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Summary. In this paper the problem of construction of the canonical matrix belongi
to symplectic forms on a module over the so called plural algebra (introduced in [5]

solved.
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I. INTRODUCTION

1. Definition. The plural T-algebra of order i is every linear algebra A on T
having as a vector space over T a basis

{Lga% ™) with ™ = 0.

A plural algebra A is a local ring the maximal ideal of which is nilpotent. It was
proved in [3] that the free finite generated A-module M (the so called A-space in
the sense of [6]) has the following properties:

2.1. If one hasis of M consists of n elements then each of its bases consists of the
same number of n clements. (This is true in every free module over a commutative

ring.)!

*Supported by grant No. 201/95/1631 of the Grant Agency of the Czech Republic.
' See [1]
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2.2. TFrom every system of generators of M we may select a basis of M. (This is
valid over every local ring.)?

Moreover, in this case:
2.3. Any lincarly independent system may be completed to a basis of M.
2.4. Every maximal linearly independent system in M forms a basis of M.
3. Let gr,..., ¢k be alinearly independent system of linear forms M — A. Then
ﬂ(k Ker; is a free (n — k)-dimensional submodule of M.
1<igk

4. Let I, L be free submodules of an A-module M. Then I\ + L is a free
A-submodule if and only if &’ N L is a free A-submodule and the dimensions of
A-submodules K, L, K n L, K + L fulfil the relation

dim(K + L) + dim(KX N L) = dim K + dim L.

5. Agrcement. Throughout the paper we denote by A the plural T-algebra
introduced in this section. The capital M always denotes the free n-dimensional
module over the algebra A.

6. Definition. A bilinear form ®: M? — A is called a bilinear form of order
kOg<k<m-1)if
(1) VX, Y) e M?%  2(X,Y) €A,
@) WY e M2 (V) ¢ i*IA.

The following proposition is taken form [4].

7. Proposition. If ® is a bilinear form of order k then there exists at least one
form A of order 0 such that

& =pPA.

2 See [6]
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II. INERTIAL LAW OF SYMPLECTIC FORMS ON MODULES OVER PLURAL ALGEBRA

Let the dimension n of M be an even number.

1. Definition. Let ®: M?> — A be a symplectic form®. If all elements of the
basis U = {U;,V,, Uy, Yy, ..., U,V } of M fulfil the conditions
(1) e, U;) =2V, V;) =0,
(2) ®(U; ={Lagn?... 0"}
(3) ;. V) =0forisj,

—J

then U is called the symplectic basis of M with respect to .4

2. Remark. Relative to this basis the matrix of the symplectic form has the

form ——
‘ 0 P12 0 0 0
—p12 0 0 0 Q
0 0 0 o 0 0
0 0 -3 0 0 0

where @;; € {Log, o)

3. Theorem. Let ® be a symiplectic form on the module M. Then there exists a

symplectic basis of M with respect to ®.

Proof. By induction for r = %n.

1. The proposition is clear for r = 1.

2. Let the theorem be true for all (n — 2)-dimensional A-modules, n > 4.

(a) Let @ be a form of order 0, i.e. 3(U,V) € M?: ®(U,V) is a unit. Let us
suppose—without loss of generality—that (U, V) = 1.

This implies that I/, ¥ are linearly independent. Indeed, if all + 8V = o then

0=20(lU+pY.V)=a oW, V)+4 21 1) =a.

Analogously, we obtain 8 = 0.

Let us consider linear forms o (X) = ®(U, X) and ¢y (X) = ®(V, X). Evidently,
they are linearly independent. According to Proposition 1.3 & = Kerpy N Kerey
3 A form @ satisfies (X, X) =0 for all X € M.
iFor m =1 (i.e. A is a field) we get the usnal & © ition of a symplectic basis over fields

(see (2]).
193



is a free (n ~ 2)-dimensional submodule. Due to the induction hypothesis we may
construct a symplectic basis {U,,V,,U,,V,,...,U, .V, _} of N with respect to
the form ®|NV2.

Now, let us show M = N [U. V] If X € [U, V] then X = (U +(V. Consequently,

0=y (X)=0U.U+{V)=¢ U U} +( U V) =

In a similar way we get £ = 0. This gives X = O and therefore AN [U.V] is a
O-dimensional submodule. We have (by Proposition 1.4) M = A" @ [Y].

