spaces of real valued continuous functions of 
a real variable for bilinear continuous operators on the cartesian product of spaces 
of Banach space valued regulated functions of a real variable. 

We use generalizations of the notions of functions of bounded variation in the 
sense of Vitali and Frechet and the notion of the Riemann-Stieltjes-Dushnik or the 
interior integral. 

This work has been done under the partial support of C.N.Pq. 
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In the second section we define and present the most basic properties of the regula­
ted functions of several real variables, in the third the notion of functions of bounded 
variation and of bounded semi-variation in the sense of Vitali and the representation 
theorem, in the fourth the notion of functions of bounded semi-variation in the sense 
of Frechet and the corresponding representation theorems and in the final section a 
few applications. 

To keep the notation clear we will only give proofs for the two dimensional case, 
one sees easily how to cope with the general case. 

2. REGULATED FUNCTIONS OF SEVERAL REAL VARIABLES 

Definition 2.1. A partition d of an interval a,6 C R is a finite sequence d: 
t0 = a < • • < tm = 6. Set \d\ = m, Ad = sup{tj - *j_i : l . $ j ^ \d\} (the mesh of 
the partition). 

We call {fy}, 0 $ j < \d\ and ]tj^utj[, 1 -$ j < \d\ the basic intervals of d. 
The set of all partitions of a, 6 is D[ai&) or D. We order D by the inclusion relation, 

that is, Vd, d' € D d ^ d' <=> d D a", in this way D becomes a net. 
Similarly a partition of [c, d\ x [a, 6] G R2 is a product d = d" x d' where d" E -D[c,d] 

and d! € D [ M ] . Now we set \d\ = \d"\ • |d'|, Ad = sup{Ad", Ad'}. 
A basic interval of d is now a cartesian product of a basic interval of d" by one of 

d'. We say that d = d" x d' is finer than d = d" x d' and write d ^ d if and only if 
d" ^ d" and d' ^ d'. We write &[c,Qx[a,b] for the set of all partitions of [c, d] x [a, 6] 
or more simply D when there is no danger of confusion. 

S([C)d[ x [a,6], A") will be the set of all step functions from [c,d\ x [a,6] to the 
Banach space X where by a step function we mean a function for which there exists 
a partition d 6 -D[c,<i]x[a,*] such that the function is constant on the basic intervals 
of d. 5([a,6],X) is defined analogously. G([c,d\ x [a,6],X) will be the closure of 
5([c, d\ x [a, 6], X) in the sup norm inside the Banach space of the bounded functions. 
G([a,6],X) has an analogous meaning. 

It is easy to show that the following result holds. 

Lemma 2.1. If E is a normed spa.ce and E its completion then 

G([a,b),E) = S([a,b],E). 

It is also easy to prove the following lemma: 

Lemma 2.2 . The mapping 

f e S([c,d\ x [a,b],X) ~ f° € S([c,d\,S([a,b),X)) 
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is an isometry where f°(t)(s) = f(t,s). 

From these two results one gets the following theorem that relates the spaces of 
regulated functions of two variables with those of a single variable. 

Theorem 2.1. The mapping 

f € G([c,d\ x [a,b),X) ~ f° € G([c,d\,G([a,b),X)) 

is an isometry from the first Banach,space onto the other. 

Now we present a result that shows that regulated functions of several variables 
are indeed those that possess limits from "all sides". 

Theorem 2.2. For a function / : [c, d] x [a, 6] —• X the following properties are 
equivalent: 

1. Ve > 0 3de = d"e x d'e € Drc,<qx[a,&] such that u>d;(/) < e where u^f) = 
sup{u;/(/): I is a basic interval ofd E &[c,d]x[a,b]} anc^ by &A(f) for a subset A of a 
set S and a function f from S into a metric space M we mean the oscillation of the 
function / : S —• M on A, that is, UAU) = sup{dist(/(ar),/(y)): x,y € A}, dist 
being the distance in M. 

2. /€G([c,cf]x[a,&],X). 
3. For all (t, s) 6 [c, d\ x [a, b] the limits 

)imf(t + r, s + (T) = /(<+, *+), lim f(t + r, s - cr) = / ( t+ , s~), 
Ti0,<7].0 T4.0.<7|0 

lim /(I - r, * + <r) = f(t-,s+), lim /(* - T, « - <r) = / ( . - , * - ) , 
T|0,crJO T|0,<f4.0 

l im/ ( . + T,S) = /(<+,*), \imf(t-T,s) = f(t-,s), 
TJ.0 ^jo 

l im/( . , * + c) = / ( ( , *+), l im/( . ,* - <r) = / ( . , * - ) 
<rjO <rjo 

exist whenever they are meaningful. 

