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Summary. Circular distance d°(x,y) between two vertices x, y of a strongly connected 
directed graph G is the sum d(x, y) + d(y, x), where d is the usual distance in digraphs. Its 
basic properties are studied. 
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In an undirected graph the distance between two vertices is usually defined as the 

length of the shortest path connecting these vertices. This distance is a metric on 

the vertex set of the graph. Analogously in a directed graph (usually the strong 

connectedness is supposed) the distance d(x,y) from a vertex x to a vertex y is 

defined as the length of the shortest directed path from x to y. In general, d(x,y) 

thus defined is not a metric, because it is not symmetric. In this paper we define a 

certain distance in a digraph which is a metric. 

Let G be a strongly connected directed graph, let x, y be two vertices of G. The 

circular distance d°(x,y) between the vertices x, y in the graph G is defined as 

d°(x,y)=d(x,y)+d(y,x), 

where d denotes the usual distance in digraphs (see above). In other words, d°(x,y) 

is the length of the shortest directed walk going from x to y and then back to X. 

Note that in the walk mentioned, vertices and edges may repeat. In the graph in 

Fig. 1 such shortest walk for x and y contains all edges of the graph and the edge e 

occurs twice in it. 

The following proposition is evident. 

P r o p o s i t i o n 1. Tiie circular distance d°(x,y) is a metric on the vertex set V(G) 

of the graph G. 
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Fig. 1 

The properties of the circular distance are considerably different from the proper­
ties of the usual distance in graphs. 

The length of the shortest cycle (directed circuit) in the graph G will be called 
the directed girth of G and denoted by g(G). 

Proposition 2. Let x, y he two distinct vertices of a strongly connected graph 
G, let g(G) be the directed girth ofG. Then 

d°(x,y)^g(G). 

Proof . Let Pi (or P2) be the shortest path from x to y (or from y to x, 
respectively). The circular distance d°(x,y) is equal to the sum of lengths of P\ and 
P2 • The union of Pi and P2 must contain a cycle; the length of this cycle is greater 
than or equal to g(G) and less than or equal to the sum of lengths of Pi and P2; this 
implies the assertion. D 

Analogously as for the usual distance, we may introduce the circular radius Q°(G) 
and the circular diameter S°(G). For each vertex x of G we define the circular elonga­
tion e°(x) as the maximum of d°(x, y) for all y £ V(G). Then the minimum of e°(x) 
for all x 6 V(G) is the circular radius Q°(G) of G. The set of vertices x for which 
e°(x) = Q°(G) is called the circidar center C°(G) of G. The maximum of d°(x,y) 
over all pairs x, y of vertices of G is the circular diameter S°(G) of G. 

In the case of infinite graphs it may happen that the maximum of d°(x,y) does 
not exist. Then we put 5°(G) = 00 and also Q°(G) = 00. In the sequel we shall 
consider only finite radii and diameters. 

The following proposition can be proved in the same way as the analogous state­
ment for the usual distance in graphs; it follows from the triangle inequality. 
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P r o p o s i t i o n 3 . For the circular radius Q°(G) and the circular diameter 6°(G) of 

a strongly connected directed graph G the following inequality holds: 

Q°(G) <: S°(G) s: 2<?°(G). 

Now we have a theorem. 

T h e o r e m 1. Let r, d be positive integers, 2 < r < d < 2r. Then there exists a 

strongly connected directed graph G such that Q°(G) = r, S°(G) = d. 

P r o o f. If r = d, then G is the cycle of length ?'. In it d°(x, y) = r for any two 

distinct vertices x, y. 

If d = r + 1, distinguish the cases r = 2 and r ^ 3. If r = 2, then let V(G) = 

{u,v\,v2} and let the edges of G be ut>i, v\u, uv2, v2u, v\v2 (Fig. 2). We have 

d°(u,vi) = d°(u,v2) = 2, d°(vl,v2) = 3, e°(w) = 2, e°(v\) = e°(v2) = 3 and thus 

o°(G) = 2, S°(G) = 3. If r ^ 3. then let V(G) = {v0,vu...,iv_i,w}. Let the edges 

be U;i>;+i for i = 0, . . ., r — 2, e,._it>o, uoiii and wVi for i = 1, . . . , r — 1. (Fig. 3 for 

r = 8.) We have d°(v\,w) = r + 1 = d, d°(?Ji,r>o) = r, d°(ui,U{) = r for j = 2 

r - 1. Further we have d°(v0,w) = 3 «: r, d°(vi,w) = r — i + 2 < r for i = 2, 

r - 1. Finally, d°(v.i,Vj) ^ r for any i and j , because t'0, 'wr._i form a cycle of 

length r. We have e°('i>i) = e°(w) = d, e°(v0) = e°(vi) = r for i = 2, . . ., r - 1. Hence 

rf°(G) = d, £>°(G) = r. 

