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KYBERNETIKA — VOLUME 28 (1992), NUMBER 5, PAGES 357-382

ADAPTIVE MAXIMUM-LIKELIHOOD-LIKE
ESTIMATION IN LINEAR MODELS

Part 1. Consistency

JaN Amos VISEK

An adaptive estimator of regression model coefficients based on maximization of kernel estimate of
likelihood is proposed. Its consistency (in Part 1) and asymptotic normality (in Part 2) is proved. An
-asymptotic representation of the estimate implies also its asymptotic efficiency.

1. INTRODUCTION

This paper is a continuation of [6] and [7] which has shown that the adaptive estimator of
regression coefficients based on minimization of Hellinger distance of the density estimate
of residuals and the density estimate of “mirror reflection of residuals” is not efficient for
dimensions larger than one.

Hence the present paper brings a new proposal of adaptive estimator of linear regres-
sion model coefficients based on estimating density of residuals. The estimate of density
of residuals uses a preliminary estimate of regression coefficients and than applies maxi-
mum likelihood technique. This new estimator is proved to be efficient in the sense given
in Corollary 1 at the end of this paper.

One of the main problems lies in proving consistency of proposed estimator. Solution of
this problem may be surely given in a similar way as in [4] requiring some rather abstract
conditions on probability distribution of (carriers and) errors. This paper preferred to
stay conditions in a way which may seem less verifiable but which are more transparent
namely that (very) large values of coefficients are not very probable. In applications due
to some requirements which are implied by hardware circumstances we usually transform
data into some “reasonable” range and hence we have “some feeling” about the physical
possibilities how large this or that parameter may be. The paper is rather long since
most of steps in proofs were made in details. Only the steps which are standardly made
in similar texts were omitted.
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2. NOTATIONS

Let us denote by A the set of all positive integers, by R the real line. We shall consider
a linear model

Y=X -f+e (1)

whereY = (V,..., Y,.)T is a real vector (response variable), X = (z;)_, JP=1 a design ma-
trix, 8% = (@Y, ... ,Bg)T a vector of unknown (but fixed) parametersand e = (ey, .. ., €,)"

a vector of i.i.distributed - according to a d.f. G - variables. We suppose that inter-
cept, if any, is included in the model, i.e. when we assume that the model (1) contains
an intercept we have z; = 1 for all . D.f. G is assumed to be fixed, unknown, but
symmetric (i.e. for any z € R G(z) = 1 — G(z)) and allowing density with respect to
Lebesgue measure.

Throughout the paper, whenever the probabilistic assertions, the mean values etc. are
understood with respect to G, this will not be emphasized. Only when they will be taken
with respect to another distribution it will be marked by a subscript.

Remark 1. Symmetry of the d.f. G may be more than technical necessity. Since
the adaptive estimator (which will be proposed later on) is based on the estimate of
density of residuals we may get into troubles with bias not assuming symmetry. It
might be perhaps improved by estimating density of residuals by an estimator having
“sufficiently small” bias. It would be however so complicated that it probably hamper
any possibility to prove even rather simple property of estimator. Moreover, it seems
that without symmetry adaptive estimation is able to estimate consistently only slopes
and estimation of intercept (has to) contain(s) some bias.

It implies that another way how to solve the problem of estimating regression model is
not to assume symmetry (but some normalization of design matrix, namely 3., z;; =0
for any j = 2,...,p) and estimate only slopes. In a second step we may try to estimate
intercept separately (as location parameter). Naturally it may then happen that the first
and the second step will have a different efficiency.

Let us denote for any # € R? and i € A by

ei(B) =Y.~ X8 (2)
ith residual where X stays for Z?ﬂ Xi;B;. For B° we have ;(8°) = e; (see (1)). Let
B be a preliminary estimator of 8° and let us write simply & instead of e:(™). Let

{e.}22; | 0 and denote for any y € R, Y € R" and f € R?

n

e L (= a(8) -

i=1 i=1

GV = Y w(e =Y+ X1) =

n
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3. ASSUMPTIONS

Condition A. Let the kernel w(y) be three times differentiable, positive everywhere
and symmetric. Suppose that there are constants K;, K2, K3 and K4 such that

sup w(y) < K, sup “‘:(:) < Ko,
YyER VER

W)l ¢ g 'y .
sup @l o 3, and sup]-——(—zl < Ky
e W) ’ e T
Preliminary estimator 3" is assumed to be such that for some
§> % we have

n’l18" - B = Op(1).

Moreover let
lim ¢, =0, lim ne = oo 4)
n—co n—co
and
log w=1{e?
logw™(eg!) _ o(1).
n
Further let g be symmetric, having continuous second derivative and for some M,

0 < M < oo we have

PN

sup |g'(y)} < M. )
vER

Finally let g(z) be decreasing for z > 0.
Condition B. Let foranya € R
lim n;‘c:2 / supw™* (c;'(z + b~ 1)) g(t) g(z)) dtdz =0.
n—oo jbl<a

Moreover let us assume that there are positive v, D such that for any 21, z2 € R such
that |27 — 2| < v we have w(z)/w(z) < D.