P r o o f . (1. => 2.) Given e > 0 take dc as in 1. Choose one point pj E / where 
7 is a basic interval of rfc and consider the step function g = $2 1//(P/)> 1/ being 

the characteristic or indicator function of 7. Then | | / — jr|| ^ £ where | |/ | | is the 
sup-norm of / . Consequently / E G([c,d\ x [a,t],X). 

(2. => 3.) It follows from Theorem 2.1, we also have f(t±ys±) = f(t±)(s±) and 
the limits f(t±)(s) = f(t±,s) are uniform in s. 

(3. => 1.) Consider e > 0, then there exists a 6 > 0 such that if V1 = J*,i + 

«[x]s,s + «[, V2 = ] M - * [ x l * , « + *[- ••-, V8 = {t}x]s,8-6[ then wv*(f) < e, 
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1 ^ 1 - ^ 8 . At the boundary points we choose the same type of neighborhoods. 
00 

Considering V = \J V* U {(t,s)} we get an open covering of [c, d] x [a, 6]. Extracting 

a finite subcover and projecting the vertices and centers of their elements we obtain 
divisions d"€ £ -D[c,d] and d'€ € -D[a,6]- When I is one of the basic intervals of 
d€ = d"€ x d'€ then it will be a subset of some of the Vt, hence e > uvi(f) > <*>/(/). 

D 

A regulated function of one variable can have at most a denumerable set of dis­

continuities. An analogous result is valid for regulated functions of several variables: 

Theorem 2 .3 . The discontinuities of f € G(c, d x a, 6, X) lie on a denumerable 

set of lines parallel to the axis. 

P r o o f . Let 9(f) be the set of discontinuities of / . Then 9(f) = \J 9n(f) 
n = l 

where 9n(f) = {(*,*) £[c,d]x [a, 6]: (*>(tf8)(f) > l/n}- Now if g is a step function 
such that | | / - g\\ < ^ then 9n(f) C 93n(g) and Vm ^ 1, 9m(g) lies in a finite set 
parallel to the axis. D 

We will define a Riemann-Stieltjes type of integral for regulated functions of several 
variables with respect to functions of bounded semi-variation, and it will be shown 
later that the resulting integral is not changed if we make our regulated function 
"left (or right) continuous". With this aim we introduce 

Definition 2.2. Let / € G([cyd] x [a,6],K). We say that 1. / € G„([c,( /J x 
[a,6],X) if f(cts) = /(*,a) = 0 and f(t-,s) = / (< ,*-) = / ( * - , * - ) = /(«,«) for 
t £ c and s / a , 

2. / € flo([c,d] x [a,6],X) if Ve > 0 3d€ € D[C)<i]xrM] such that the set ftc = 
{(<,*) £[cjd]x [a, 6]: | | / ( i , s ) | | ^ e] is contained in the set of lines parallel to the 
axis defined by the points of d€. 

A similar definition is given for G_([c, d],.K), for details see [1], We also let 11/ 
be the function II/(c, s) = Uf(t, a) = 0 and Uf(t, s) = / ( < - , s - ) if t £ c and s -̂  a. 
To simplify we will write / for 11/. For the one dimensional case see [1]. 

The next result shows that our II is a projection. 

Theorem 2.4. II is a continuous projection from G([cfd] x [a,6],.K) onto 

G--([c,d] x [a,6],X). Its kernel is il0([ctd] x [a,6],X), hence G([c,d] x [a,6],X) = 

G „ ( M x [a,6],X)efio(M x [a,6],X). 

P r o o f . To save space we will only prove that the kernel of the projection II 
is Qo([c, <fl x [a, 6], X). Let / € $lo([c, d] x [a, 6], X) and e > 0 be given, take d€ as in 
Definition 2.2. Then V(<,s) € [c, d] x [a, 6] we have | | /—(*, *)|| < e. • 
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The next theorem is important in the sense that it provides a dense subset of 
G ([c,d\ x [a,b],X) that is suitable for giving the proofs of the representation 
theorems we will deal with later on. 

Theorem 2.5. The closure of the linear span of the set {l]c,r]x]a,0](i,*) * x: 

re[c,d\,*e[a,b],xeX) isG—([c,d\x[a,b],X). 

P r o o f . The functions l]c,r](0 * x form a set the closure of the linear span 
of which is G~([c,d\,X) ([1]). Since the function l]c,T]x]a,<r](*>s) * x corresponds to 
hctT](t)l]a,<7](s)x w e 6e*> the result taking into account an easy extension of Theorem 
2.1. • 

R e m a r k . Generally speaking if |c, T\ is an interval of the form ]c, r], ]c, r[, [c, r], 
[C,T[ or {c = r} the closure of the linear span of the set of functions 1|C|T| • x is 
G([c, d\, X) while that of the functions l|Cfr|x|a.<r| *x is G([c, d\ x [a, b], X). 

