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OSCILLATORY PROPERTIES OF SOME CLASSES OF NONLINEAR 

DIFFERENTIAL EQUATIONS 

MILAN MEDVE6, Bratislava 
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Summary. A sufficient condition for the n on oscillation of nonlinear systems of differen­
tial equations whose left-hand sides are given by n-th order differential operators which are 
composed of special nonlinear differential operators of the first order is established. Suf­
ficient conditions for the oscillation of systems of two nonlinear second order differential 
equations are also presented. 
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1. INTRODUCTION 

M. Svec [7] studied the problem od dependence of oscillatory properties of linear 
nonhomogeneous differential equations of the form 

J/' + P(0J/ = / ( 0 

on the function / . He has used some properties of the wronskian W(y1 x) of a 
solution y of the homogeneous equation and a solution x of the corresponding ho­
mogeneous equation. This method has also been used in the papers [3], [4] (another 
method is used in the proof of [6, Lemma 5]) in a study of nonoscillation of lin­
ear nonhomogeneous differential equations of the n-th order and oscillation of linear 
nonhomogeneous differential equations of the second order, respectively. We use this 
idea in a study of nonoscillation of some classes of systems of nonlinear difFerential 
equations defined by a nonlinear difFerential operators of the n-th order which are 
composed of nonlinear difFerential operators of the first order. We also study os­
cillatory properties of a system of difFerential equations consisting of two nonlinear 
second order differential equations. 
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2 . NONOSCILLATION OF SYSTEMS OF n-TH ORDER EQUATIONS 

Consider a system of differential equations 

(1) Lm(*,y,t)=f(x,y,t), 

(2) Mn(x,y,t) = 0, 

where 

M ^ » , 0 = ( ^ + «m)(^ + a m _ 1 ) . . . ( A + a i ) x , 

Mn(.",J/,0=(^ + 6 n ) ( l + 6 n _ 1 ) . . . ( l + 6 1 ) y , 

a. = ai(x,y,t), i = 1, 2, . . . , m, 6, = bj(x,y,t), j = 1, 2, . . . , n, x £ R, y E R. We 
assume that the following hypotheses are satisfied: 

(HI) The functions a t € C m - | ( R 3 , R ) , 6 i £ Cn^(R3 ,R), i = 1,2, .. . ,m, j = 1, . . . , 
n are bounded, / £ C°(R3, R). 

(H2) All solutions of the system (1), (2) exist on the interval (-oo,oo). 

(H3) f(x,y,t) = 0 if and only if y = 0. 

Definition. We call a function g: R —• R oscillatory on / = (—oo,oo) if it has 
an infinite number of zeros on each of the intervals (—oo,— T) and (T, oo) for any 

T > 0. The function g is called nonoscillatory on / if it has only a finite number 
of zeros on / . The mapping G: R —+ Rn is called oscillatory (nonoscillatory) on / if 
each of its components is oscillatory (nonoscillatory) on /. We say that a system of 
differential equations u = F(u,t), u E Rn, is oscillatory (nonoscillatory) on / if all 
its solutions whose all components are not identically equal to zero are oscillatory 

(nonoscillatory) on / . 

Lemma. Let a £ C°(R2,R) be a bounded function and x: R —• R a solution of 

the equation 

x + a(x,t)x = 0 

such that x(to) = 0 for some to £ R. Then x(t) = 0. 

P r o o f . Let | a(x,t) | $ M for all (x,t) £ R2. Then 
t t 

\x[t)\ = 

to 

and the Gronwall lemma implies that x(t) = 0. Q 
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Theorem 1. If the hypotheses (H1)-(H3) are satisfied then the system (1), (2) 
is nonoscilhtory on I = (—00,00). 

P r o o f . Let (x(0, y(t)) be a solution of the system (i), (2) and x(0 ^ 0, y(t) £ 0. 
First we shall prove that the function y(t) is nonoscillatory on I. Obviously, the 
function y(0 satisfies the system of differential equations 

(3i) v + bi{*(t),v,t)y = yi 

(h) y\ +h(x(t),y.t)yx = y2 

(3„-i) yn-2 + bn-2(x(t),y,t)yn-2 = yn-i 

(3n) yn-i + bn(x(t)1yyt)yn_i = 0. 

