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Sumanary. In 7], V. Novak and M. Novotny studied ternary relational structures by
means of pairs of binary structurcs; they obtained the so-called double binary structures.
In this paper, the idea is generalized to relational structures of any finite arity.

Keywords: n-ary relation, n-ary structure, binding relation, double n-ary structure

MSC 1991: 04A05, 08A02

Let G be a set, let n > 2 be an integer. As usual, an n-ary relation on G is defined
as a set B C G™. The pair G = (G, R) is then called an n-ary relational structure
(or briefly an n-ary structure). An n-ary structure G = (G, R) (and the relation R
on G as well) is called

symmetric if (¥1,x2,...,2,) € Rimplies (2, 2p_1,...,21) € Rforany x,, ... .,
Tno1,%n € G

asymmetric if (x1,22,...,2,) € R implies (Tn,2n-1,...,21) ¢ R for any i, 2,

e Zno1,Tn € G

cyclic if (x1,%y,...,%n) € R implies (22, ©3,. 1) € R for any zy, 22,73, ...,
z, € G;

transitive if (z1,2a,...,2Zn) € R, (Tn,Tno1,-..,T2.8n41) € R imply (21,22,...,
Typo1,%41) € R for any x1,22,...,8n-1,Zn, Tny1 € G;

weakly transitive if (z,y,y,...,y) € R, (y.y,...,y.2) € R imply (x,y,y..-.,
y,z) € R for any z,y,z € G.

For any o = (21,%2,...,%,) € G*, put ! = (0p,Tno1....,21), & = (n_1,
T2y e X1y Tn)e

Let p be an n-ary relation on G, let » be a binary relation on ¢ with the property:
Ifa = (21,%2,.--,2n) € 0, B = (¥1,¥2,-.-,¥n) € 0, (o, B) € 7, then z;,, = y; for
j=1,2,....,n—1. Then r is called a binding relation on 0.
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Let p be an n-ary relation on G, let » be a binding relation on . Then the
triple G = (G, g,7) is called a double n-ary relational structure (or briefly a double
n-ary structure). An element « € g is called isolated in G if (o, 3) ¢ r and (8, «) ¢ o
for any 3 € p. The set of all isolated elements in G is denoted by o;.

A double n-ary structure G = (G, g,7) (and its binary relation r) is called

inversely symmetric if (o, 3) € r implies (871, a7!) € r for any @, B € g;

inversely asymmetric if (o, 8) € r implies (371, «~") ¢ » for any a, 8 € o

transferable if (a, ) € r implies the existence of clements ay, a2, ..., n-1 € 0
such that (B,01) € r, (aj,aj41) € r for j =1,2,...,7 = 2,{q,,=1,) € 1 for any «,
BE;

reversely transitive if (o, 8) € v, (31, 4') € v imply («,v) € r for any a, 8, ¥ € .

Let G = (G, p,7) be a double n-ary structure. Define an (n+1)-ary relation It on
G as follows:

(T1,22, -2 Ty, Tng1) € R <= (21,22,...,2n) = @ € g, (02,08, , Tns Tngy) =
B € o, (a,B) € rfor any 1, w2, T3, ..., Tn, Tny1 € G. Denote U(G) = (G.R).
Then U(G) is an (n+1)-ary structure.

If we denote by 2R, the class of all double n-ary structures, and by R,4; the
class of all (n+1)-ary structures, then U is a map of 2R, into R+1.

Now, let G = (G, R) be an (n+1)-ary structure. Define an n-ary relation o on G
as follows:

(z1,22,...,%,) € 0 < there exists t € G such that (z,x2,...,2n,t) € R o1
(t,x1,22,...,2,) € R for any wy,22,...,2, € G; further, define a binary relation r
on g as follows:

(a,8) €r <= a = (21,22, ..., an) € 0, B = (X2, 13,...,0041) € 0, (X1, 30, ...,
T, Tny1) € R for any ay, @3, ..., Tny, Tpp1 € G. Denote L(G) = (G,0,7). Then
L(G) is a double n-ary structure and L is a map of R,,41 into 2R,.

Moreover, denote by 2R, the cl:
clements.

s of all double n-ary structures without isolated

1. Theorem. Let G be an (n-+1)-ary structure. Then (U - L){(G) = G. ic.
U-L=idg,,,-

Proof. Let G = (G,R), L(G) = (G.o.r). (U L)G) = (G.R'). Let
(T1, @25+, Ty Tty ) € R. By the definition of L. we have (vy,2g,...,2,) = a € p,
(2,23, ., T, Tny1) = B € o, (a.B) € r. By the definition of U, we have
(T, 22,.. ., Tn,¥ny1) € R'. Thus R C R'. Let (21,22, 40, 2ny1) € R’ Then.
by the definition of U, (@1, 22,....20) = o € 0, (42,%3,..., Ty, Tnp1) = B € 0.
(o, 3) € r. By the definition of L, (x1,22,...,45,41) € R. Hence R” C R. Sunuma-
rizing, we conclude R = R, )
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2. Theorem. Let G = (G, 0,7) be a double n-ary structure and let (L-U)(G) =
r,

(G,0',1"). Then o =p—gi, " =7, Le. L-URLR], =id,zy,.