3. FUNCTIONS OF BOUNDED VITALI SEMI-VARIATION 

AND REPRESENTATION THEOREMS 

We begin this section with the usual notion of a function of bounded Vitali vari­
ation and show some of its properties, later we generalize it to the notion of Vitali 
semi-variation and obtain the representation theorems. 

Definition 3.1. For a K: [c,d\ x [a,b] —• X and d = d" x d' G D we set 

Kti = lC(* i ,* i ) - /C(* i^ . i ) + / f (* i . i , « i . i ) - l f (* i . i f a») f U i ^ K l , 1 ^ * * |<f|. 
\d\ \d\ \d"\ \d'\ 

Set also Vd[K] = £ll*j<ll where £ | |# i<l l = E E ll*i<ll. V[K] = K M x M / { = 
jti j,i i=lt=l 

sup{VdK: d € D } . V[K] is the Vitali variation of K and the functions of finite 
Vitali variation are collected in the set BV([c,</] x [a,b],X), this is a linear space 
and V[K] is a semi norm. 

The trouble one incurs with the definition above is that the sections of K, that is 
Kt(s) = K(t,s) and K8(t) = K(t,s) need not be of bounded variation, for example, 
if K(t, s) = lQn[c,d](0 then K8 is not of bounded variation though K is. To overcome 
this nuisance we require K(t, a) = K(c, s) = 0. With this normalization we also get a 
norm with V[K], the corresponding space of functions with bounded Vitali variation 
that satisfy the requirements above will be denoted by BVca([c,d\ x [a,b],X). Note 
that if K e BV([c, d\ x [a, b], X) then K(t, s) = K(t, s) - K(t, a) + K(c, a) - K(c, s) 
is in BVca([c, d] x [a, b],X) and Kj, = Kji, hence, as we will soon see, they will define 
the same higher dimensional Riemann-Stieltjes-Dushnik integral. 
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The usual arguments of limits get us the following theorem whose proof is omitted. 

Theorem 3.1. The mapping 

K € BVca([c,d] x [a,b],X) ~ KD G BVc([c,d],BVa([a,b],X)) 

is an isometry from the first Banach space onto the other. 

Next, for the sake of completeness, we state some results that though interesting 
in themselves are a bit away from the direction this paper points to. For this reason 
they are presented without proofs. 

Theorem 3.2. For K € C([c, d] x [a, b], X) (here C stands for the set of continuous 

functions) wehaveVi0tix[atb)K = Viotix[ajh]K where Viotix[atb]K = sup{Vio+6,txlatb]K: 

6>0}. 

Theorem 3.3. The mapping 

K € BVCCa([c,d\ x [a,b],X) ^ Ku € BVCc([c,d],BVCa([a,b],X)) 

is an isometry from the first Banach space onto the other, where BVC = BV C\ C. 

Now we proceed to the generalization of the functions of bounded Vitali variation 
and the first type of representation theorem. 

Definition 3.2. Let K:[c,d\x [a,b] —• L(X, Y) where L(X,Y) is the Banach 
space of the continuous linear operators from X into Y, let d € D. We set SVd[-K] = 

sup { | £/<;,•,• .* i t . | | : Xji € *, | |*i<| | < l } , SV[K] = sup{SVdK: d € D} and call 

SVK the Vitali semi-variation of K and let SV([c,c(l x [a,6],X) be the set of all 
K with finite Vitali semi variation. As it was done with the functions of bounded 
Vitali variation we normalize them by requiring that K(t,a) = K(c,s) = 0 and the 
resulting space is written SVca([c, d[ x [a, b], L(X, Y)). 

When y = C one has SV([c,d] x [a,b],X') = BV([c,d\ x [a,b],X') so we have in 
fact a true extension of the old concept. 

Next we define the higher dimensional Riemann-Stieltjes-Dushnik integral that 

will represent our operators. 

Definition 3.3. For a function K: [c,d] x [a,b] —• L(X,Y) and / : [c,d] x 
[a, b] — • X the Riemann-Stieltjes-Dushnik integral of f with respect to K or the 
interior integral of f with respect to K is the 

l i m E ^ i i -/0W,6) = fe
dfaduK(t,s)-f(t,s), 

-ЄD', . 
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where r/, €]*i-i,<>[, 1 < j 4 \d"\, & €]*.-i,*,[, 1 < « ^ |«."| (d = <T x d') and the 
limit is to be understood in the sense of the net D. 