Since the function bn is bounded, Lemma implies that yn_i(/) is either identically 

equal to zero or y n - i ( 0 7̂  0 for all t £ I. If y n - i ( 0 = 0 then the same is valid 

for y n -2 v0- If a ^ functions yi(0, • • •> 2/n-i(0 a r e identically equal to zero then the 

equality corresponding to (3i) has the form 

»(0 + M*(0>y(0,0y(0 = o, 

and since the function 61 is bounded and y(t) =fc 0 we obtain by Lemma that y(t) -̂  0 

for all £. 

Assume that y n _ t (0 = 0, i = / , 2 , . . . , k - 1 and yn-k(t) 7*- 0 for all t E I. The 

equality corresponding to (3n_,v) has the form 

(4) yn-jb-i + bn-k(x(t)>y(t)it)yn-k-i = yn-k(t). 

By Lemma no nontrivial solution of the equation 

(5) i + 6n-fcN/),2/(/),0^ = 0 

has a zero on I. Let z(t) be a nontriviaj solution of-(5) and+V(yn-Tjb-i(/),z(0) = 
yn_jb.-.i(/)i(0—yn^A:-i(/)^(/) be the wronskian of the functions yn- i t- i( /) , z(t). From 
(4), (5) we have that W(yn-k-i(t),z(t)) = -yn-k(t)z(t) £ 0 for all t £ I. Therefore 
yn_jt_i(0 has at most one zero in I. Proceeding by induction with respect to k one 
can show that y\(t) has a finite number of zeros in I. Therefore there is a T > 0 
such that y i (0 ?- 0 for all t G (—00, - T ) U (T, oo). By Lemma no nontrivial solution 
of the equation 

(6) v + bl(x(t),v1t)v = 0 
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has a zero in / and therefore W(y(t), v(t)) = -v(t) y\(t) ^ 0 for a nontrivial solution 
v(t) of (6) and all t 6 (oo, -.T) U (r ,oo) . Therefore y(t) has at most one zero in 
(—oo, — T) U (T, oo) and thus the function y(t) is nonoscillatory on / . This fact and 
the hypothesis (H3) imply that the function f(x(t), y(t), t) has no zero in (-oo, -T )U 
(T, oo). The function x(t) satisfies the equalities 

i(t) + at(x(t)yy(t),t)x(t) = xl(t) 

xi(t) + a2(x(t),y(t),t)x\(t) = x2(t) 

(7) 

im-2 (0 + «m-l (*(0»y(0»0 *m-2(0 = *m-l (0 

i m - i ( 0 + « m ( * ( 0 . y ( 0 . 0 * m - i ( 0 = / ( * ( 0 » y ( 0 . 0 -

One can show similarly as above that the function xm-\(t) is nonoscillatory on 

/ , and proceeding by induction it is possible to prove that also the function x(t) is 

nonoscillatory on I. • 

3. OSCILLATION OF SYSTEMS OF 2-ND ORDER DIFFERENTIAL EQUATIONS 

Let us consider the system of differential equations 

(8) x + p(yyt)x = f(x,y,t), 

(9) i) + q(y,t)y = o. 

We assume that the following conditions are satisfied: 

( C l ) p , « € C ° ( R 3 , R ) , / € C 7 0 ( R 8 , R ) . 

(C2) All solutions of the system (8), (9) exist on the interval I = (—oo, oo). 

(C3) / ( x , y% t) = 0 if and only if y = 0. 

(C4) sign/(x, y, t) = sign y for all (ar, y, t) 6 R3. 

Theorem 2. Let the conditions (C1)-(C4) be satisfied and let (x(t),y(t)) be a 

solution of the system (8), (9), where x(t) £ 0, y(t) =£ 0. Assome that the differential 

equation 

(10) u + q(y(t),t)u = Q 

is oscillatory on I = (—oo, oo) and 

(11) 2 4 < d 2 < o o , 
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where 

d\ = sup{|<i - t2\: t\ < t2l u(h) = u(t2) = 0, u(t) £ 0 

for all t e (tuh), « is a solution of (10)}, 

rf2 = in f { | l i -* 2 | : * i <*2, 2/(*i) = 2/(<2) = 0, 2/(0 # 0 for all <G(<i,*2)}. 

T/ieu the solution (x(t),y(t)) is oscillatory on I. 

P r o o f . We shall prove that x has an infinite number of zeros in the interval 
(0, oo). The same assertion for the interval (—oo,0) can be proved analogously. 