Remark 2. Although Condition B may look rather strange it is easy to see that for
a kernel with “sufficiently” heavy tails it can be fulfilled even for density g having also
rather heavy tails. As an example we may consider w(z) = }V‘H‘;ﬂ We obtain for any
a€R

/lsb‘l.lp w (M (2 4+ b - 1)) g(2)g(t)dzdt < (1 + 2¢;? [a® + E|e] + var(e)]) -
<a

It is not difficult to verify that the rest of Condition. B is fulfilled, too. Although this
kernel doesn’t fulfill next condition, namely that [ lzjw(z)dz < oo it is easy to see that

any kernel of type const 'H,(,llzﬁ for some v > 0 will be acceptable for Condition B as
well as for all following.
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Assertion 1. Let lim,_. ¢, = 0 and f |z}w(2)dz < 0o. Moreover let f be a density
such that its derivative exists and sup,er [f(¥}] < co. Then there is a sequence {dn}32; |
0 such that for any n € A we have

Py {Suplyn(y,yﬂ Jw)| > d }
Proof. We may write

Gn(1, Y, B%) — Eggaly, Y, B°) =

_ L [ / w (e (y — 1)) dFalt) - / w (e (- 1)) d Fm]

n

where F,(t) is the empirical distribution function. Hence we have

sup [y, Y, 8% — Esga(y, Y, 8°)| <
< b s VAR - FO)| [ w0 ©

(see also [1]). Now let {Ln}s., T co. Since sup,er vRIFu(y) — F(y)| is bounded in

probability we have for min{m,n} — oo
Py {sup VAlF.(3) - F)I > Lnp N0
veR
For every k € N find n} € A and my € A such that for all n > n}
1
P {sup VIR - FOI> L} <
vER
Now select fix > nj such that for any n >

we! [l < g

a-)—-

i.e
Py {n_%c;l sup vnlFu(y) ~ F(y)| - /lw(t ) dt > —-}
veR
Further

sup [Esa(, Y, %) — J(3)| = sup

2 [l =) dr- y)l

/W(Z) {/ f(y~cn¢)dt} dz

< an~/]z|w(z) dz = O(cn), 0

= sup

[w s -anaz -1 y)’ P
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where L = supyer |f'(y)|- Hence we may find ny > # such that for any n > nk
1
sup |Erga(y, Y, 8°) = fy)| < -
yeR 4k

So, we have found a sequence {ni}72, such that for any n > n; we have

0 1 I
ot £} <

and then one may put for any n € N, n € (g, nis] dy = } and the proof follows. O

Remark 3. Instead of using (7) one may employ the result of [2] (which is recalled
bellow as Lemma 5 in the Part 2 of this paper) that sup,er |Eqgn(y, Y, 8°) — 9(¥)l =
Ofey). From the proof of Assertion 1 it is also possible to see that there is {d}52; \, 0
so that

1
By {SUP |94(v, Y, 8%) — Egu(y, Y, 8% > —d;} <d,.
YER 2

Definition 1. For any fixed {d.}22, \, 0 let us put
G({d.}2) = {f; f is density such that for any n € N
1
Py {max {sup |gn (¥, Y, %=1 (¥)], sup |gn(3, Y, B°)—Es9n(y, Y,ﬂ“)l}>— d..} <d..} .
yeR yeR 2
Now for the rest of this paper let us fix some sequence {d,}32; and we shall assume

Condition C. Let

lim b 0. (8)
n—00 Cp

Moreover let there be K5 < 0o such that maxien, j=1...» [%ij] < Ks5. We shall also assume
that the density g is an element of G({d,}2%;). It follows from the assumption that g(z)
is decreasing for z > 0 that there is a sequence {a,}5%;, @x > 0, a, /" 0o such that

(—@n, a,) C {y eR: g(y) > d,%.} .

Then define b,(y) = 1 for |y| < ja, and b,(y) = 0 elsewhere.
In addition to the requirement (4) we will assume that
lim ncla;? = oco. (9)
n—oo
Remark 4. It is easy to see that to fulfill (9) it requires possibly to make convergence
of ¢, to zero slower. It may imply that we have to fix a sequence {d,}3%, such that also
d,, will have to converge to zero a little slower (see (8)) and it may again cause that a,
will converge to infinity also slower but it improve convergence in (9) and hence (9) is
not in a contradiction with any earlier made assumptions.
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Remark 5. Let us recall that empirical d.f. is given by Fu(y) = 231 Lvicy)
where V; are i.i.d. distributed random variables. Hence varpFu(y) = L F(y) (1 — F(y))
and therefore the upper bound in (6) may be found uniform for all f (for fixed kernel
w). The estimate of difference in (7) is uniform for all densities having the same upper
bound of its derivative (this is the reason why we have assumed (5)). Hence for a given
sequence {d,}32, the set of all densities belonging to G({d.}5;) will be rather broad.

Condition D. Let us assume that there is Ks such that

P ( argmax Hgn (e5(8), Y, B™) ba(&5)|| > ]"6) n=s0 0.

BERP  j=1

Let us assume for a while that we know the density of residuals. Then we may
estimate regression coefficients by means of maximum likelihood estimator, i.e. as a
point (or points) 3™ of R” for which

ﬁg(Y,—-—X,»Tﬂ) = max!

or (due to assumption about existence of g)

- (Y — XT6) _
gm Vi—XTh) ~ =0

for k = 1,...,p. This would lead for normal distribution to the normal equations. Hence
using kernel estimate

. 1 i .
9a(y, Y, 8") = e 2“’ (7w — &)
i=
for the estimation of g(y) we may define B" as follows.

4. DEFINITION OF ESTIMATOR

Definition 2. Under 3" we shall understand a point (or points) of R? for which
L on (i(8), Y, 3") bals) = maxt
=1

or equivalently

= argmax ng (%‘(ﬁ)a Y, Bn) ba(8;).

BER?  j=1
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Remark 6. Due to assumption about existence of derivative we may look for ﬁ" by
means of equations

Y el ¥ @ Z8)

2. Ijkm a(€;) =0

which have to be fulfilled forall k = 1,...,p.
Let us assume, for the sake of simplicity that starting from this point all Conditions
A,B,C and D hold.