As a first result linking the notions of regulated functions of two variables and the 
the functions of bounded Vitali variation we have 

Theorem 3.4. Given the function f € G([c, d] x [a,b],X) and the function 
K € SV([c, d] x [a, b], L{X, Y)) we have: 1. It exists FK(f) = £ £ du K(t, s)f(t, s). 

2. \\FK(f)\\$SV[K]\\f\\. 
3Iff€ Slo([c,d] x [a,b],X) then FK(f) = 0. 
4. FK(f) = FK(f-) and \\FK(f)\\ $ SV[K]\\f..\\. 

5- \\FK(f) - £ Kji • f(t,j,ti)\\ < SV[K]Ui(f),: Vd € D. 
i« 

Proof. (1. and 5.): We show that the Cauchy criterion holds. Given e > 0, 
choose d€ E D such that ŵ  < 2Sy\K\ (see 1. of Theorem 2.2). Now let d ^ dt 

and consider (if any) t* € de, s* G d - de, say, t* €]<j-i,fy[, «* €]*t-i>*i[* For the 
division {*,_ i, <*, £,-} x {5,.. 1, s*,st} of [tj-i, *,] x [s,-_ 1, Si] we have Kji = K11 +A'12 + 

II H 1*1 II II M 
#21 + #22. Hence £ ffml • /(f^c!,) - £ /fy • /(*?;,&) = E *m/ • /0hi ,6) -

" m,J j,i » »m,/ 

/(̂ mj-y îi) ^ SVK 2sifk = 2e» w^ere Vm; and (,. are points in the d partition. 
Clearly if a ^ d we also have 

1*1 \d\ 

I £ * « i • /(*».€*) - £*> ' ' /0».6)ll < SV[*]«4.. 
m,/ i,< 

hence taking the limit in d we get 5. 

(2.): Let e > 0 b e given and take df €Dsuchthat | | F / c ( / ) - £ / ^ r / ( % , f i ) | O , 

then | |FK( / ) | | ^ I £ K^ . /(iy ,fc)|| + e < SV[K] ||/|| + e. 
11 j t i 11 

(3.): If / € Oo([c,d] x [a, 6], AT) and j^fa > 0 then 3d£ € D such that {(*,«) € 
[c, d] x [a, 6]: ||/(J, «)|| *£ sWk]) ' ^ *n ^e ^ °^ '*nes Para--elto *he a**8 defined by 
dt. Hence ||FJC(/)|| ^ -^J -J SITR] = -.. 

(4.): Obvious. D 

Observe that we actually have the following equality: 

/ / duK(t,s).f(t,s)= I f duK(t,s).f„(t,s). 
Jc Ja Jc Ja 
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The representation theorem follows. 

Theorem 3.5. The mapping 

K G SVCa([c,d\ x [a,6],L(X,y)) -> FK G L(GL-([c,d] x [a,6],X),y) 

where FK(f) = / c / a d*, K(t, s) • / ( t , s ) is an isometry from the first Banach space 
onto the other. 

P r o o f . By 2. of Theorem 3.4 FK G L(GL-([c,d] x [a,6],X),y) and \\FK\\ ^ 

SVK. To show that the mapping is injective just note that if K G SVea([c,d\ x 
[a,6],L(X,y)), # ^ 0 then by taking (r,<r) 6 [c,d] x [a, 6] and x G -K such that 
/if (r, or) • ar ^ 0 we get F/c (1]C,T]X)<I,*](<, s) • x) = /C(r, <r) • x. To see why the mapping 

is onto take any F G L(G—([c,d\ x [a,6],X),y) and define K by /-"(M) • x = 
l,M-

F(1]C,T]X]«,<-](M) • * ) . Then tf(t,s) G L(X,y ) and for d G D we have £ffj< • 

•iif = I?J',(ii«i-i.iiix^.i,.da»)-*i*)I = Ini.h^utA^^M^^^M ^ 
\\F . Consequently 5V[A'] ^ | |F | | and since F - FK at 1]C,T]XK<T](M) • * they are 
the same by Theorem 2.5. • 

Next we present our form of the classical convergence theorem of Helly. 

