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Summary. In this paper the problem of construction of the canonical matrix belongir 
to symplectic forms on a module over the so called plural algebra (introduced in [5]) 
solved. 

Keywords: linear algebra, free module, symplectic form, symplectic basis 

MSC 1991: 15A63, 51A50 

I. INTRODUCTION 

1. Definition. The plural T-algebra of order in is every linear algebra A on T 

having as a vector space over T a basis 

{I ,? / . ; / 2 . . . . , ) / " 1 - 1 } with )/'" = 0. 

A plural algebra A is a local ring the maximal ideal of which is nilpotent. It was 

proved in [3] that the free finite generated A-module M (the so called A-spacc in 

the sense of [6]) has the following properties: 

2 . 1 . If one basis of M consists of n elements then each of its bases consists of the 

same number of n elements. (This is true in every free module over a commutative 

ring.)1 

•Supported by grant No. 201/95/1631 of the Grant Agency of the Czech Republic. 
'See 111 
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2.2. From every system of generators of M we may select a basis of M . (This is 

valid over every local ring.)2 

Moreover, in this case: 

2 .3 . Any linearly independent system may be completed to a basis of M . 

2.4. Every maximal linearly independent system in M forms a basis of M . 

3 . Let tpi,..., tfik be a linearly independent system of linear forms M -> A. Then 

f| Kevipi is a free (n - fc)-dimensional submodule of M . 
l^iigfc 

4. Let K, L be free submodules of an A-module M . Then K + L is a free 

A-submodule if and only if K n L is a free A-submodule and the dimensions of 

A-submodules A', L, K n L, K + L fulfil the relation 

dim(A + L) + dim(A' n L) = dim K + dim L. 

5. A g r e e m e n t . Throughout the paper we denote by A the plural T-algebra 

introduced in this section. The capital M always denotes the free n-dimensional 

module over the algebra A. 

6. Def in i t ion . A bilinear form $ : M 2 -» A is called a bilinear form of order 

fc(0 < k < m- 1) if 

(1) V(A,K) G M 2 ; # ( X , F ) G t)kA, 

(2) 3(U,V) G M 2 ; mi,V) £ /7fc+1A. 

The following proposition is taken form [4]. 

7. P r o p o s i t i o n . If <t? is a bilinear form of order k then there exists at least one 

form A of order 0 sucJi that 

* = 7;fcA. 

2 See [6] 
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I I . INERTIAL LAW OF SYMPLECTIC FORMS ON MODULES OVER PLURAL ALGEBRA 

Let the dimension n of M be an even number. 

1. Defini t ion. Let $ : M 2 —> A be a symplectic form3. If all elements of the 

basis U = {_7_,Y.1,U.2, V2, • • •, LLr, Y_r} of M fulfil the conditions 

(1) *(&,£;) = *(£,,£,) = o, 
(2) *(Ui,V.) = {hri,T.2,...,T.">}, 

(3) $(LIi,Y-j) = 0 f o r i # i , 

then U is called the symplectic basis of M with respect to $.4 

2. R e m a r k . Relative to this basis the matrix of the symplectic form has the 

form 
0 <ŕ>12 0 0 0 0 

- <fi!2 0 0 0 0 

0 

0 

0 0 0 <P34 

0 

0 0 
0 0 - <PZ4 0 0 0 0 

0 0 0 0 0 <Pn-l,n 

0 0 0 0 - <Pn-l, 0 

where iptj g {1, J?, n2,. .., if'}. 

3. T h e o r e m . Let $ be a symplectic form on the module M. Tiieii t/iere exists a 
symplectic basis of M with respect to $. 

P r o o f. By induction for r = | n . 
1. The proposition is clear for r = 1. 
2. Let the theorem be true for all (n - 2)-dimensional A-modules, n ^ 4. 
(a) Let <S> be a form of order 0, i.e. 3(U,V) g M 2 : <I>(U,V) is a unit. Let us 

suppose—without loss of generality—that §(U,V) = 1. 
This implies that U_, V_ are linearly independent. Indeed, if aU_ + f3V_ = o then 

0 = <i>(aU + /3V, V) = a • $(U, V) + 0 • $ ( £ , V) = a. 

Analogously, we obtain 0 — 0. 

Let us consider linear forms ipjj (X_) = $(U,X) and fv(X) = $(V, _X). Evidently, 

they are linearly independent. According to Proposition 1.3 .V = Kertpu n Keripy 

> A form * satisfies <i>(X,X) = 0 for all X e M . 
1 For m = 1 (i.e. A is a field) we get the usual r1 

(see [2]). 
. of a symplectic basis . 
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is a free (n - 2)-dimensional submodule. Due to the induction hypothesis we may 

construct a symplectic basis {__[_, V_,U2, V-2> • • • > LLr-i >V r-1} of A/" with respect to 

the form $|A/"2. 

Now, let us show M = J\fS)[U,V]. If A 6 [U,V] then X = (U + (V. Consequently. 

o = ipu(x) = §(JZ,C£t + GO = t • *(£.,££) + C • *(£LV) = C-

In a similar way we get £ = 0. This gives X_ = O and therefore M n [U,Y_] is a 

0-dimensional submodule. We have (by Proposition 1.4) M = \f © [Y_]. 