Proof. Denote U(G) = (G, R). Let (1, x2,....: ty,) € ¢. Then, by the defini-
tion of L, there exists ¢ € G such that (21,22,...,4,,1) € Ror (t,21,22,...,2,) €
R. In the first case, by the definition of U, we have (z1,23,...,2,) = o € g,
(x2,23, ..., &n,t) = B € o, (o, B) € 7, thus the element « € g is not isolated, so that
a € p— 0i. In the second case, (¢, &1,%2,...,Tny) = € € @, (X1, T2, ..., o1, @) =
B € o, (o, B) € r, hence the element 3 € p is not isolated and 8 € ¢ ~ g;. We have
o' C o—oi. Let, on the contrary, o = (21,23,...,4s) € 90—g;. Then there exists 8 € o
such that (o, 8) € r or (8,@) € r. In the first case we have 3 = (z1,22,...,20,1)
for some t € G, therefore, by the definition of U, (zy,2,...,4,,t) € R and, by the
definition of L, v € ¢'. The sccond case is analogous. Hence ¢ — o; C ¢'. Altogether,
we have ¢ = 0 — 0;.

Let («,8) € . By the definition of L, a = (&, 22,...,42), B = (v2,23,...,
Tn,Zpg1) € R for some 2y, x2, @3, - Tn, Tngy € G, (21,22,...,%n, Tnp1) € R.
This implies, by the definition of U, « € ¢, 3 € ¢, (o,8) € r. Thus v C r.
3y oo Tn, Tng1) € 0
for some ay, T2, Ty .. Tn, Lur1 € G, hence, by the definition of U, we have
(1,22, ..., %n, Tng1) € R. Conscquently, by the definition of L, « € ¢, B8 € ¢,
(a,8) € 1', and v C1’. Summarizing, we obtain r ="

In the case that G contains no isolated elements, we have g; = @, thus o = ¢/,
r=17", 50 that L- U},R}, = id,r;,.

Denote by sR, the category whose class of objects is 2R, and whose morphisms
are maps preserving both relations, ie., for G = (G, p.r), H = (H,0,s) € 2R, a
map f : G — H is a morphism if (z1,%2,...,2,) € p implies (f(zl),f(z2),...,
f(xn)) € o, and ((z1,22,...,40), (T2, %3, - -, Tnt1)) € r implies ((f(z1), f(z2),---,
f(@n)), (f(z2), f23),. .- ,f(grn_H))) € s for any z1, @3, 23, ..., Tp, Tag1 € G.

Further, denote by R,.4; the category whose class of objects is Rn41 and whose
morphisms are maps preserving the relation, i.c., for G = (G.H), H = (H,5) €
Rps1 a map f : G — H is a morphism if (xy.00... .02, 2,41) € R implies
(o), flxa)y oy flaa), f(mag)) € S for any ay, @y ooy 2y g € G

Moreover, for any morphism f € Hom,z,(G,H), where G = (G,p,r), H =
(H,0.,5), denote U(f) = f. Similarly, for any morphism f € Homg, (G, H),
denote L(f) = f. a

3. Theorem. U is a covariant functor from the category ;R,, to the category
R,.11, L is a covariant functor from the category R4, to the category :R.,.

Proof. Let f € Hom,g, (G,H), whae G = (G,0,7). G = (G,R), H =
(H.o,s), UH) = (H,S). Let (x;,22,...,: Tnyntr) € B Then (vy,22,...,20,) € 0,
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(T2, 23, ., Tn, Tny1) € 0, ((.1'111;2,‘,.Axn),(1’2,::;3,A,.,mn,.r,ﬁ.l)) € r, so that
(F@)s F@a)ees f@)) € 0o (F@a) f@s)s- s flon), fean)) € o, ((Flaa),
F@a)s o fn), (F(@2), @)oo f(@n), f@ns1))) € s, thus (f(00), f(2a), -y
f(@n), f(@nt1)) € S and U(f) € Homg,,, (U(G),U(H)). It is easy to show
that U(idg) = idy(g) for any G € »R, and U(g - f) = U(g) - U(f) for any
f € Hom,gr, (G, H), g € Hom,g, (H,K), G, H, K € »R,,. Analogously for L. u}

4. Theorem. Let G be a double n-ary structure. Then the following assertions
hold:
(i) G is inversely symmetric if and only if U(G) is symmetric.
(i) G is inversely asymmetric if and only if U(G) is a.s‘ymnu.'l;‘ic.