Theorem 3.6. Let Kn be a sequence in SV([c,d\ x [a,6],L(X,y)) and K: 

[c, d] x [a, 6] — • L(X, Y) such that Vx G K, V(*, s) G [c, d\ x [a, 6] we have tfn(t,«) • 

x — , K(ty s) • x and 3M > 0 such that SV[/<:»] ^ M. Then 

1. Ke SV([c,d\ x [a,6],L(X, y)) and -SV[K] ^ M. 

2. V/ G G([c,d] x [a,6],X) we .have 

/ / duKn(t,s)f(tys)—> I I dtsK(t,s)f(tlS). 
Jc Ja Jc Ja 

P r o o f . (1.): Vd € D, V*,-,- 6 X with \\xji\\ < 1 and We > 0 we have 

.. M „ „ 1-1 II 
J ̂  Kn • *i<| = I X,(*i« " * > + ^«'n) * *i'|| 

i.«" i.« 

14 „ M 
< I ID*-" " *i'n) • *>'I + I E î«" • *i«|| <e + M 

i,i i.«' 

for a suitable n £ N . 
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(2.): From 

rd y6 fd fb 
\J J duK(t,s)f(t,s)-J J dt.Kn(t,s)f(t,sĄ 

ŕd fь 14 

ś\J.Jd" к(ł>«) • /c» s> - £ кn • /(•»..í.)I 
14 14 

+1 £ к л • /tø.й) - £Kц* • f(uЩ 
j,i І.» 

ii И Г- /* ii 

+1 £ ÄІ.Я • /tø.í.) - y y *. ад«) • /(*, •)( 
І . Í 

14 
^ 2Mwà(f) + I £(*,. - Kцn) • ĄълĄ 

one sees that by choosing d € D such that WJ(/) < 5^ and n. <E N such that 
ll M 11 . 

£ ( % - ATj-.n) • /(».v,6) < £e the result follows. • 
11 J,i " 

The results that follow explain how one does the composition of operators in the 
context of spaces of regulated functions. They are usually known under the heading 
of "Bray theorems". 

Theorem 3.7. Tate J = [c, d] x [a, *>],/ = [7, S] x[a,0]andKe SV(J, L(Y, Z)), 
g € G(I,X) and L: J x 1—+ L(X, Y) such that V? € / we have L, € G(J, L(X, Y)) 
and Vp € / we have U> € SV(I, L(X, Y)) with s\ip{SV[U>): p € J] < 00. Then 

1. 

J J dvu[J J duK(t,s)oL(t,8,v,u)]g(v,u) 

= J J du K(t,s) • [ y 6 J dvu L(t, s, v, u) • g(v,«)]. 

2. 
r { ffl . ŕd ŕь 1/ / dvu (/ / *• *('»•)•-*-,*.".«)] u(».«)| 

<5K[/řl.8up{5K[.tn:p€/).|W|. 

If we wish to compose operators on spaces of regulated functions of distinct; number 
of variables we have similar results. For example, the one below. 
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Theorem 3.8. Take intervals J = [c,d] x [a,b], I — [a,0], and functions K € 
SV(J,L(Y,Z)), g € G(l,X) and h: J x / —+ L(X,Y) such that Vu € / we have 
/.„ € G(J,L(X,y)) and Vp € 7 we have h? e 5V(/,L(X,y)) with supfsVtftP]: 
p € J} < oo. Then 

L du[L L *-*(*'-)° *(-.-•, «)]•»(«) 
=/ /du Kit's)' [La

 du h^ **u)] *5(u)' 
2. 

11/ M / / d " A : ( ť '* ) o A ( í ' s ' u 
•«(«) 

<5K[JSfl«p{5K[ftn:p6J}-|W|. 

We will only prove Theorem 3.7, the proof of Theorem 3.8 being totally analogous. 
Proof. We begin by showing that the function 

* : (t;, u) € / ~ / / du K(t, s) o L(t, s, », u) € L(X, Y) 

is of bounded semi-variation and SV[Q] ^ SV[K] • sup{SV[lS]: p € J}. * is 
well defined because we are in a setting like that of Theorem 3.4. Since Vx G X, 

[///« * • * («.«) o -•(-. ••«. -)!•«-= // / ,* <-i. * («.«) • [-«(«.«.«.«) • *1. if rf € D/ and 

*,-. € X with ||c i f | | ^ 1, we have lE*;<*if| = I E/«7« rf" # ( M ) [ ^ . • * ; . ] ! = 
ii j > t - ii ii jj ii 

| / / / - * • K(<>•) E ty • *Ji\ < - V M • sup{sV[iy]: p 6 J} . 

Now we show that • : (t,s) £ J •—> f f£ dvu L(t,s,v,u) • g(v,u) is regula­
ted. Again 9 is well defined by Theorem 3.4 and if (t,s) £ Jf tn | t, sn f * 
then L(tn,*n,t;,u) —• L(l—,s— ,t>,u). Resorting now to Theorem 3.6 we get 
S*Std™ ^C»t *»i v>tt) * 9(*>, *0 —• fif£ dvu L(t~, « - , t>, u) - $(», u). 