5. PRELIMINARIES
Assertion 2. Let {h;}7; be positive numbers. Then
n -1 n
[n_l Zh;] <n7? Z h,-_’.
i=1 i=1
A proof follows from the convexity of the function %

Lemma 1. Let @ be a regular and positive definite symmetric matrix. For any § > 0
denote Zs = {z € R? : ||z}| = §}. Then

- T
:151121‘1 2 Qz>0.
Proof. Since Q is regular and symmetric it may be decomposed at 77T where T is

a regular matrix. Moreover 2TQz is continuous and hence there is a point zo € Zs such
that 2TQzy = min.ez, 27Qz. Further for any z € Z; we have

2TQz=2TTTTz > 0.
If 20Qzo = 0 then 2JTTTzy = 0 and therefore also Tz = 0. But T is regular and it

implies that zo = 0 which contradicts with 29 € Z;s. o

Lemma 2. Let V = {v;};Z,,., be a matrix such that there is a H > 0 such that

for any n € N
max ol < H

and limp—co 2VTV = Q where Q is a regular matrix (limit is meant so that for any
k,j, 1 <k, j < pwe bave limy_.co 2 Y )_; vek v = qk;)- Then for any 6 > 0 there exist
A>0, 7>0and ng € N such that for any z € R?, ||z|| > § and n > no we have

P
Z UkjZj

j=1

# {k: ke{l,...,n};

>/\}21~n
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(#A denotes the number of elements of the set A).

Proof. At first we shall prove the assertion of the lemma in a little modified version,
namely: .
Y(§>0)3(A>0, 7> 0and ng € N) ¥(z € RP, ||z|| = § and n > ng) we have

14

Z VkjZj

=1

#{k: ke {l,...,n} >A}27.n,

Let us assume that it is not true. Then there is § > 0 such that for any >0, 7>0
and 7 € N there is 2° € R?, 2° = 2%(\, % 1), |2 = & and no > # such that

,,

j=

# {k: ke {l,...,n};

>}\}<f.no. (10)

Now let Ag = miny =, 2¥Qz. Then Ag > 0. Find 7, € N such that for any n > n; and
for any j, £€ {1,...,p}

n

1
_E:Uv.ﬁ :
n keVkj ~ G5

k=1

< Lo
4. p282°

Then for any z, ||z]| = & and n > n;, we have

P » 1 n
Z Z 2 (; Z Vg — %’) Zj

k=1

Jan

Ao
Pl b

But it implies that for any z, [|z]| = 8o, n = m,any A > Oandm = # {k: k€ {l,...,n};
[20%e1 Thezel > A} we have

A P P 1 P P hid
‘To +YD 2z < ;Zzz’ {}:v"‘v"j} H=

=1 j=1 =1 =1 k=1
u ? n—m., m 2
== Zzlvkl 22,{% ST/\ +;[H‘50'P] .
k=1 L=t =

Put now A = = [H & -p72 % and #% = n;. According to (10) then
there exists 7o > # = n; and 20 € RP (20-—’20(5\,?,71))1 2%l = 8o such that

# {k: ke{l,...,n}; |0, veezd] > \/A,;} < ff,;’.lg;]?. But then we have for this

2% and ng (remember that Ag = minyg=s, 21Qz)

Ao Ay 7 ng—m Ao Ao , o Qo
= <=2 =2 Ly [H-p-b) <=
g P s aln < T T AT Hop&l <5

which is a contradiction.

Now let z € R? be arbitrary point with llz]| > 6. Puty =z -

€ R?. Then [lyll =6
and we may apply previous part of proof. o

£
B=ll
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Lemma 3. Let f(u) be a convex function on (0, 00). Then there is a nondecreasing
function ¢(z) on (0,00) such that for any pair g, and g, of densities on (—oo, 00) we

have
92(2) —t'} do(t).

E,, {f(f)}=f(1)—|-/:(t~1)dgu(i)+%/ow{14z+E,,, e,

Proof. Since f(v) is convex we may write

N ORS TUEAREY
= —fleydt 0<v<l

where ¢(t) is a nondecreasing function (see (3], 18.43). Denote g3(z)/g1(z) by D(z) and
by P; probability measure generated by ¢;. Then

oo To 00
E, f(D(z)) = / F(D@)gr(z) da = / (Dl (a)d + / H(D())g1(2) dz

where we have defined T so that D(Tp) = 1. Then we have

sy = [ {r0)- [ i} [ {f(1)+ T &p(t)di} 0(x) d.

Let us study at first the second term of the right hand side. Now f,;: fMgi(z)dz =
P(D(z) > 1) f(1). Further

oo D(x)
A { / v(t)dfyl(m)} s
/Tm {it = D) O gr(2)} do - /Tw { / - D(x))dsa(t)} n(z)dz =

- 99(1)/:0(1)(1)— 1)g1(1')dz+‘[m {/{D(I)M(D(x)-z)g,(x)dz} do(d).

Moreover

1—t=/_Z(D(x)—t)g:(w)durz—/_mll) )=t dz+2/{D(M(D(r)—t)gl(z)dz.

Together it gives
[ (D)o
= f( l)P1(D(z) > 1)+ (1) [A(D(z) 2 1) - A(D(z) > 1)}
+1 / {1 = t+ EqID(2) — t]} deo(t).
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Similarly for

/:: {f(l) - /:(z) ‘P(t)dt} gi(z)dz

To 1
W p@E <= [ f 0t (z)ds

]

To
0 PG < 1= [ {(DE) =) (Ol o(e) do

To 1
- D(z))d {(z)dz =
*/.w/m,)“ (2)) do(t) 91 (=)
S P(D() < 1) + (1) (P(D(e) < 1) ~ Py(D(z) < 1))

+/o /{D(z)d}(i — D(z)) g1(z) dz de(2).