Fig. 2 Fig. 3 

If d > r + 2, let the graph G consist of two cycles Gi, C2 with exactly one common 

vertex a; let the length of C\ be r and let the length of C2 be d - r. Let <d (or U2) be 

an arbitrary vertex of Gi (or C2, respectively) different from a. Then d°(a ,« i ) = r, 

d°(a,u2) = d — r ^ r, d°(u\, u2) = d. This implies e°(o) = r, e°(ui) = e°(u2) = d 

and again <50(G) = d, g°(G) = r. D 
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If to the graph G for the case d = r+l, r J 3 w e add the edge wv0 (Fig. 4), we 

obtain a graph G' such that the circular center C°(G") = {vo,Vi,...,vr~i}, while 

the center C(G') for the usual distance d(x,y) is {w} and thus C°(G') n C(G') = 0. 

We have a proposition. 

Fig. 4 

P r o p o s i t i o n 4 . The circular center C°(G) and the usual center C(G) of a digraph 

G may be disjoint. 

Note that always d°(x,y) ^ 1; this follows from the definition. Evidently also 

Q°(G) -1 1 and S°(G) ? 1. 

T h e o r e m 2. Let (M,m) be a metric space such that the set M is finite and the 

metric m attains only integral values. Then there exists a strongly connected directed 

graph G such that M C V(G) and d°(x, y) = m(x, y) + l for any two distinct vertices 

x, y of M. Moreover, all vertices ofV(G) - M have indegree 1 and outdegree 1. 

P r o o f . Choose an arbitrary total ordering < on M. For any two vertices x, y 

of M such that x < y we form the edge xy; in this way we obtain a tournament 

with the vertex set M. Further, for any x and y of M such that x < y we add a 

directed path P(x,ij) of length m(x,y) from y to x. The inner vertices of any path 

P(x, y) are not in M and any two such paths have no inner vertex in common. The 

graph thus obtained is G. We see that all vertices of V(G) - M have indegree 1 and 

outdegree 1. Consider two vertices x, y of M such that x < y and let d denote the 

usual distance in a digraph. Then evidently d(x,y) = 1. The path P(x,y) is the 

shortest path from y to x, because any other path from y to x must contain at least 

one vertex z 6 M; then its length is at least m(y,z) + m(z,x) and by the triangle 

inequality this is greater than or equal to m(y,x). Therefore d(y,x) = m(x,y) and 

d°(x,y) = m(x,y) + 1. • 

A certain analogue of trees are directed cacti. A directed cactus is a graph in 

which each block is a cycle [1]. 
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The following proposition is easy to prove. 

Proposi t ion 5. Let x. y be two distinct vertices of a directed cactus G. Then 

there exists exactly one directed path P(x,y) from x to y in G. 

Now we prove a theorem. 

Theorem 3. If x, y are two distinct vertices of a directed cactus G, then d°(x,y) 

is equal to the sum of lengths of all cycles in G which have common edges with the 

path P(x,y). 

P r o o f . We will proceed by induction according to the number k of blocks which 

contain edges of P(x,y). If k = 1, then x and y are in the same block (cycle) B and 

this block is the (edge-disjoint) union of P(x,y) and P(y,x), therefore d°(x,y) is 

equal to the length of the cycle B. Now let k > 2 and suppose that for k - 1 the 

assertion is true. Let the first edge of P(x,y) be in the block B\ and let a be the 

terminal vertex of the last edge of P(x,y) being in Bt. Then a is an articulation 

between B\ and another block B2 which contains the edge of P(x,y) outgoing from 

a. The path P(a,y) is part of P(x,y) and there are k - 1 blocks containing edges 

of P(a,y), namely all those containing edges of P(x,y) except B\. By the induction 

hypothesis d°(a,y) is the sum of lengths of these blocks. Not only P(x,y), but also 

P(y,x) goes through a and therefore d°(x,y) = d°(x,a) + d°(a,y), which is the sum 

of lengths of all cycles which contain edges of P(x, y). • 

Now we prove a theorem which concerns circular centers of directed cacti. 