So let 5, T: C?(/,X) —- Z be S($) = f'ftdvu*(vyu) - $(t/,u) and T(^) = 

/c /* ^ ^('» *) • *('» *)• Because of the inequalities 

||S(«)|K SV[K] •sup{SV[L'>}: p € J} • \\g\\ 

\\T(g)\\ ^ SV[K] stip{SV[[f].p € J} • \\g\\ 

they are both in L(G (/, X), Z). Also, if g(v, u) = iyi,v]x)a,n](v> v)-x,x € X then 
S(g) = *(v,/*).- = r/Xj </,. /t*(i, «)!(*,«, u, n) • x a Tfo), hence 5 = T according to 
Theorems 2.5, 2.4 and 3.4. O 
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4. REPRESENTATION OF BILINEAR OPERATORS 

In this section we represent bilinear operators on cartesian products of spaces of 
Banach valued regulated functions by means of a Riemann-Stieltjes-Dushnik integral 
with respect to functions of bounded Frechet semi-variation. B(Y x X,Z) is the 
Banach space of all continuous bilinear operators from YxX into Z. If K G B(Y x X, 
Z) we write K(\) for the linear operator K(\): Y —* L(X,Z) obtained from the 
canonical isometry B(Y x X, Z) = L(Y, L(X, Z)) and K(2) for the linear operator 
K(2): X —• L(Y,Z). Now we introduce the definition of a function of bounded 
semi-variation in the sense of Frechet and of the interior integral. 

Definition 4.1. Let K: [c,d] x [a,b] —• B(Y x X,Z) and d G D be given. 

We set SFd[K] = sup{ £ A > ( W , s , ) : Hwll < 1, IWI < U and SF[K] = 

sup [SFd[K]: del)}. 
We call SF[K] the Frechet semi-variation ofK and write SF([c,d]x[a, b], B(YxX, 

Z)) for the linear space of all functions with finite Frechet semi-variation with the 
semi norm SF[K], 

As before we write SFca([c, d] x [a, b], B(Y x X, Z)) for the subspace of SF([c, d] x 
[a, b], B(Y x X, Z)) whose elements K satisfy K(t, a) = K(c, s) = 0, in SFca([c, d] x 
[a, b], B(Y x X, Z)) SF[K] is a norm. 

When X = y = Z = Cwe write simply SF([c, d] x [a, b]) and SFca([c, d\ x [a, b]). 
M 

In this case one has SFd[K] = £) KjiPj&i for suitable fy, af- G C. 
i.» 

Given g: [c,d] —• Y and / : [a, b] —• X we say that the pair (g, f) is K-mtegrable 

if the limit VimZKMVj^m)) = fcJaduK(t,s)(g(t),f(s)) exists where ife G 

]'i-i»'i[i: 6 €]*i-i,*i[ in the net D. 

Remark. Note that for K G SFea([c,d]x[a,b],B(YxX,Z)), t G [c,d],se [a,b] 
we have #,(1) G SVe([c, d],L(Y, L(X, Z)) and KiW G 51 ,̂(10,b], L(X,L(Y,Z)\ 

A result analogous to Theorem 3.4 follows. 

Theorem 4.1. Let f G SV([c,d] x [a,b],L(X,Y))f 9 G G([c,d],Y) and f e 
G([a,b],X). Then we have 

\. There exists BK(g, f) = / / / ? du K(t, s)(g(t), f(s). 
2>\\BK(g,f)\\<SF[K].\\g\\-\\f\\. 
3. If g G fto([c,dl,Y) or f G H0([a,6],X) (the one dimensional ajia/ogues of 

flo([c, d] x [a, b], X) (see Definition 2.2) then BK(g, f) = 0. 
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4. 

d ,» H H 

du K(t, *)(g(t), /(»)) - £ /cit(p(%)» /&)) 

<5F[iq(|W|-«^(/) + | |/ | | .^(,)). 
P r o o f . (1. and 4.): Suppose g ^ 0y f ^L 0 and # ^ 0, otherwise the proof 

is evident. Let us prove that the Cauchy criterion holds. So take t > 0 and choose 

*! ^ D[c,»l and d't € D M ) such that wj, < ^sF^mi a n d w*. < 2S.fWH;H - N o w i f 

d ^ cf« = cf" x dt we have 

E iww). /««» - £ **(»(*»). /«m))l 

II
 M '^ ii 

= E *i. w«») - -*(»*.,). /(&))+E *>.(*(*). /«.) - /(u)) 

<|^jf .JH!!___/ ( , rBo -rn .. /(6)>>ll g 
« | z - M ; ( f t o ) - * * , ) ) . -jjTjp j|5gj?pg 

+| L,M-|5jp ; (A6)-/(U))J 25-pj 

where iyni and ^m i have the same meaning as in Theorem 3.4. Now 1. is evident and 
2. follows by taking limit in d. 