But the last integral may be written as

/ [ - penatedzae + / /D( (D) = r(e) d ot
- /O(t~1)d¢<t>+§/0 {1 -t +E,|D(x) - t]} dp(t)

1

and the proof follows. a]

Lemma 4. For any 6y, 6,, 0 < 8; < 6; and ¢ > 0 we have

¢! [w(c™!(t ~ 6 — z))g(2)dz > E, log ¢! fw(c(t — 0, — 2))g(2)dz
9(t) - 9(t)

E, log

Proof. We need to show that

o ! fw(c(t - 6 — 2))g(2)dz o Ju(eT t — 0; — 2))g(2) dz
e {- s o0 peef-es Q) b

Let us denote go(z) = ¢! fw(c™'(z — y))g(y)dy and gui(z) = g.(x — 6;) for i = 1, 2.
Due to the fact that the fuuct:ou o(t) from Lemma 3 is nondecreasing it is sufficient to
verify that for any t € R

9:2(-’”)
9(z)

ga(2)
7| g(z) t‘ <k

For an arbitrary density g we have

- L1

——t‘g(z)dz:l—t+2t~/ gdx—Z/ gdz.
9(z) G<tg g<tg

_:“

E
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1 Ge

{e )=

. {/ gd:t-—/ gdz‘}+/ ge1 dz—/ gade.  (11)
{gca<t-g} {gar<tg} {ger1<t-g) {ge2<tog}

Let us denote A; = {g.; < tg} and B; = {ga < tg} and draw an exhibit

Hence

ge2
?-t}—Eg

~

—_—~

Let ao be a point of intersection of g1 and gz, i.€. ge1(@0) = ge2(ao). Let us recall that
ga1 = ge{x — 01), 92 = gc(z — 0,) and hence

gelap—61) = ge(ao —b2),
1

~(0s + 02).
2( 1+ 6,)

Moreover we have g.(z) > ge2(z) for any x < ao. The expression in (11) may be written
as

Qg

]

[ ts-gm e [ (tg-ga) s
A B¢

Let us consider the situation when A; C (=00, a0). Then B, C (—oo,a0) (even B, C A;)
and

/ (tg ~ gea) dz _/ (t9 — ga) dz > / (ge1 — ge2) dx > 0.
Ar B B

For the case when A, is not subset of (—oo, ag) let us realize that

a0 0o
/ (g1 — g9e2) dz = / (92 — ga) dz
-0 a0

and even gi(ao — ) — ge2(a0 — 7) = gea{ao + 1) — ger (a0 + r) for any r € R. Moreover

/ (tg = gea) dz — / (tg = ga) dz

Ac B,

= / (tg — 9e2) dz—/ (t9 = 9a1) dz
AiN(~o0,a0) BiN(—o0,ap)

+ / (tg — 9c2) dz — / (tg = 91) dz.
A(N(ag,+o0) Bin{ap,+0)
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Now (keep in mind that B, 0\ (~00,a.) C AN (~00, ag))

/ (tg ~ 9e2) dr—/ (tg — ga) dz =
Arn(—00,a0) Bin(~o00,a0)

/ (0e1 = 9e2) dlz + / (tg - 9a) dz =
AiNBiN(—o00,20) (A\Bi)(~00,a0)

/ (min{tg, g} ~ ga) da =
AeN(—c0,a0)

il

i

ap
/ (g1 = ge2) d — / (ge1 — max{gen tg}) da. (12)
—o0 BPN(—c0,a0

Similarly
/ (tg - 9c2) dz—/ (tg — ga) dz =
Ai(ap,+00) Bi{ap.+00)

(o]
= [Tta-sa)+ / (602 — max{tg, ga}) de. (3) -
ag Afﬂ(aq,+ao)

Let us take into account that (12) represents the shadow square given left from ag in the
next exhibit while (13) is equal to the shadow square right from ag but with minus sign.

N
N\l
N
\\
g e N
Ge2
]
|
! ~
Qo
Let us assume for a while the above exhibit modified as follows.
7T TS t-g(z— L [6: + 62])
// ~ 2

Then the shadow square left from ag is equal to the shadow square right from ag. The
last but one picture differ from the last one only in position of dashed curve which is (in
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last but one) shifted to the left. But it means that the square left from ey increases and
vice versa the square right from ao decreases (it follows directly from the assumption that
¢ is decreasing for x > 0). On the other band (as already mentioned above) “left” square
represents a positive part of (11) namely (12) and “right” square contributes negatively
to (11). It is equal to (13) with minus sign. It concludes the proof. a

6. CONSISTENCY

We are going to give now the main result of this paper. Alghough the proof is rather
long we have prefered to present it in full details for convenience of reader.

Theorem 1. Uunder Conditions A, B, C and D the estimator 3, is (weakly) con-
sistent.

Proof. The proof will be based on a finite sequence of comparatively simple approx-
imations. The first step will be to show that

! - e wlen'(ei(B) — &), _
;Ilﬁ-;l“ll}r(l\’s ;103 ?:1 w(cs(e; - &) {bﬂ(eJ) - bn(ej)} = OP(I)-

It is clear that the above expression is nonzero (and hence it may be larger than some
¢) only for those w's € Q for which bu(&;) # ba(e;), i.e. for the case when |é;| < ta, and
le;| > %au or |&] > %a,, and |e;] < %a,.. Let us realize that

e —&=Y; - X0 =Y, + X" = XT(3" - p°.

