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DOUBLE n-ARY RELATIONAL STRUCTURES 

JIŘÍ KARÁSEK, Brno 

(Received January 22, 1996) 

Summary. In [7], V. Novak and M. Novotny studied ternary relational structures by 
means of pairs of binary structures; they obtained the so-called double binary structures. 
In this paper, the idea is generalized to relational structures of any finite arity. 
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Let G be a set, let n ^ 2 be an integer. As usual, an n-ary relation on G is defined 
as a set R C G " . The pair G = (G,R) is then called an n-ary relational structure 
(or briefly an n-ary structure). An n-ary structure G = (G,R) (and the relation R 
on G as well) is called 

symmetric if (xi,__,...,xn) ~ R implies ( _ „ , x n - i , . . •,Xi) € R for any x\,x2...., 

_„_! ,_„ 6 G; 

asymmetric if (xi,x2,... ,xn) e R implies (xn,xn-i,... ,Xi) £ R for any X\,x%, 

. . . , x „ _ i , _ „ E G ; 

cyclic if (_i ,_2, • • • ,xn) ' R implies (x2,x^,,... ,xn,x_) " R for any _i,__>-3i • • •, 

x„ e G; 
transitive if (xi,x2,... ,xn) e R, ( a ;„ ,_„_ i , . . .,X2,xn+i) e R imply (x*. ,_$, . . . , 

- „ - l , X „ + i ) 6 iJ for any Xi,x2,. . .,xn-i,xn,xn+i 6 G; 

weakly transitive if (_, y,y,. . ., y) G i?, (j/, y,. .. ,y.z) ~ R imply (x, y,y.. . ., 

y,z) ~R for any _ , y , z ~G. 

For any o = ( _ i , x 2 , . . . ,£„) 6 Gn, put a - 1 = ( x n , x „ _ i , . . .,Xi), a' = (x„_i , 

_ n _ 2 , . . . , X l , X „ ) . 

Let Q be an n-ary relation on G, let r be a binary relation on Q with the property: 

If a = ( x i , x 2 , . . . , x „ ) £ Q, P = (yi,y_,... ,yn) ' Q, (a,0) e r, then x i + i = ijj for 

j = 1 ,2 , . . . ,n — 1. Then r is called a binding relation on £. 
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Let Q be an n-ary relation on G, let r bo a binding relation on Q. Then t h e 

triple G = (G,Q,r) is called a double n-ary relational structure (or briefly a double? 

n-ary structure). An element a £ Q is called isolated in G if (a, ft) ^ r and (ft, a) ^ /• 

for any ft £ Q. The set of all isolated elements in G is denoted by o;. 

A double n-ary structure G = (G, Q, r) (and its binary relation r) is called 

inversely symmetric if (a,/3) £ r implies ( / . - 1 , a - 1 ) £ r for any a, /_ £ g; 

inversely asymmetric if (a, /3) £ r implies (/. _ 1 , o _ l ) ^ r for any a, /_ £ Q; 

transferable if (a , / . ) £ r implies the existence of elements n , , a 2 , . • •, a „ _ i £ g 

such that (ft, Qi) £ r, ( a , , a j + i ) G r for j = 1 ,2 , . . . , r — 2, ( a „ _ i , a ) £ r for any a. 

ft eg; 

reversely transitive if (a, ft) £ r, (/7~J, 7') £ r imply (a, 7) £ r for any a, ft, 7 £ Q. 

Let G = (G, Q,r) be a double n-ary structure. Define an (n+ l ) - a ry relation 7? on 

G as follows: 

( _ i , _ 2 , . . . , _ n , _ n + i ) £ 7? «=. ( _ i , _ 2 , . . . , _ n ) = a £ Q, ( x 2 , x 3 , . . . , x n , x „ + i ) = 

ft £ Q, (a, ft) £ r for any _ i , _2 , _3 , . . . , _ „ , _„+i £ G. Denote t / (G) = (G.7?). 

Then _/(G) is an (?i+l)-ary structure. 

If we denote by 27" r l the class of all double n-ary structures, and by 7~„+] the 

class of all (7i+l)-ary structures, then U is a map of 27~ „ into '7. „+]. 