(2.): Vrf E D we have 

I
' M 11 11 M / v f(c II 

E*.«Mw)./K»))| = I E^.( w- w)|| •M'l,/" 
(3.): Let g € flo([c,d],V). Given €> 0 there exists d, 6 D such that {< G [c, d]: 

H-'OII > 5]Prin7f) C <'. If d" ^ d? then for d = d" x <f we have 

E*i<kfoi)d(6)) 
i,< II 

M , 
- • — - • • -= І V / Л J _ _ _ Ш _ ЛЬ)\ 

I^M г -•w/ 5F[Jř] <e . 



Next we establish the representation theorem. 

Theorem 4.2. The mapping 

K e SFca([c,d\x [a,6],fl(y x X,Z)) 

~BKe B(G-([c,d\,Y) x G-([af »],X),Z) 

where S K G / , / ) = fc $1 du K(t} s)(g(t), f(s)) is an isometry from the first Banach 
space onto the other. 

Proof. From the previous result one immediately sees that the mapping is well 
defined and that ||BJC|| ^ SF[K]. If K £ 0 there are r e)c,d\, a €]a,*], V € Y and 
xeX such that B/c(ljc>Tj(*)|/, l]a.*](*)-«) = KQT,*]){V**) # °» h e n c e the mapping 
is injective. Let us now show that it is onto as well. So take B e B(G_([c,d],y) x 
G.([a, 6], X), Z) and define K by A'(r, <r)(y, x) = flK(lc,r(0 • J/, W W • *)• Let us 
show now that such K is in SFca([c, d\ x [a, 6], J3(y x X, Z)). So take d = d" x d' € D, 
yj e Y and x{ e X with ||%|| ^ 1, ||a,,|| ^ 1. We then have 

E^(w.«oI = lEB(1>i-«.«w-w.ii.i....-]W-**)i 

II /'iO lit! 
= K £ ->i-..ii](0 • w. £ i]»*-i,..](«) • *•• 

" v i = i t-=i 

By the usual density argument, since B and BK agree at (ljc,T](0 • U> l]a,<rj(*) * -0 
they are really the same operator. • 

We end this section by a theorem of Fubini type. 

Theorem 4.3. The following identity holds for any g e G([c, d\, Y), f e G([a, 6], 
X)andKe SF([c, d] x [a, ft], B(Y x X, Z)). 

j*J'duK(t,s).(g(t)J(s))= J'd,y*dtK(i,s)(l)\ g(t)f(s) 

Proof . To begin with consider the function $: s € [a, fc] —• fc dtK(t} s)(l) • 
g(t) e L(XtZ). It is well defined due to the remark following Definition 4.1. We 
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now show it is of bounded semi-variation. So choose a d* € -)[„,(,], _>. 6 X with 

ii 1*1 ii II •*' , A 

IN) < 1. We have £ *(_.)-<_•(-.-,)•-, = E /;d t / . (f ,8 , )( l)- / . (f ,«,_,)(!)• 
4=1 i , = i 

II II 1*1 A I-*!'-"! II 

*(-)•*. | ^ I E//d./.(f,8,)(i)-/.(f,8,_,)(i)-<,(f)•_,-£ £ /-„-(-)•_•(!&) x,| + 

II '*• '*'' II II ,_ 
E E Kji(\) • g(f)j) • zi\\. Now choose d" € D M such that \\f^dtK(t,Si)(l) -

» . _ i j _ i » " K(f,8,-,)(1) • g(t)- £ tf,,(l) • 0(ig,) | < - $ - . With this choice of d" we get 

II >*l II 
£ *(».) - * ( 8 ,_ i ) • x,- < e + SF[K]\\g\\, therefore SV* < 5F[A-]||<,|| and the 

" . = 1 » 

integral /fl d,$(8) • f(s) is meanigful. 
To prove the identity we resort to the usual density argument. Consider S,T: 

G.([c,d),Y) x G.([a,b),X) - + Z defined by S(g,f) = fefadt,K(t,S)(g(t),f(s)) 

mdT(g,f) = £ _ . £ _ , J_(l, _)(_).#). /( .) . Ifjj(f) = lc>T(f)i/and/(8) = l0i<,(8)x 

we have 5(ff, / ) = K(T, <r)(y, x). On the other hand T(g, f) = fa d, / ? d. K(t, s)(l) • 

g(t) • f(s) = fl d, K(T, s)(l) • \a><,(s) • x = K(r, <r)(y, x). Consequently S = T. D 

5. SOME APPLICATIONS 

We present here a few applications of the results obtained so far. We begin with a 
proof of the well known result that BVea([c,d] x [a,b]) g SFea([c,d] x [a,b]). When 
X = C we write BW([a,b],Y) instead of SV([a,b],L(X,Y)). 