And hence -
W] (G - )

néec,

(e — &)=

Due to this we have, uniformly in j = 1,...,n, ¢ 'le; — &| < 7 (for some 7 > 0
starting with some ng € N) with probability 1 — ¢ (for apriori given ¢ > 0). Let us
restrict ourselves on the set on which ¢;'le; — &;| < 7. To have a possibility to obtain
then by(e;) # ba(€;) we must have e; € (Ja, — &, 1a, + 8). Let us bound at first just
studied expression from above. Let us keep in mind that for ¢;'|e; — &;] < 7 we have for
j=1,...,n w(c;'(e; — &)) > & where & is a positive number. It implies that

e w(er' (ei(B) — &)
i wlert (e — &)

(remember that w is bounded) with probability at least 1 — €. Let us use Chebyshev’s
inequality saying that (for € > 0)

n K,

log < log

P(X>e)< é‘E max{X,0}.



370 1. A. VISEK

The probability that there are k indexes such that b,(é;) = 1 and ba(e;) = 0 is not larger

than
(:) v = )"k

where v, = P(le;| € (an — ;' (e; — &), an + ¢ (e; — §;))) = O ("—é)‘ Hence

E max {l sup Z log

7 perr (3

1 n- K, - ny . —k n- K1
< = —_— E b . - T = . —
n Iog 2 k (k) V"(l 1/,,) Vn log

e (0 = &) oy 0}}

= w(c(ej — &)

which tends to zero as n — oo.
Similarly for a lower bound. We should consider case that {ba(e;) =1 and b,(é;) =0

for some j’s} and evaluate conditional mean value of

1 n n ~1(e.(8) - &
L oo D (8 = 2)
7 ll6-pojl<Ke = i wle (e; — &)

Due to the fact that 3’s over which we take infimum are such that [|3 — B < Ke the

mean value over these cases will be of order

~ .. '”(C;]'QP'KS'KS)_(" k(y _ o, yn-k
;k log K, Y R

Under a straightforward computation we find that it is of order v, logw(c;') and taking
into account that v, = O(n'%) we obtain that the conditional mean value converges to

zero.
Let us show now that

1

sup
7 ||3-poli<Ks

=1 {] ¢ i wlcri(e; — &)
S wleie =) | )

~ log =0,(1). ' (14)

Having rewritten this expression into the form

i { [log i w(c™(e;(B) - &)) — log Zﬂ: w(e™ (e;(8) - é;))]

1
= sup
i#j

7 Jla-g0l<Ke

- [logzw(c-'(e,-m) — &) - log 3 w(e™(e(8) - e.»)] } b(es)

i=1 it

i=1
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and using Taylor’s expansion we obtain

n {w(c;'(e,-(m =& _ el é:'))} bales)

s [ .
where
b (Z ol (e(8) - &) Zwu-'(e,v(m-a‘-)))
#i =
and

1; € (E w(c™ (e — &), Zw(c—l(ﬁj - éi))) .

i#i
Hence (14) can be bounded by

1 - w(cz'(ei(B) — &) w(c; (e; — &)
— sy n — + LC — b(e;
n ua—mﬁlkﬁ = {Z,»*,» (e (e;(B) ~ &) Lip; wlerte; — &)) (&)
= qw(er'(e5(8) — &)
< = sup = —bu(e;
T (1840l Ks ,_Z, :‘.Zi;&j w(c;(e(B) — &)) (&)
1 5 quwlc(e; — &)
+ — sup by (e (15)
R a-polirs |5 w Lig; Wl (65 — &) (e3)
Let us consider the first member of (15). It is not greater than
n | -1
Ky, sup - [— w (e te;(B) — &) } (16)
ls-so<ks Sy | g ! )

Using Assertion 2 we obtain as an upper bound of (16) the expression

n3K,  sup i Z w! (C;I(Cj(ﬂ) - é&)).

ls-ell<Ks $=7 4

Now for any € > 0 (notice that in that follows residua are without “”)

P {n"’ sup ZZUJ" (c;'(ej(ﬁ) - e.-)) > %}

No-poli<ks 527 457

= P {n"" sup ZZw'l (¢ (e — X;r(ﬂ‘ 8 —e)) > %}

No-8%i<Ke $27 55

1A

2oy [ o (€' (= XT(B = £%) — 1) g(z) gt)d dt

€ = le-sli<Ks
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which converges to zero as n — oo (see Condition B). Let us fix a A4 > 0. Moreover

denote by B, the set

v n . ;
we: 2 su P
{ -k ;g w(c;(e; — e = X (8~ 9) 2}

Then find ng so that for any n > no P(B,) < A. For w(c;'(e;(8) — &)) write

w (e (e(8) = &) = w (7" (e = XT(B° = B") = e) +w'(in) - XT(B° = ") (17)
where jin is appropriately selected point which will be specified later. Since we have
assumed that nf||G" — G = O,(1) we may find n; € N, my > np and L > 0 such that
for any n > ny

p{atlg" - A" > L<a

Finally let us denote by Cy = {w € @ n*lI8°~ 4|l > L} and

sup 5‘:2 w67 (e — X;(B~ B°) — &) > 6}

WB-8°N<Ks ;=5 25

E,‘={w69: n=?

(notice that e’s in definition of E, are with “*” in difference with B,). Now, find
ny € N, ny > ny such that for any n > ny we have ¢! -n=% - Ky - K, -D-L-p < % and
¢;'n™*L- Ky -p < v (see Condition A and B). Since we have for any j € A

le; = XT(B = 8% — & — (e — X](B - B%) — &)] = lei — & = |XT(B" ~ B%]

and for iy, from (17) we have

&in € [e7' minfe; — X] (B~ B°) — e ¢; — X](B - °) — &},
;' max{e; — X](B— B°) — e;, ¢ — X] (B - B°) — &)]

it holds for any n > n; and w € C¢

e [#n) wltsn) (e - X
Jw'(&5in)] = w([;") w(C,T'(Bj—X;r(/}—ﬂ“)~§;)) w (c;'e; — X (B ﬂﬂ)_ei))‘

< K D-w(c]'(e; — X;r('ﬂ—ﬂ") —e)).