Since U;,V; € N for every j € N(r — 1), hence U, U) = ®(V;,U) =0 and
U, V) = &V, V) = 0. Thus {U;,V,,U,, Vs, ... .U, .V, 1, U, V} forms a
symplectic basis of M with respect to ®.

(b) Let @ be a bilinear form of order & (# 0). According to Proposition 1.7 there
exists a bilinear form ¥ of order 0 with & = 7" ¥. By (a) we can construct a symplectic
basis for the form ¥, which is also a symplectic basis for the form &. 0

4. Definition. Let ® be a symplectic form M? — A and let the basis U =

{U,. V1, U, Vs, ..., U, V., } be symplectic with respect to @. Let us define a system

of sets Jo, ..., Jm as follows:

T = {i eN@) ULV ="}, 0<k<m,

If we denote m, = 2card(J,), 0< k< m, then
Ch(2,U) = (mo, ..., )

is called the characteristic of the symplectic form & with respect to the basis U.

5. Definition. For any symplectic form &: M? — A let us denote by V¥ the
set
{Y e M;7*@(X,Y)=0,VX e M}, 0<h<m.

fCL Ry

The following lemma is evident:
6. Lemma. IfU is a basis of M and @ is symplectic form. then
VI ={Y e M/ ®U,Y)=0,YU €U}, 0<hk<m

7. Proposition. Let & be a symplectic form M? — A and let U be symplectic
with respect to ®. Then a submodule V¥ of M as an T-vector subspace has the

dimension
m—k—1 m
R b4 i) )
dimV, = (k+j)m; +m i,
T £ .
=0 J=m—k
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where (mo, ..., M) = Ch(®,U).
Proof. VP is clearly a submodule of M. Let & = {U,,V,,U,,V,,...,U,,
¥, } and let us consider a X € V¥, X = S &U, + 3 GV, Putting v; = e, V5,
i=1 =1

j € N(7), we obtain
S(X,U;) = ~G5vj and (X, V) = &,

which yields X € V¥ « Vi, i € N(r); n*®(X,U;) = *®(X,V;) =0 & Vi, i € N(r);
%G = n*y:& = 0. As every y; = 0D we get (according to Definition 4) that

X € V¢ if and only if the following conditions are valid:

0 iedo=& G € ”m—kA
(1) ie =& Gen 1A

(m-k—1) i€ Jnr-1=&GENA
k
(m-k) i€ U Tm-s = &G €A

5=0
Let us construct the following system of submodules in V:
VE={XeMiXeViAX=) &l.}, o<i<m,
i€J;

={XeMXeVWaX=3Y G}, 0<ji<m.

e T
ic€J;

Wi
Clearly, V¥ =VE @oVEi @.. o VE eWlowho...ow? .
We get [from (0)], that Vi or W, has T-basis

Ut onm 0 or | (™ Y, 0™ ), respectively;

i€Jo i€Ju
therefore (‘l’iIl‘“(l Ve = d'irm W = %ﬁok. Analogously, conditions (j) imply that
‘l,illll V,'f} = d’ill‘n Wi’_’}. = 4m;(k + j), and the condition (m — k) implies that dil{n 1/,11') =
(l¥n Wf; = %74’)‘”1, m-—k<j<m

The relation for the T-dimension of V{ is now evident. [m]
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8. Theorem (inertial law). Let a symplectic form &: M? — A be given. IflU,

V are arbitrary symplectic bases of M with respect to this foru, then

Ch(®,U) = €h(2, V).

Proof. Let €h(®,U) = (mo,...,Tm). Then Proposition 1L.7 implies

m—k m
dimV? = Zﬁ,(k+j)+ Z 5 em,
T =0 jem—k41
m—k I
(l¥111/f_1 = Z (7i(k+4) — ;) + Z T
=0 j=me k1

m—k
Consequently, we have (Ii[l}] VE—dimVE | = 3 7. Let €h(@.V) = (vo,...,Vm)-
! = =

Then we obtain dim V¥ — dim V|
T T

m—,

k E m—k
= vy, e, w; = 3 . Putting k =m,
h=0 i=0 h=0

m=1,..., 0, we get
m—k m-—k
Mo = Vo, Mo+ 71 =vo+ 1, ..., Z i+ T = Z Vi + Vi,
i=0 h=0
which successively yields mo = vy, 711 = v1, ..., oy = Vi =]
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