Let us first state a result which is nothing but an easy reformulation of the repre­
sentation theorems. 

Theorem 5 .1 . We have the following isometries: 

SFea([c, d)x[a, b], B(Y x X, Z)) = SVe([c, d], L(Y, SVa([a, b), L(X, Z)))) 

SFea([c,d) x [a,b),B(Y x X,Z)) = SVe([c,d],L(Y,SVa([a,b),L(X,Z)))) 

SFea([c, d) x [a, b), B(C x X, Z)) = BWc([c, d],SVa([a, b), L(X', Z))) 

SFea([c, d) x [a, b]) = BWe([c, d),BVa([a, b))) 

SFea([c,d)x [a,b],B(Y x X,Z)) = L(G.([c,d),Y),SVa([a,b],L(X,Z))) 

SFea([c,d)x [a,b),B(Y x X,C)) = L(G.([c,d),Y),BVa([a,b),X')) 

5Fc_([c,d] x [a,6l,B(y x C,Z)) = L(G.([c,d],Y),BWa([a,b],Z)) 

SFea([c,d) x [a,b]) = L(G^([c,d],Y),BVa([a,b))) 
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Proof . By Theorem 4.2 we have 

SFca([c1d\x[ayb]yB(YxXiZ)) 

= B(G.([c,d],y)xG.([a,6],X),Z) 

s L(G«([c,d],n^(G.([a,6],X),Z)) 
s L(G-([c}d\}Y),SVa([a}b]}L(X}Z))) 

= SVc([c} d], L(Y} SVa([a} 6], L(X, Z)))). 

For the third isometry see [1], ail the other cases being simply particularizations 
of what was written above. D 

Now we give a "simple" proof of BV £ SF. Of course the burden must lie 
somewhere, in this case it is in the following result due to Rocha, [4], the proof of 
which relies on the theorem of Dvoretzky-Rogers. 

Lemma 5.1. For a Banach space X} BV([afb]}X) = BW([a,b],X) if and only 
ifX is finite dimensional. 

Now we prove 

Theorem 5.2. BVca([c}d\ x [a,6]) £ SFca([c}d\ x [a,6]). 

P roof . By Theorem 3.1, BVca([c}d\x[a,b]) = BVc([c,d\}BVa([a}b))). Now use 
the fourth isometry of Theorem 5.1 and Lemma 5.1. • 

Next we prove that SF C G. To obtain it we will use the following two results 
the first of which can be found in [4]. 

Lemma 5.2. If X is a normed space and Y a reflexive Banach space (or more 
generally a weakly sequentially complete Banach space) then -SV([a,6],L(X}Y)) C 
G{[a,b),L(X,Y)). 

The other can be found in [7]. 

Lemma 5.3. The Banach space BVa([a} 6]) is weakly sequentially complete. 

Now from the two previous results and the fourth isometry of Theorem 5.1 we 
easily get 

Theorem 5.3. SFea([c}d\ x [a,6]) C G([cyd\ x [a,6]). 

311 



References 

[1] C. S. Hönig: Volteгra-Stieltjes Integral Equations, Mathematical Studies 16, North Hol-
land Pub. Comp., Amsterdam, 1975. 

[2] M. Morse and W. Transue: A Calculus foг Fréchet Variations, Journal of Indian Math. 
Soc. K/VҶ1950), 65—117. 

[3] M. Morse and W. Transue: The Fréchet variation in the small, sector limits, and left 
decompositions, Canadian Journal of Math. 2 (1950), 344—374. 

[4] G. C. Rocha-Filho: Integral de Riemann Vetorial e Geometria dos Espaços de Banach, 
doctoral thesis, IME-ÜSP, 1979. 

[5] J. A. Clarkson and C. R. Adams: On defìnitions of bounded variation for functions of 
two varìables, Ћrans. Am. Math. Soc. 35 (1933), 824—854. 

[6] M. Fréchet: Sur les fonctionnelles bilineaires, Trans. Amer. Math. Soc. (1915), 215—234. 
[7] N. Dunford and J. T. Schwartz: Linear Opeгaгtors, paгt I, p. 337, Interscience, 1967. 

Author's address: Department of Mathematics, IME-USP, Caixa Postal 20570 (Ag. 
Iguatemi) C E P 01498, Såo Paulo, S. P., Brazil. 

312 


		webmaster@dml.cz
	2020-07-01T11:48:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