Proof. Let G =(G,o,r). U(G) = (G,R).

(i) Let G be inversely symmetric and let (@y,22,...,%n,%n41) € R. Then
(1,2, ) = & € g, (T2,23,...,Tn,Tnp1) = B € g, (@, B) € r. This implies
Bty €7, thus B~ = (Tp41,Tny. -, 3,22) € 0, @1 = (Tny...,T2,T1) € B,
so that (Tny1,%n,...,22,21) € R and U(G) is symmetric. Let U(G) be sym-
metric and let (a,3) € ». Then there exist elements z;, 22, ..., Tn, Tny1 € G
such that a = (vy,22,...,2,) € 9, B = (T2,23,...,Tn,Tns1) € g. This implies
(X1, %2, -+ -, Ty Tnys) € R, s0 that (Tag1,Zn, ..., 22,21) € R, i.e. (Tg1,Tn,. .., T3,
22) = B € 9, (Wny-. ., 2, 21) =~ € g, hence (37!, &™) € r and G is inversely
symmetric.

(ii) Let G be inversely asymmetric and let (21,22, ..., %5, Tnt1) € R. Then again
(@1, 22,...,Tn) = @ € 0, (X2.T3,...,Tn,Tnp1) = B € o, (o, f) € r. This im-
plies (871 a™') ¢ r. But B! = (Tng1,Tns---33,22), 07 = (Tny. ., T2, 21,
thus (Tp41, s, 22,21) € R and U(G) is asymmetric. Let U(G) be asymmet-
ric and let (@, 8) € r. Then there exist elements x|, 3, @3, ..., Tn, Tuy1 € G
such that (z1,%2,...,2.) = a € o, (¥2,23,...,&n,Tny1) = B € po. This im-
plies (x1,22,...,%n,Tnq1) € R, so that (Tnq1,@n,...,22,21) ¢ R. Consequently
(Tng1s Ty 23, 22) = f1 ¢ por (Tn,...,22,21) = o' ¢ gor B71, a™! € o,
but (87!,a7!) ¢ r. In all three cases, however, we have (87!, a™) ¢ r, and G is
inversely asymmetric. O

5. Theorem. Let G be an (n+1)-ary structure. Then the following assertions
hold:

(i) G is symmetric if and only if L{G) is inversely symmetric.
(ii) G is asymmetric if and ouly if L(G) is inversely asymmetric.
Proof. (i) If L(G) is inversely symmetric, then, by 4, U(L(G)) is symmetric.
But, by 1, U(L(G)) = G. If G = U(L(G)) is symmetric, then, by 4, L(G) is
inversely symmetric.
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(ii) If L(G) is inversely asymmetric, then, by 4, U(L(G)) is asymmetric. But
U(L(G)) = G. If G = U(L(G)) is asymmetric, then, by 4, L(G) is inverscly
asymmetric. [}

6. Theorem. Let G be a double n-ary structure. Then G is transferable if and
only if U(G) is cyclic.

Proof. Let G = (G,o.r), U(G) = (G,R). Let G be transferable and let
(T1, 22y Ty Tng1) € R Then (21,22, ...,2,) = « € 0, (12,T3,...,Tp, Tnyy) =
B € o, (o, B) € r. Thus, there exist ay, ag, ..., a,—1 € g such that (3,a;) € r,
(oj,j41) €rforj=1.2,....n—2and (an_1,a) € 7. Denote ag = f, a, = a. Then
we have (o, a541) for j = 0,1,2,...,n — 1. We shall show by induction that «; =
(T542,Zj43y s Ly Ty X1, T2, ..., 25) for § = 0,1,2,...,n. For j = 0itis true. Let
0 < jo < n. Let the preceding hold for each j, 0 < j < jo. As (ajy-1,05,) €7 and 7
is binding, there exists y € G such that o, = (Tj,42,T5043, -2 T, L5021, Y). We
shall show by another induction that aj, 1 has y on the (n — k)-th position, for k =
0,1,2,....,n—jo. For k = 0itis true. Let 0 < ko < n—jo. As ((jytko—1>Xjotko) € 7,
Qjy+ky—1 has y on the (n — kg + 1)-th position, and » is binding, o;,4x, has y on
the (1 — ko)-th position. Particularly, e, has y on the jo-th position, hence y = xj,.
Thus, we have 8 = (¥2,23,...,Tn, Tnt1) € 0, a1 = (T3, Ta, ..+, Ty Tng1, 21) € 0,

(B,a1) € r, so that (z2,%3,...,Tn, Tat1,21) € R and U(G) is cyclic.