Taking into account (17) it implies that for w € C¢ and n > n; we have

w(e](e(B) - &) 2 w(c ' (es(f)—e)) [ —nlc;' - Ky K- D L-p]

70 (67 (es(8) = )

v
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Now for any n < n; and w € E, N CE we have

e<n™ sup ZZw" (c;l(E,' -(B) - &)

N8-mli<ks 533 77

< 7% sup i:Zw" (e (ei(B) —€)) s

WB-Ali<Ks 57 7
i.e. w € B,,. So, since we may write
P(E,})=P(E.NC.)+ P(E,NC;) < P(C,) + P(B,) <24,

we have proved that the first supremum in (15) is small in probability. The second
supremum may be treated in a similar way. Now we would like to prove that also
supremum of the difference

M-k 5 L 0l (6 - @)
i (e (e — )

Analogously as above we may write this difference in a form

: ) { [nogz (e (e(8) — &) — log 3 wl(c™ (e;(8) - a))]

—  sup
T -oli<Ke {27 H pry

- [long’(c'l(eJ’ — &) —log 3 w(c(e; —e;))]} bu(e;)-

i i#i

~ log } ba(e;) = 0,(1).

Let us use again Taylor’s expansion. We obtain that this difference is bounded by

L {sup ® Fgsl(e (e4(8) - &) = wleg (s(8) - €:)}

n | geRr ot Tin

+ sup i Tigilwler (e — &) —wler (e — e:‘))}} ba(é;) (18)

BERP £ A

=l n

where
o € [min {Zw(c-‘(ej(m —a)), Y (e (e(8) - e.-))} ‘
Py i#;

max {Zw(c-‘(ej(/’) - &)), Z w(c_l(ej(/j) - e;))}]

i#i i#j
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and

Ajn € [min {Z w(e™ (e - &)), 3 w(c (e — e,-))} ,

A i#
max {E w(c™ (e; — &)), Zw(c"(e]- - c;))}] .
i#j it

Now let us fix again some A > 0 and L € R and find an ng € N such that for any
n>ng

p{nlge-pri> Ly <a
and again denote

C, = {w cq: I8 - A > L}.

Similarly as above find n; > ng such that for any n > ny wehave c;'n~* K- Ky4-D-L-p < %
and ¢;'n =L - K4 -p < v (see again Condition A). Then we have for n > n; and w € C

<n b L.-Kyp

les(8) = & — e;(8) - el = | XT(8° = B)
and hence again for any w € C¢ and for any

yE [c;' min {e;(B) — e, €;(8) — &}, c;' max {e;(8) — ¢, €;(8) — é,—}]

[w' ()] < Ky D -w (] (ei(B) — e:))
which implies that 30, w(c; (e;(8) — &)) = § Xy w(c;' (e5(B) — €:)). Therefore we
have for n > n; and w € C¢

1 -
Tin 2 3 Zw (c5'(e;(B) — €)) .
i#i
It allows to bound from above the first member of (18) by
Z sup Y wled (e(B) — &) ~ w(cy' (ei(B) — &)
" Berr TG E«';ﬁj w(c;(e;(B) — &)

. (19)

But we have also
w (" (e(8) = &) — w (¢ (e5(8) — &) = w'(&in).- Xi(B° ~ fi)
(see (17)) and hence for n > ny and w € C

fw (2 (€5(8) = &) — w (e (es(8) ~ e))] <
< wf Ky Ks-LepD-w(c;'(e;(B) - &)
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Now fix any € > 0 and denote by

In, g wler (ei(B) — &)
Flwe: [—) log=FH ——— |5 el.
{ n Z e s 9 (&5(B) — )
Finally find n; > n; such that
2-n;% Ky Ks-L-p-D<ce. (20)

Since for any n > n; and w € C; we have from (19) and (20)

m ek |2 Sigy e (B —e)|

w € C¢ implies w € FE, i.e. C5 C F¢ and therefore F,, C C, and this is the same as

P(F) <A

for any n > n,. The second member of (18) may be proved to be small in probability

along similar lines.
Now we shall show that

_ = Tigs wlcy' (ei(B) — &)
S,, - 1 1 i#3
" l18-0lI<Ks | 557 [Og E.‘# w(e; (e — ei))
—Ed1og iz 0lei (e5(8) — €i)) = T it = 2 = 2
igs wlc (e — &) T T S G S Ft

= o,(1). (21)

Notice that
Ei# s w(ert(ei(B) — &)
Ellog =£&d 7=~~~ ~ =
{"g Ty wleg (e =€)
Z;;- "’(C;l(.'l - X,T(ﬂ - 50) - Ze))
= 1 3 dy. B
/ o Ei#j w(csHy — z)) 9ly)dy .
To prove (21) we shall start with proving

V) = a7ty [logz w (e (es(8) — &)

i#i

1= 21,0 ey €5 = Zjoy, €4 = z,-+,,.4.en=z“}=

j=t
~-E {long (C;l(ej(/?)— B-‘))} €1 = 21y oy €5l = Zjq, €541 = Zjgg,.. .
i#j

ey = z,‘}J = 0y(1).
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Using Chebyshev’s inequality for some fix (positive) ¢ we arrive

1 RN
PUMBI> ) < BV =53 &

where

& = {"Z[Iogz (2" (e5(8) = ) = E{*%Z )’c-’))l

=1 i#j i#i

2
€1 = 21,000,801 = 251,641 = Zj41y .. €n = Zn}] } ’