Now, let G = (G,R) be an (r i+l)-ary structure. Define an n-ary relation Q on G 

as follows: 

(_ i ,_2, • • • ,xn) £ Q ,=, there exists t £ G such that (_i ,X2,. - . , _ „ , - ) £ 7? or 

(t,xi,x-2,... ,xn) £ 7?. for any _j , _ 2 , . . . , x n £ G; further, define a binary relation r 

on <? as follows: 

(a,ft) £ r <=. a = ( _ i , _ 2 ) . . . , _„ ) £ _, /3 = ( - 2 , - 3 . • • • , -
n + i ) S _, ( * i , - 2 , . . . , 

_ „ , _ n + i ) £ 7? for any Xi, x2 , . . . , x„ , x n + i £ G. Denote L(G) = ( G , f , r ) . Then 

7-(G) is a double n-ary structure and L is a map of 7_„+i into 27_„. 

Moreover, denote by 27-/„ the class of all double n-ary structures without isolated 

elements. 

1. T h e o r e m . Let G be an (n+l)-ary structure. Then (U • L)(G) = G. i.e. 

l / . L = id*_ + 1 . 

P r o o f . Let G = (G,77), L(G) = (G.g,r). (U • L)(G) = (G.7?')- Let 

(xi,X2, • • • , x n , x n + i ) £ 7?. By the definition of L. we have (xi , . r 2 , . . . , x n ) = a £ Q, 

(x2,x3, x n , x n + i ) = /3 e Q, (a, ft) £ r. By the definition of . ' , we have 

( x i , x 2 , . . . , x n , x „ + i ) £ 7?'. Thus R C 7?.'. Let ( x i , x 2 , . . . , x n , x n + i ) £ 7?'. Then. 

by the definition of U, ( x i , x 2 , . . . ,_„) = a £ t', ( x 2 , X 3 , . . . , x „ , x „ + i ) = /3 £ «• 

(a, /3) £ r. By the definition of L, (_i, x 2 , . . . , x„+i) £ R. Hence R' C 77. Summa­

rizing, we conclude R = R'. D 
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2. T h e o r e m . Let G = (G, g, r) be a double n-ary structure and let (L • U)(G) = 

(G, g',r'). Then g' = g - gu r ' = r, i.e. I • L/137^, = i d s K ; . 

P r o o f. Denote U(G) = (G, R). Let (^1, ,T2, . . . , xn) £ g'. Then, by the defini­

tion of L, there exists t £ G such that (xi, x2,... ,xn, 1) £ R or (t,Xi,x2,... ,xn) £ 

R. In the first case, by the definition of U, we have (xi,x2,... ,Xn) = a £ g, 

(x2,x3,. .., xn,t) = /3g g, (a, 0) £ r, thus the element a £ 0 is not isolated, so that 

a€ g- gi- In the second case, (t,xi,x2,... ,xn-i) = a £ g, (xi,x2,... ,xn-i,xn) = 

[3 £ Q, (a, /)) £ r, hence the element fi £ g is not isolated and fi £ g ~ <?,:. We have 

ff' Q Q-Qi- Let, on the contrary, a = (:i.'i, ,T2, . . . ,:r„) £ £-<?;. Then there exists (3 £ Q 

such that (a, 8) £ r or (0,a) £ r. In the first case we have [i = (x\,x2,... ,xn,t) 

for some t £ G, therefore, by the definition of U, (x\, x2,.. . , xn,t) £ R and, by the 

definition of L, a £ g'. The second case is analogous. Hence g - gi C g'. Altogether, 

we have Q' = g - gt. 

Let ( Q , / 3 ) £ r ' . By the definition of L, a = (xL.x2,... ,xn), (i = (x2,x3,..., 

xn,xn+i) £ R for some ^1 , x2, x3, ..., xn, xn+i £ G, (xi, x2,... ,xn, :r„+ 1) £ R. 

This implies, by the definition of U, a £ g, fi £ g, (a, (3) £ r. Thus r ' C r. 

Let (a, (3) £ r. Then a = (xx,x2,... ,xn) £ g, j3 = (x2,.r3,... ,xn, xn+l) £ g 

for some x\, x2, x3, ..., xn, .r„+i £ G, hence, by the definition of U, we have 

(xi,x2,...,xn,xn+i) £ R. Consequently, by the definition of L, a £ g', /3 £ g'. 