Since U_j,Y_.j 6 Ar for every j 6 N(r - 1), hence *(££[,££) = $(£.,•, £0 = 0 and 

*GZj,V) = *(V j ,V ) = 0. Thus {TLl,Y_l,U_2,Y_2,...,U_r_.1,Y_r_vU,V_} fon"s a 

symplectic basis of M with respect to <&. 

(b) Let $ be a bilinear form of order k (^ 0). According to Proposition 1.7 there 

exists a bilinear form * of order 0 with $ = if'i. By (a) we can construct a symplectic 

basis for the form <P, which is also a symplectic basis for the form <I>. • 

4. Def in i t ion . Let <& be a symplectic form M 2 -¥ A and let the basis U = 

{U_i, ¥__, U2,V2, • • • ,Ur,Vr} be symplectic with respect to <&. Let us define a system 

of sets Jo,..., Jm as follows: 

Jk = {i e N(r);*(££,,V__) = yk}, 0 s= k sC m. 

If we denote 7rfc = 2 card (Jit), 0 s$ A; < m, then 

£h($,W) = (n0,...,irm) 

is called the characteristic of the symplectic form, <I> with respect to the basis U. 

5. Definit ion. For any symplectic form $ : M 2 -» A let us denote by V* the 

set 

{Y e M;r)k$(X,Y) = 0, VA e M}, 0 < k s= m. 

The following lemma is evident: 

6. L e m m a . IfU is a basis of M and 3> is symplectic form, then 

V* = {F e M; n*$(£/, Y) = 0,VU_eU}, 0 < /,: s= ro. 

7. Propos i t ion . Let $ be a symplectic form M 2 -+ A and Jet U be symplectic 

with respect to $ . Then a submodule V* of M as an T-vector subspace has the 

dimension 
m-k-l 

dimVt* = VJ (k + j)it3+m VJ *,-, 
T j=0 j=m-k 
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where (n0,..., irm) = CJ)($,W). 

P r o o f . V* is clearly a submodule of M. Let U = {i£i,V i , lZ3,V2, • • • ,Er, 

Vr} and let us consider a A e Vf, A = E &JZi + E &&• Putting 7^ = * ( J L , Z j ) , 
,•=1 ;=i 

j e M(r), we obtain 

HX,Uj) = - 0 7 i and HX,Vj) = C;7;, 

which yields A e Vf «• Vi, i e N(r); ?7fc*(A,&:) = » T * ( 2 L , Z . ) = 0 «• Vi, i e N(r); 

iflid = ??*7iCi = 0- As every 7; = ?;fc(i) we get (according to Definition 4) that 

A e V* if and only if the following conditions are valid: 

(0) ie Jn =>&,C> erjm"kA 

(1) ieJi=>fi ,Ci€J? r o-*-1A 

(j) i e Jj => Ci, C. e rfn-k~iA, 0 <: j <: m - fc - 1 

(m - k - 1) i e ;/,„^i => Ci, Ci e '?A 

(m-k) ie U J"m-.-=>6,6 e A 
s=0 

Let us construct the following system of submodules in V*: 

Vtj = {A e M; A € V* A A = V_] &££.}, 0 < j < m, 
ieJi 

Wkj = {A e M; A e V* A A = V_̂  CiZi}, 0 < j < m. 
i€Ji 

Clearly, Vf = Vj& © Vft © . . . © V*m 0 Wf0 © W£ © . . . © V\$m. 

We get [from (0)], that Vjf0 or Wf0, has T-basis 

U {'r~ f c£i,. . . , 'T~1ti !} or U {'?ro_*Vi,--,J/ro_1l-i}, respectively; 
iSJa ieJu 

therefore dimV*0 = dimW*0 = ^n0k. Analogously, conditions (j) imply that 

dim V*. = dim W*. = \itj(k + j), and the condition (m - k) implies that dim V*. = 

dim WJ*. = §7r,m, m - k < j < m. 

The relation for the T-dimension of V* is now evident. • 
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8. T h e o r e m (inertia! law). Let a symplectic form <I>: M 2 -> A be given. IfU, 

V are arbitrary symplectic bases of M with respect to this form, then 

a)(i\U) = £.)(*, V). 

Proof . Let £h($, W) = (7r0,..., 7rm). Then Proposition II.7 implies 

m-k m 

dun V* = ]T „,(„ + i ) + YJ "i ' '"• 
j=0 j=m-&+l 
m-fc m 

dhn Vf_, = YJ 0- (fc + J) - *i) + T, *r '"'• 
j=0 j=m-fc+. 

m-* 
Consequently, we have dim V* - dimV*_j = 23 *_• Let £h(<I>.V) = {va,... ,«vm). 

T ' T i = 0 

m-* m-* m-fc 
Then we obtain dim V* — dim V*_! = 23 "/i, be. 23 ^J = 23 'y''- Putting k = m, 

T ' T fc=o i=o ' /i=o 
m — 1, . . . , 0, we get 

in — k m—ft 
7T0 = V0, 7T0 + 7Tl = V0 + \'\ , . . . , Y J TTj + 7T„, = Y J ffc + Vm, 

n-k 
Wj + 7T„, = 

li=0 

which successively yields no — fo, " l = " l , • • •, ""m = "»»• • 
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