& = o {n'2 Z Z [log Z'" (C;l(ej(/)') — {logz c. C](ﬂ) - Cx))
=1 s>j i#j #
€1 = 21500361 = Tjm1, €41 = Zjgy .o Cn = 2"}]
log 3w (7" (es(B) ~ e.)) ~ E qlog Y w (c;"(ex(B) ~ )
7 "
‘m = 21y €5m1 T 25m)y €agl = Tsghy e Cy = z“}] } ’
= { B Z Z [log Z 2 (es(8) - &) - {log Z (Cnl(e:(ﬂ) - e’))
=1 s>j i#) #i
€1 = 21,0 €m1 = Zjo1, €541 = Zjgn, -y =2"}]
log Y w (¢ (ex(B) = &) = log Y w (5" (es(8) — eu))
;=; vis
and finally
£ = % ""EZ {logz w () (e;(B)—ei)) -
i=1 8>j i#j

—E {long (7' (e5(B)—e))

]

[E {Iog S w (G e(B)-en)
vits

€12y, €51 T 21y €41 = Zjd1s c"—zn}]

- E{logy w () (eo(B))| e1=21, ... €1 =20, €01 =201, o En =20 }

1 =21y 003 €5m1 2511 €541 =Zalr- -+ En =2y

vate
viy
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Since 3. w(c;'(e;(8) — e)) < n- Ky and 7' - log’n — 0 for n — oo, & — 0 for
n — oo. {Notice that convergence to zero is a consequence of boundedness of the kernel
w and doesn’t depend on f.) & may be rewritten into the form

n‘ziz logz (c; ' (es(B)~er))

i=1 s>; v
- {logz C.. 8:(,5)"'51')) €1=2y,.. -155—1=25—1753+]=Z:+l:---en=zn}
vis
E { [108 3w (67 (e(B)—e)-
i#i
- {108 Z ;' (ej(B)—e:)) | er=21,. s €5m1=2im1, €41 =241, - en“—‘zn}] l
i#j
€121y 03 €jm1725-15 €541 =241, - -=’n} } -

(Remember that €;(8) = Y; — XT3 = ¥; — X78° — XF(8 - 8°) = ¢; — XF(B ~ 4°),
and hence €;(3) doesn’t depend on e, e3,...,€j-1,€j41,...,€s). The last modification
is possible due to fact that the expression

tog 3w (¢ (es(8) - €4)

as well as its conditional mean value depends only on random variables which are “fixed”
by the set in condition, namely {e; = z1,...,€j-1 = zj-1, €41 = Zj41,...€, = zs}. But

E { |:]0g2w (c;‘(ej(ﬂ)—e;))
by

- E {Iog S w (e (e5(B)-e)

i#

€1 =21y 0y €51 =251, €541 = 2541y . --Bn=2n}“

E1= 2105 6512501, €j 41 =240, - - n—zn} =0.

(Notice again that the last mean value is equal to zero without any dependence on 3).
Hence & = 0. The expression £ may be bounded by

n 2 log(K,. n Z Z E [log Ew “'(e,(ﬂ)—eu —1052 '(c,(ﬂ)—e,,))

i=1 5> vis vits
vilj
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n=? w(c e,(ﬂ) - e,))
Jog(K, -n) - ZE _Zl:,_w(c."'(e,(ﬂ_)—e,,))

<
i=1 u>1
< 4n"h K dog(K; - n)z Z Z Ew™ (¢ (es(B) — e.))
=1 355 vés
= 4n7 2 log(K, -n)- i Ew™" (' (es — XJ(B = 5°) —&1))
=1

an~? . log(K, - n)- Z/w_l (7= - X7 (8- -1) 9(z) g(t) dzdt

which converges to zero for n — oo (even uniformly for ||# — 8| < Ks). The expression
£4 may be treated similarly.

Now we have to make use of the fact that V,(8) is continuous in 8, uniformly continu-
ous for B € {B € R?: || — B° < K¢} and by means of standard technique of covermg
the ball {8 € R?: || — °|| < Ko} by a finite set of balls {# € R? : || - gi|| < 7‘}1_
we may find, using the law of large numbers, (for any apriori fixed & and T,€>0,7>0)
a set A, and ng € M such that for any n > ng and w € A,

—l- sup Z [IOEZ n‘(‘%(ﬂ - &)

T lB-pli<Ke 5= pryd

<e

— Elog Z w(c; (ei(B) — &)

i#5

€1 = 21001 €jm1 T Zj-1: 841 = 21,00, 8, =zn}]

and P(A,) > 1 — 7. Similarly we may show that also

W, = n' sup [logz (Cn (e; —e.)

lo—soli<Ke pry

- E {long(c;I(e,- - &)

E1=21y 0 oy €51 =251 €1 25415000y €n=z,.}] =0,(1).
it

So we have proved that

i - Thiwleg (@) —&), o
i 2 s it ) @)

/Io it w(c Yt—XJ(B -8 —e)) 9(8) ba(2) dt} = g,(1).

'ﬁ w(c(t - €;))

Now we will prove that

g Bt A )
u;f:] w(c;'(t - €))

9(t) b;(t) dt
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may be substituted by

i wle'(t = XT (8- 8% —e))
1 =l 2 t) b (1) dt.
[ iy o
To do it, let us consider at first the difference
n

S ] [long (' = XT(B ~ 8°) - &)

i=1 i=

1
—  sup
7 |B-Ali<Ks

- gy w(e'(y- X7 (8- )~ ﬂ«))} ba(y) g(y) dy

i#]

The absolute value of this expression may be bounded by

1 n

sup (e’ (v = XT(B— Bo) — <))
R |15-p)i<Ks

TS, wle (v~ X7 (B = B9) - ) ") )