(a,[3) £ r ' , and r C r'. Summarizing, we obtain r = ; ' . 

In the case that G contains no isolated elements, we have gt = 0, thus g = g'. 

r = r ' , so that L • U\2ll.'n = idyre; . 

Denote by 2R n the category whose class of objects is 2lZn and whose morphisms 

are maps preserving both relations, i.e., for G = (G,o.r), H = (H,a,s) £ 21Zn. a 

map / : G —y H is a morphism if (x\,x2,... ,xn) £ g implies ( / ( ^ l ) , / ( x 2 ) , 

f(xn)) £ a, and ((xux2,... ,x„),(x-2,x3,... ,xn+1)) £ r implies ((f(xi),f(x2),..., 

f(xn)), (f(x2), f(x3),..., f(x„ + i))) e -s for any Xi. x2. x3, .... xn, xn+i £ G. 

Further, denote by R„+i the category whose class of objects is 7J„+i and whose 

morphisms are maps preserving the relation, i.e.. for G = (G.H), H = (H,S) £ 

TJ.,,+ 1 a map / : G —> H is a morphism if (:ri,.r2 i„,:i '„+i) 6 R implies 

[f (•'•• i),f(x2), • • .,f(xn),f(xn+i)) £ S for any xu x2, .. ., x„, . r„+ 1 £ G. 

Moreover, for any morphism / £ Hom2-R„ ( G , H ) . where G = (G,g,r), H = 

(H,a,s), denote U(f) = / . Similarly, for any morphism / £ Hon i R i + 1 (G, H) , 

denote L(f) = / . D 

3 . T h e o r e m . U is a covariant functor from the category 2 R „ to tlw category 

R„+i , L is a covariant functor from the category R„ + i to the category 2 R „ . 

P r o o f . Let / £ Hom 2 R„(G,H) , where G = (G,o,r). G = (G,R), H = 

(H,a,s), r / (H) = (H,S). Let (xl:x2,. . . ,xn,xn+l) £ R. Then (xi,X2,... ,xn) £ g, 
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(x2,x3,...,x„,xn+1) £ g, ((x+,x2,... ,xn),(x2,x3,... ,xn,xn+i)) £ r, so that 

(f(x1),f(x2),...,f(xn)) e a. (f(x2),f(x3),...,f(xn),f(xn+1)) & a, ( ( / (x x ) , 

f(x2),-..,f(xn)),(f(x2),f(x3),...,f(xn),f(xn+1))) - s, thus ( / ( x i ) , / ( x 2 ) , . . . , 

f(xn),f(xn+1)) £ S and U(f) £ Hom R „ + I (U (G). U (B.)). It is easy to show 

that (7(idG) = id(/ (G) for any G G 21Zn and U(g - / ) = U(g) - {/(/) for any 

/ - HOIII2R„ (G, H ) , g - Hom2R„ (H, K ) , G, H , K € 2Rn, Analogously for L. • 

4. T h e o r e m . Let G be a r/ouMe ?i-aiy structure. Tiien the following assertions 
hold: 

(i) G is inversely symmetric if and only if (7(G) is symmetric. 

(ii) G is inversely asymmetric if and only if {7(G) is asymmetric. 

P r o o f . Let G = (G.g . r ) , {/(G) = (G,R). 

(i) Let G be inversely symmetric and let (xi,x2,... ,xn,xn+1) £ R. Then 

(xi,X2, • • • ,xn) = a £ g, (x-2,x3,... ,xn,xn+1) = /3 £ g, (a, ft) £ r. This implies 

(P~1,a~1) £ r, t h u s / J - 1 = (xn+1,xn,...,x3,x2) G g, a^1 = (xn,... ,x2,x1) £ g, 

so that (xn+1,xn,... ,X2,Xi) G R and (7(G) is symmetric. Let (7(G) be sym­

metric and let (a,(5) £ r. Then there exist elements x\, x2, ..., xn, xn+1 £ G 

such tha t a = (x1:x2,... ,xn) £ g, fi = (x2,x3,... ,xn,xn+]) £ g. This implies 

(xi,x2,... ,xn,xn+1) £ R, so that (xn+1,xn, • • • ,x%,xi) £ R, i.e. (xn+1,xn,... ,x3, 

x2) = / 3 _ 1 G g, (xn,.. .,x2,xi) = a~1 £ g, hence ( / 3 - 1 , a - 1 ) G r and G is inversely 

symmetric. 