Assume that there is a T > 0 such that x(t) ^ 0 for all t G (T, oo). The function 
y(t) satisfies the equation (10) and by the assumption it is oscillatory on 1. Let 

(I) x(t) > 0 for all t e (T,oo). From (11) it follows that for any K > T there are 
*i- s2 e R such that K < s\ < s2, 

(12) y(si) = y(s2) = 0i y(t)^0 for all te(s\,s2) 

(13) y(t)<0 for all «€(* i ,* 2 ) , 

and there exist Ti,T2 G («i,s2), Ti < T2 such that 

(14) u(T\) = u(T2) = 0, u(t) ^ 0 for all t G (Ti,T2), u(T\) > 0. 

(II) x(t) < 0 for all t e (T,oo). From (11) it follows that for any K > T there are 
n , r2 G R such that A' < r\ < r2, the condition(12) holds, 

(15) 2/(0 > 0 for all *G(ri ,r2) 

and there exist T3jT4 G (ri,r2), T3 < T4 such that 

(16) t*(T3) = u(T4) = 0, ti(0 > 0 for all t G (T3, T4), t*(T3) > 0. 

Take the wronskian w(t) = W(ti(0>*(0) = t i (0*(0 - fi(0*(0- F r o m (8), (9) we 
obtain that w(t) = t*(0</(0> w h e r e 0(0 = /(*(0>2>(0>0 a n d (14)> ( i 6 ) y i e , d 

t 

(17) M 0 = ~ i (Ti ) x(T\) + J u(s) g(s) d«, 

rx 

t 

(18) w(t) = - i ( T 3 ) *(T3) + / u(s) g(s) ds. 

The conditions (C4) and (13) imply that in the case (I) we have g(t) < 0 for all 
t e (s\,s2). Therefore (14) and (17) imply that M 0 < 0 for all / G (Ti,T2) and thus 
x(t) must have a zero in (Ti,T2). This contradicts the assumption. In the case (II) 
we have g(t) > 0 for all t G ( n , r2). Therefore (16), (18) imply that w(t) > 0 for all 
t e (T3iT4). Thus x(t) must have a zero in (T3lT4) and this again contradicts the 
assumption. This means that x(t) has a zero in (T, oo) for any T > 0. • 
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Corollary. Let P(t)} Q(t) be continuous functions on I = (-00,00), and let the 
equations 

(19) w+P(t)w~0, 

(20) z + Q(t)z = Q 

be oscillatory on /, where 

m\ ^ P(t) % M2, m2 ^ Q(t) ^ M2 for all tel, 

M ^ m, i W i ^ m i , 2 A / ^ m i . 

Let / G C°(R3,R) satisfies the conditions (C3), (C4) and Jet all solutions of the 
system 

(22) . x + P(t)x = f(x>y,t)y 

(23) y + 0(0y = o 

exist on the interval I. Then the system (22), (23) is oscillatory on I. 

P r o o f . Let (x(t),y(t)) be any solution of the system (22), (23), x(t) £ 0, y(t) £ 

0 and let u(t) ^ 0 be any solution of the equation (19). The Sturm comparison 

theorem and (21) (see e.g. [5]) imply that the following holds: If u(t\) = u(t2) = 0, 

t\ < t2l u(t) / 0 for all t 6 (tut2)9 y(s\) = y(s2) = 0, *i < s2l y(s) / 0 for all 
t € (s\,s2), then 

71 . 71 

Mi mi 

and therefore we have 

71 71 

M m 

2 | ť i - . a | ^ 2 — < JL f$ |-! - «2 |. mi M 

We have proved that the condition (11) of Theorem 2 is satisfied. By this theorem 
(x(t)iv(t)) ls oscillatory on L • 

Now let us consider the system 

(24) x + R(yyt)x = f(x1y,t)) 

(25) y + S(y)y = 0. 

We assume that the following conditions are satisfied: 
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(Dl) Re C°(R°, R), 5 6 C°(R, R), / € C°(R3, R). 

(D2) AH solutions of the system (24), (25) exist on the interval / = (—oo, oo). 

(D3) = (C3), 

(D4) = (C4). 

T h e o r e m 3. Let the conditions (D1)-(D4) be satisfied. Moreover, assume that 

the following conditions are satisfied: 

(I) There is an h > 0 such that all trajectories of the system 

m = 3/2, 

m = -S(yi)y1 

lying in the set 

are periodic, where 

U = { ( y i , y 2 ) € R 2 : / / ( j / 1 , y 2 ) ^ / i } 

H(yuy2)=\y2
2 + J S(t)tdt. 