Theorem 4 . The circular center of a finite directed cactus G either consists of 

one vertex, or is equal to the vertex set of one block of G. 

P r o o f . Let e°(G) = r. First suppose that the circular center C°(G) contains 

two vertices u i , u2 which are not contained in the same block. Then there exists an 

articulation a of G which separates (in the same sense as in an undirected graph) the 

vertices u i , u2. By V\ (or V2) we denote the set of vertices of G which are separated 

by a from u2 and not from U\ (or from Ui and not from u2 , respectively). By Vi we 

denote the set of vertices of G which are separated by a from both u i , u2. Suppose 

that there exists a vertex v such that d°(a,v) > r. If v 6 V\ U V%, then 

d°(u2,v) = d°(u2,a.) + d°(a,v) > d°(u2,a) + r > r; 

we have a contradiction with the assumption that r is the circular radius and u2 G 

C°(G). If v E V2UV3, then 

d°(uuv) = d°(uua) + d°(a,v) > r/°((/i,a) + r > r; 



again we have a contradiction. Evidently V(G) = V'i U V2 U V3 U {a} and therefore 

d°(a,x) < r for all x € V(G). Then Q°(G) < r, which is again a contradiction. We 

have proved that C°(G) must be a subset of the vertex set of a block of G. Let D lie 

such a block; it is a cycle. Let its length be b. If D = G, then evidently each vertex 

of D belongs to the circular center and C°(G) = G = D.li not, then ;• > b. For each 

x e V(.B) let W(x) be the set of all vertices of G which are separated by x from all 

other vertices of B. The sets W(x) for all x 6 V(J5) and the set V(B) are pairwise 

disjoint and their union is V(G). Let p be the number of vertices x e ^(.B) with the 

property that there exists a vertex y e W(x) such that d°(x.y) >• r — b. Suppose 

p = 0. Let v e C°(G) C V(B). let x e V(G). If x = v, then c/°(t>,x) = 0 < r. If 

x G V(D) - {v}, then d°(v,x) = b < r. If x S W(v). then d°(v,x) < r according to 

the assumption. If x e V(G) - (V(D) U W(v)), then there exists y e V(D) - {<;} 

such that x € W ( J / ) . Then 

d°(j;,x) = d°(v,y) +d°(y,x) = b + d°(y,x) <b + r -b = r. 

This is a contradiction with the assumption that C°(G) C V(D). Therefore p ^ (J. 

Suppose p = 1 and let w be a vertex of V(D) such that there exists y £ W(w) 

for which d°(w,y) >• r — b. We may assume that y is the vertex of W(w) with 

the maximum circular distance from w. If d°(w,y) > r — b, then each vertex of 

V(D) - {w} has the circular distance from y equal to b + d°(w,y) > r. As we have 

supposed C°(G) C V(B), wo have C°(G) = {«;}. If d°(w,y) = r - 6 , then the circular 

distance of each vertex of W(w) from w is at most r - b and the circular distance of 

any other vertex from w is less than r; we have a contradiction with the assumption 

that g°(G) = r. Finally, suppose ;; >• 2. Let w\, w2 be two distinct vertices of V(D) 

such that there exist vertices j/i, y2 with d°(w\,yi) >- r — b, d°(w2,y2) >• r — b. I! 

d°(ui,ys) > r - b, then only W\ can be in C°(G). The case d°(w2,y2) > r - b is 

analogous. Therefore d°(w\,yi) = d°(w2,y2) = r - b and there exists no vertex in 

W(w\) with the circular distance from («i greater than r — b and no vertex in W(w2) 

with the circular distance from w2 greater than r—b. For each vertex u £ V(D) - {irt } 

we have d°(w\,u) = r and for each vertex u e V(D) - {w2} we have d°(w2,u) = r. 

In no set W(x) for x e V(D) there is a vertex whose circular distance from x would 

be greater than r — b; this can be proved in the same way as for x = i«i. Therefore 

for each v e V(G) and u 6 V(D) we have d°(u,v) < r and C°(G) = V(D). • 

In Fig. 5 we see a directed cactus in which the circular center is a one-element set; 

in Fig. 6 we see a directed cactus in which the circular center is the vertex set of a 

block. In both the figures the vertices of the circular center are black. 
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Fig. 6 
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