(ii) Let G be inversely asymmetric and let (x1,x2,... ,xn,xn+1) £ R. Then again 

(x\,x-2, • • • ,xn) = a £ g, (x2.x3,... ,xn,xn+1) = 6 £ g, (a,(i) £ r. This im­
plies ( / J - 1 , a - 1 ) ^ r. But fi~l = (xn+1,xn,... ,x3,x2), a - 1 = (xn,... ,x2,x1), 

thus (xn+1,xn,.. .,x2,x1) $ R and (7(G) is asymmetric. Let {/(G) be asymmet­

ric and let (a,0) £ r. Then there exist elements x\, x2, x3, • •., xn, xn+i G G 

such that (:i'i,:i'2, xn) = a £ g, (x2,x3,... ,x„,,xn+1) = 0 G g. This im­

plies (x1,x2,... ,xn,xn+1) £ R, so that (xn+1,xn x2,X!) £ R. Consequently 

(xn+1,xn,...,x3,x2) = f]-1 $ g or (xn,..., x2,Xj) = a'1 $ g or / 3 - 1 , a'1 G g, 

but (fi~1,a~l) ^ r. In all three cases, however, we have (f)~l,a~l) £ r, and G is 

inversely asymmetric. D 

5. T h e o r e m . Let G be an (n+l)-ary structure. Then the following assertions 

hold: 

(i) G is symmetric if and only if L(G) is inversely symmetric. 

(ii) G is asymmetric if and only if L(G) is inversely asymmetric. 

P r o o f , (i) If L(G) is inversely symmetric, then, by 4, U(L(G)) is symmetric. 

But, by 1, U(L(G)) = G. If G = U(L(G)) is symmetric, then, by 4, 1 ( G ) is 

inversely symmetric. 
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(ii) If L(G) is inversely asymmetric, then, by 4, U(L(G)) is asymmetric. But 

U(L(G)) = G. If G = U(L(G)) is asymmetric, then, by 4, L(G) is inversely 

asymmetric. • 

6. T h e o r e m . Let G be a double n-ary structure. Then G is transferable if and 

onlyifU(G) is cyclic. 

P r o o f . Let G = (G,g,r), U(G) = (G,R). Let G be transferable and let 

(xi,x-2,...,xn,xn+i) e R. Then (xi,x2,... ,xn) = a 6 Q, (x2,x3,... ,xn,xn+i) = 

0 e Q, (a, (3) e r. Thus, there exist a i , a 2 , . . . , a „ _ i e Q such that (j3,a{) e r, 

( a j , a j + i ) e r for j = 1,2, n—2 and ( a „ _ i , a ) e r. Denote a0 = f3,an = a. Then 

we have (aj, « j + i ) for j — 0 , 1 , 2 , . . . ,n — 1. We shall show by induction that a , = 

(xj+2,Xj+3,... ,xn,xn+i,xi,x2,... ,Xj) for j = 0,1,2,... ,n. For j = 0 it is true. Let 

0 < jo =S n. Let the preceding hold for each j , 0 ^ j < jo- As (a J ( l_i , aj„) e r and r 

is binding, there exists y € G such that a J 0 = (XJU+2,XJ11+3, ... ,x\,... ,Xj0-i,y). We 

shall show by another induction that aja+k has y on the (n - A;)-th position, for k = 

0,1 ,2 , . . . , n— jo . For k = 0 it is true. Let 0 < fc0 ^ n—j0. As (aj„+k„-i,ajtl+k„) £ >', 

aj0+ko-i has y on the (n — A;0 + l ) - th position, and r is binding, a,0+*0 has y on 

the (n - fco)-th position. Particularly, a „ has y on the j 0 - t h position, hence y = Xj0. 

Thus, we have 0 = (x2,x3,... ,xn,xn+i) e Q, ai = (x3,X4, • • • ,xn,xn+i,xi) e Q, 

(l3,ai) 6 r, so that (x2,x3,... ,xn,xn+i,Xi) e R and U(G) is cyclic. 

Let, on the contrary, U(G) be cyclic and let (a,/3) e r. Then there ex­

ist elements Xi, x2, ..., xn, xn+i e G such that a = (xi,x2,. • • ,xn) e g. 