(II) There is a constant L > 0 such that 

\\Q(u) - Q(v)\\ *C L\\u - v\\ for all t/, v e Lh, 

where Q(x) := (x2,-S(xi)x\), x = (xx,x2) £ R2 a/icf ||.|| is the Euclidean norm on 

R2. 

(III) Let y(t) ^ 0 be a solution of the equation (25) such that (y(t),y(t)) G Lh for 

all t £ I = (—00,00), and let the equation 

(27) w + R(y(t),t)w = 0 

be oscillatory. 

(IV) 
3 

dl<2Ľ' 
where 

dx = max{|*i - t2\: tx < t2, w(tx) = w(t2) = 0, w(t) £ 0 

for all t E (-r,-^), w is a solution of (27)}. 

Ifx(t) =£ 0 is such a function that (x(t),y(t)) is a solution of the system (24), (25), 

then it is oscillatory on I. 
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P r o o f . The condition (I) implies that (y(t),y(t)) is a periodic solution of (26) 

with a minimal period T > 0. Since the condition (11) is satisfied, [1, Theorem 1. 3] 

yields T > f. This implies that 

d2= inf{\t\-t2\:t\ <t2, y(t\) = y(t2) = 0, y(t) ^ 0 

for all te(t\M)}>\, 

and therefore using the condition (IV) we obtain the inequality 

з 
2rfi ^ y ^ d2 (see (11)) 

L 

E x a m p l e . 

(28) x + k2x = /(aľ,гy,ť), 

(29) ÿ - ( i - y ) y = 0, 

D 

where f(x\y,t) is a continuous function satisfying the conditions (C3), (C4). The 

equatiqn (29) can be written in the form 

m = y2, 

(30) ys = ( i - y i ) y i -

This system is Hamiltonian with the Hamiltonian function 

#(yi,y2) = ^y\- 2y2l + 3 ^ ' 

There is a homoclinic trajectory T of the system (30) corresponding to the level 

curve # (y i ,y 2 ) = 0, and the compact region K whose boundary is the closed curve 

r u {(0,0)} is filled with periodic trajectories (see [1, pp. 291, Fig. 6.1.2]). The 

solutions of the equation (29) corresponding to these periodic trajectories are the 

only oscillatory solutions of this equation. 

Denote by Q(y) = (y2, (1 - yi)yi)« Let || • || be the Euclidean norm on R2 and let 

u = (tii,w2), v = (v\,v2) E K. Since the homoclinic trajectory T intersects the y\-

axis at the point A = (a,0), where a = ^ , we have that u\ -$ a, v\ ^ a. Therefore 

we obtain 

IW(ti) - Q(v)\\2 = (v2 - u2)
2 + (V\ - U\)(l + (U\ + V\)f 

^(v2-u2)
2 + (l + 2a)2(v\-u\)2 

^ ( l + 2 « ) 2 | | t i - t ; | | 2 , 
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i.e., the mapping Q is Lipschitz with the Lipschitz constant L = l - f2a . The distance 

of any two neighbouring zeros of the equation ii; -f k2w = 0 is d\ = p - a n ( l therefore 

if 
9 /"T 

3 v 2 

then the condition (IV) of Theorem 3 is satisfied. Since all oscillatory solutions 

of the system (30) define trajectories lying in K we obtain that if the condition 

(31) is satisfied and (x(t), y(t)) is a solution of the system (28), (29) such tha t 

(y(t)yy(t)) E A' for all t £ R then (x(t),y(t)) is oscillatory on (—00,00). 
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S ú h r n 

OSCILATORICKÉ VLASTNOSTI NIEKTORÝCH TRIED NELINEÁRNYCH 

DIFERENCIÁLNYCH ROVNIC 

MILAN MED VEĎ 

Dokázaná je postačujúca podmienka pre neoscilatoričnosť systému diferenciálnych 
rovnic, ktorých řavé strany sú definované diferenciáinym operátorom n-tého rádu, ktorý 
je kompozíciou nelineárnych diferenciálnych operátorov prvého rádu. Dokázaná je tiež po­
stačujúca podmienka pre oscilatoričnosf systému dvoch nelineárnych diferenciálnych rovnic 
druhého rádu. 
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