Let, on the contrary, U(G) be cyclic and let (a,8) € r. Then there ex-
ist elements @y, X3, ..., ¥,, T,y € G such that o = (v1,22,...,2,) € 0,
B = (22,23,...,Tn,Tny1) € 0, thus (z1,%2,...,2n,2041) € R. Hence (z2,23,...,
T, Tnt1,21) € R, (23,24, ., Tn,Tat1,01,22) € Ryity (Tnar,®1,T2,...,35)
€ R. Denote oy = (T3,24,...,%n, Tig1,T1), Q2 = (T4, T, Tngl, T1,T2), 00,
ap—t = (Tng1,21,%2,...,%n—1). Then o € g for j =1,2,....,n -1, (B,a1) €7,
(aj, o) €rfor j=1,2,....,n—2 (an_1,a) € r. Consequently, G is transferable.

a
7. Theorem. Let L(G) be an (n+1)-ary structure. Then G is cyclic if and only
if L(GY) is transferable.

Proof. Let L(G) be transferable. By 6, U(L(G)} is cyclic. But, by 1, G =
U(L(G)).
Let G = U (L(G)) be cyclic. Then, by 6, L(G) is transferable. [m]

8. Theorem. Let G = (G,o,r) be a double n-ary structure. If the binary
relation r is transitive, then U(G) is weakly transitive.

Proof. Let U(G) = (G.R) and let (z,y,9,....y) € R. (4,y,...,¥,2) € R.
Then « = (24,9, y) € 0. 3= Wy ¥) €0, 7 = Wy -y, 2) €0, (a.B) €
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r, (B,7) € r. Hence (a,7v) € r, so that (z,y,y, ....y,2) € R and U(G) is weakly
transitive. ]
9. Remark. The converse of 8 does not hold, which can be easily shown by a

counterexample.

10. Theorem. Let G be a double n-ary structure. Then G is reversely transitive
if and only if U(G) Is transitive.

Proof. Let G = (G,p,r), U(G) = (G,R). Let G be reversely transitive,
let (z1,@2,- .+ &ns¥ns1) € B, (¥nt1,@n, ..., T2, Tng2) € R. Then, by the defini-
tion of U, (@1,22,...,%,) = @ € o, (X2,%3,...,2n,2n41) = B € 0, (,B) € 1,
(g1, Ty v o3 82) = B7LE 0, (Lny Tnmtye ey T2, Tns2) =7 € 0, (B4 ) Er. As G
is reversely transitive, we have (¢, 7v) € r. But v = (v2,23,. .., ¥n, Tns2) € 0, hence
(¥1,%2, .-+, Tn, Tnt2) € R and U(G) is transitive.

Let U(G) be transitive and let «, 3, v € o, (a.3) € r, (3~',9') € r. There
€ G such that o = (21,22,...,2,),

exist elements Tp,Zu,...,%n, sl Tns2
B = (2,23, ..., Tn,Tny1) (for » is binding), v = (va,23,.. ... Ty Zng2) (for g1 =
(Tnt11®ny- oy T3,22), ¥ = (Tn,Tu—t,...,23,%2,&yy2) and r is binding). Hence
(Z1, %2, Ty Tng1) € Ry (W1 Tny oo, X3, T2, Typ2) € R, so that (wy,22,...
ZTn, Tnt2) € R, for U(G) is transitive. Consequently, (a,v) € r and G is reversely

a

transitive.

11. Theorem. Let G be au (n+ 1)-ary structure. Then G is transitive if and
only if L{G) is reversely transitive.

Proof. By 1, U(L(G)) = G. Hence L(G) is reversely transitive if and only if
U(L(G)) = G is transitive, by 10. m]

References

[1] V. Novdk: Cyclically ordered sets. Czechoslovak Math. J. 32 (1982), 460-473.

{2] V. Novdk, M. Novoiny: On determination of a cyclic order. Czechoslovak Math. J.
(1983), 555-563.

[3] V. Novdk: Dimension theory for cyclically and cocyclically ordered sets. Czechoslovak
Math. J. 33 (1983), 647-653.

[1] V. Novdk: On some minimal problem. Arch. Math. (Brno) 20 (1984), 95-99.

[5] V. Nowdk: Cuts in cyclically ordered sets. Czechoslovak Math. J. 84 (1984), 322-333.

[6] V. Noudk., M. Novotny: Universal cyclically ordered sets. Czechoslovak Math. J. %5
(1985), 158-161.

(7] V. Novdk, M. Novotny: Binary and ternary relations. Math. Bohem. [17(1992), 283 292

7

Author’s address: Jiri Karasek, Technical University, Technickd 2, 61669 Brno, Czech

Republic.

174

83

i
i
H
H
i




		webmaster@dml.cz
	2020-07-01T13:01:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