=t

(compare (14) and (15)). This is not larger than (see Assertion 2)

n

1y 1 (U — XT(B— ) _ e
ns"‘.,a_i‘lﬁ’m,gg/‘” (2w — X (B — B°) — €:)) 9(y) baly) dy

and for some fixed ¢ > 0

P (ﬁ sup -y / w (MY = XT (8= B°) — &) 9(y) ba(y) dy > s) ,

ne-eoli<ks 57 5

1 n o ,
< o a3 fumt (@ - X108 - 8- 0) o) b)) dyet
€ o-gli<Ke 41
which converges to zero according to Condition B.
Now we shall use Condition C. Let us fix some positive ¢ and positive A and find
L
ng € N so that d,, < min {e’ 41 and dn, < ‘;d,?o Denote

2

1
Sean = € 05 max fsup oty Y09 = 0] sup ot Yo) — B0, Y. 90} < 5}
yeER YER

Then for any n > ng and w € S,,4,» we have (notice that supremum in the next expression

L
is in fact taken over [,E“"' %a,.] and hence g(y) > d2)

d,/2

lgn(y, Y, 8°) — Egnly, Y, %)
sup T
—d, /2 —d,[2 +d}

ba(y) < < d,% <e
JER Egaly, Y. 8% W)
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and also

lyn(y, Y, 8°) — Ega(y, Y, 8%
o 0,7, %) bty
sup lgn(y, ¥, 5°) ~ Egu(y, Y, B)ouw) , W)
wer (4. Y, 0% —g(y) + 9(y)

< m———tﬁlﬁ—-——‘—<d,%_<5.

—dof2— daf2+ d}

So we have (remember that g € G({d.}5,)
0y _ 0
p (max (Sup lga(y, Y, 8°) ~ Egnly, Y, ) by

veR Eg.(y,Y,0°)
l9.(y, Y, 8°) — Egu(y, Y, 5°)] } )
b A.
e Egn(y,Y,8%) nW)p>e) <

Starting with some no we have K - l(s p < 2a,. which implies that we have also
SUPj1,..,n P50l <K “X (B~ 8%l < 1a. and hence for any y for which b,(y) = 1,
i.e. |y] < }an, we have sup;_, . supys_gojc, I — X] (8~ B%| < an. Therefore also
infjcy,. o infys_goyc i, g(y—~XlT(ﬂ—/3°)) > d3 (see Condition C) and carrying out similar

step as a few lines above we obtain for any n > ng

P (lllax{ wp sup 0= X =F)0E) ~Bouly = X7B - B VA,
PRl 9ay = X (A= B, Y. %) -
up sup lgn(y — X](B = A°) — Eg(y — X[ (B - £°), Y, 8] b (Y)} S e) <A
Pl e Eg(y -~ X (B F").Y, 5°) " '
Now using inequality (a,b > 0) '
a—b
loga —logb < min{a, 5}
we may show that
i Thiwle'(t = X[ (3-8 —e)
- ! N ba(t)d
n jg- ﬂ"n(!\s = {/ o Y w(e'(t—e)) g but) dt

S, wle!(t = XT(8 - ) = 2))g(2)de )
L S =@ 0O = o(l).

So we have proved that

LI {log Lic wle'( _le,(ﬂ)—e) balE)—
™ jjo- /wua\'a - Y wlegl(e; — &)

w XT 0) — z)dz
e (R ALRELTL (631 | = (1)
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Now using Lemma 2 and 4 we may find for any v > 0 some 7 > 0 and no € A such
that for any n > ng we have
! fuJ(f Ny = X](B—B8") — 2))g(2)d=

;;«uﬁ ﬂ“ll<l\s Jw(es (y — 2))g(2)d= 9 baly)dy < —r-

=1
It may be shown as follows. One may order the absolute values {IXJT(ﬁ - ﬂ°)|};‘=
Lemma 2 then says that for the above given v there are A > 0 and £ > 0 such that
starting with some n; € A for all n > n; and any 3, |8 — 8°| > v, the number of
indices for which |XT(8 — 8°) > A is larger than n - £. Let us denote by I the set of
corresponding indices. From Condition C it follows that there is an ng € N, ng > m
and A < 0 such that for any n € A, n > ny we have

! Jw(e (= A = 2))g(z)dz et [w(eg'(t - z))g(2)d=
E, {Iog 90 — log ) } < A.

Using Lemma 4 we have for the above given integral

w(cy (y — XT (B - %) — 2))g(2)d(z)
Z/ o f w(c;'(y - 2))g(7)dz O )it ay
-y S wley" (y—XT(B-B")—2))g(=)d(z)
JZ—;/ { 9(y)
~ log W} 9(0) ba(y) dy
[l w=A=2)g()dz) [ uley(y=2))a(2)d(2)
< ;-/{ a(y) log () } 9(y) ba(y) dy.

Since ba(y) — 1 for n — oo the last integral is — starting with some no(> n;) - bounded
by 15" -€+ A. So it is sufficient to put 7 = —% €. A
On the other hand for 3 = 3° we have ¢;(3°) = ¢, and hence

T v (e (e;(B°) — &)) ~
—;l w6 =0

which implies that for any n € N we have

sup log — ba(€;) > 0.
" |lo-6oll<Ke 23 Z ‘w(c ‘(e, —& )) !

Due to continuity of ali functions and compactness of the ball {3 € R? : |3 — 8% < Ks}
we have
n n Az
l sup Z log Z:;::l w(c, —(fJ(ﬂ) _ &))
n lls-gelicks S iz w(egt(e; — &)
= - _-M)___é‘_)l b(3;
= Z’ ﬁ(eJ)'

Yim wleg (e~ &))

"n(éj)
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Assuming that 4" is not consistent (together with Condition C) one finds a convergent
subsequence which is ~ starting from some n; - out of the ball {8 € R? : 2|8 — 5°|| < 7}
This lead to contradiction. [m]

The asymptotic normality of /jn(y) will be proved in the second part of this paper.
(Received March 7, 1991.)
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