/3 = (x2,x3,... ,xn,xn+i) e Q, thus (a,'i,.T2, • • • ,xn,xn+i) e R. Hence (x2,x3 , 

xn,xn+i,xi) e R, (x3,x4,...,xn,xn+i,xi,X2) e R,..., (xn+1,xi,x2,...,xn) 

e R. Denote a i = (x3,x4,... ,xn,xn+i,Xi), a2 = (x4,x&, • • • , X „ + I , . T I , . T 2 ) , • • •, 

a„_ i = (.T.n+i,a;i,aT2,... , x „ _ i ) . Then aj e Q for j = 1 ,2, . . . ,n - 1, (/},ai) e r, 

( a j , a J + i ) e r for j = 1 ,2, . . . ,n - 2, ( a „ _ i , a ) € r. Consequently, G is transferable. 

• 

7. T h e o r e m . Let L(G) be an (n+l)-ary structure. Then G is cyclic if and only 

if L(G) is transferable. 

P r o o f . Let L(G) be transferable. By 6, U(L(G)) is cyclic. But, by 1, G = 

U(L(G)). 

Let G = U(L(G)) be cyclic. Then, by 6, L(G) is transferable. • 

8. T h e o r e m . Let G = (G,Q,r) be a double n-ary structure. If the binary 

relation r is transitive, then U(G) is weakly transitive. 

P r o o f . Let f7(G) = (G.R) and let (x,y,y y) e R. (y,y,... ,y,z) e R. 

Then a = (x, y, y,...,y) e Q, 0 = (y,y, •.. ,y) e g, ~. = (y, y.. • • ,y,z) e o, (a, (1) e 
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r, (j-,7) - r. Hence (0 ,7) - r, so that (x,y,y, ...,y,z) _ R and f/(G) is weakly 

transitive. D 

9 . R c in a r k. The converse of 8 does not hold, which can be easily shown by a 

counterexample. 

10. T h e o r e m . Let G be a double n-ary structure. Then G is reversely transitive 

if and only ifU(G) is transitive. 

P r o o f . Let G = (G,g,r), (7(G) = (G,R). Let G be reversely transitive, 

let (,Ti,.r2,. . . ,xn,xn+i) £ R, (xn+i,xn,...,x2,xn+2) £ R. Then, by the defini­

tion of U, ( _ i , x 2 ) . . . , _ „ ) = <>< £ _, ( _ 2 , _ 3 , . . . , ~ „ , _ „ + i ) = 0 - _>, (a,/3) e r, 

(_-+!,_„,... ,-2) = /J"1 £ e, (_„,_„_!,...,_2,_„+2) = 7' e . , r 1 , ) ' ) - r. As G 
is reversely transitive, we have (a, 7) £ r. But 7 = ( _ _ , - 3 , . . . . xn,xn+2) £ 0, hence 

(_! ,__, . . . , x „ , x n + 2 ) £ -R and (/(G) is transitive. 

Let U(G) be transitive and let a, 0, 7 6 e, (o. , i) 6 r, ( /3 - 1 ,7 ' ) e r. There 

exist elements xi,x2, •• • ,xn,xn+i,xn+2 £ G such that a = (xi,x2,... ,xn), 

Q = (_2,_3,--- ,_n,_>.+i) (for r is binding), 7 = ( - 2 , - 3 , . . .,xn,xn+2) (for /8 _ 1 = 

( x „ + l , x „ , . . . ,_3,X2), 7 ' = ( . r n , . r„- i , • • • ,x3,X2,x„+2) and r is binding). Hence 

( _ l , _ 2 , . . . , _ „ , _ „ + i ) £ /?, (_„+! ,_„ , . . . ,X3,_2,X„+2) £ R, so that ( _ i , _ 2 , . . . , 

_ n , . x n + 2 ) _ i?, for f/(G) is transitive. Consequently, (0 ,7) € r and G is reversely 

transitive. D 

1 1 . T h e o r e m . Let G be an (n + l )-ary structure. Then G is transitive if and 

only if L(G) is reversely transitive. 

P r o o f . By 1, U(L(G)) = G. Hence L(G) is reversely transitive if and only if 

U(L(G)) = G is transitive, by 10. D 
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