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PARAMETRIZATION OF MULTI-OUTPUT 
AUTOREGRESSIVE-REGRESSIVE MODELS 
FOR SELF-TUNING CONTROL 

M I R O S L A V K Á R N Ý 

Problem of parametrization of multi-output autoregressive regressive Gaussian model (ARX) is 
studied in the context of prior design of adaptive controllers. 

The substantial role of prior distribution of unknown parameters on the parametrization is demon­
strated. Among several parametrizations a nontraditional one is advocated which 

- makes it possible to model the system output entrywise, thus it is very flexible; 
- models relations among system outputs in a realistic way; 
- is computationally cheap; 
- adds an acceptable amount of redundant parameters comparing to the most general but compu­

tationally most demanding parametrization which organizes the unknown regression coefficients 
in column vector. 

1. INTRODUCTION 

Autoregressive-regressive model with exogenous inputs (ARX) is often used for mod­

elling of controlled systems especially in self-tuning control [1]. Popularity of ARX 

models stems mainly from plausibility of least squares (LS) for est imating its parameter-

s. If Bayesian setup is used, the statistics supplied by LS serve for a simple evalution of 

posterior probabilities on structures of ARX models which compete for the best descrip­

tion of the modelled system [2]. Thus, complete system identification can be performed 

within the LS framework. 

The cited results proved to be reliable and quite complex identification tasks have 

been solved using them. In connection with preparation of theoretical tools for prior 

tuning of linear-quadratic-Gaussian seiftuners [3] the problem of redundant parameters 

- which is of restricted importance in on line phase - has emerged. 

This paper brings a sequence of simple propositions which summarize the relevan-

t results on idenfitication of ARX model for multi-output (MO) systems and brings 

some arguments in favour of a nontraditional parametrization of ARX model called here 

separated parametrizat ion. 
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2. PRELIMINARIES 

2 . 1 . M a n i p u l a t i o n s w i t h arrays 

An inspection of multivariate systems requires handling multi-index arrays. Readability 

of relations among them is much influenced by the notation. We hope the following one 

to be a lucky choice: 

- the arrays are mostly column-oriented, a row-oriented array is gained by the trans­

position ' of the column-oriented one; 

- i th column of a matrix with entries Xjk is denoted a:.,; a:,, means ith row, i.e. x,-» = 

x'»i' 

- the arrays assumed have generally non-rectangular shape (e.g. number of entries 

in a:., varies with i): the quotation marks above should indicate this fact; 

- the asterisk convention applies to tensors too: if a tensor S has the entries Sijk 

then Sij, means the vector gained after fixing the indices i,j and S;,» is a matr ix 

selected from Sijk when i is fixed. 

3. BAYESIAN FORMALISM 

Bayesian estimation adopted needs a probabilistic form of the model. For presenting it, 

we shall use the following notation and notions: 

- p(A\B) denotes the probability density function (abbr. p.d.f.) or the probability 

function (p.f.) of a random variable A conditioned on B ( the random variable, its 

realization and the corresponding p.d.f. argument are not distinguished as usual; 

a distinction of the p.d.f. and p.f. will be clear from the context) . 

- Nd/ls/iC) denotes the Gaussian p.d.f. of a variable y determined by the expected 

(£) value y of y and by the covariance <r. 

- Data are measured on the system at discrete time moments labelled by t = 1 ,2 , . . . 

Those which can be directly manipulated are called the (system) input and denoted 

u(t). The rest is called the (system) output, y(t). The dimension of the output is 

denoted m. 

- In conditioning, the following data collections are used 

f = {{y(r),u(T)y-Ju{y](t)y^,u(t)} for i = 0 , l , . . . , m 

(by definition the set {•}? is empty) . 

- The estimation task arises when a system model describing the output probability 

for a given past is parametrized by an unknown (finite-dimensional) parameter 0 , 

i.e. it is described by the p.d.f. p(y(t)\t°,Q). If the p.d.f. is viewed as function of 

O (data are fixed) then it is called incremental likelihood function. 
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- The estimation is performed assuming that the estimated parameter 0 is unknown 
to the input generator (it fulfils natural conditions of control [4]), i.e. assuming 
u(t),Q to be independent under the condition t°, i.e. p(u(t)\t°,Q) = p(u(t)\t°). 

- The posterior p.d.f. p(0 | i m ) is Bayesian parameter estimate. Under natural con­
ditions of control, it is related to the prior p.d.f. p(0) by the following version 
of Bayes rule: p(0|tfm) oc M(Q;tm)p(Q), where oc means proportionality by a 0-
independent factor. The likelihood function M(Q;tm) is the product of the incre­
mental likelihood function A/(0; tm) = p(y(t)\t°, 0 )M(0; (t- l ) m ) , M(0; 0m) = 1. 

4. MULTI-OUTPUT ARX MODEL 

Two parametrizations of the multi-output autoregressive-regresive model of controlled 
systems (MO ARX) will be discussed. 

Fundamental parametrization: The outputs are related to the past history by the equa­
tions 

7, 

yi(t) = YJhii>ki(t) + ti(t) = ei4.i(t) + ei(t), i = \,...,m (1) 
fc=i 

where 

Ski a r e regression coefficients to be estimated; 

/,• denotes the number of coefficients related to the ith output; 

4>,i(t) is the regression vector available for predicting yi(t), the regressor is a known 
function of t°; 

e,(<) are zero mean Gaussian random variables with the covariance structure 

f( ,(ť) J(r)|ť0, ] = | J 0 for t ф т 
ãц for t = т 

given by an unknown symmetric positive definite covariance matrix <x. 

The unknown parameter 0 of the fundamental parametrization is 

0 = (9ki, an, i = \,..., m, i > j , k=\,...Ji). 

Separated parametrization: The outputs are related to the past history by the equations 
formally identical to (1) 

h 
Vi{t) « £Skiipki(t) + ei(t) = 9i.rl>,i(t) + ei(t), i = \,...,m (2) 

fc=i 

with elements defined in a way which guarantees independency of e(t) entries 
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Oki are regression coefficients to be estimated; 

/; denotes the number of coefficients related to the t th output; 

t/>„,(i) is the regression vector available for predicting yi(t), the regressor is a known 

function of i , _ 1 (!); 

ei(t) are zero mean Gaussian random variables having independent also entries (!) 

e[e,(t)eJ(r)W,e} = {° ** \*Tm \t * . 
J (_ <x,- for t = T and i = j 

given by an unknown diagonal positive definite covariance matrix a. 

The unknown parameter 0 of the separated parametrization is 

e = (0kl; - , , i - l , . . . , m , k= 1 , . . . , / . ) . 

Let us stress the difference of the above definitions: 

Fundamental parametrization has symmetrical noise covariance and unit matrix at the 

predicted output ; 

Separated parametrization has diagonal noise covariance and a triangular matrix at the 

predicted output . 

5. ESTIMATION OF MO ARX 

We shall write explicitly likelihood function as the key item needed in estimation. 

P r o p o s i t i o n 1 [Incremental likelihood of MO ARX model] The incremental likeli­

hoods of Gaussian MO ARX model take the forms: 

Fundamental parametrization 

p(y(t)\t°,e)= (3) 

m |2-»|-MexP I -0.5 f > , ( 0 - 0"..<MO](*~1).j[yj(O - M.i(*)] I -

= |2-o-|-°-5exp j - 0 . 5 E ( ^ ' ) u [ ~9\ ] * « ( 0 * i - ( 0 [ ~], ] j 

where the (regression) da ta vectors *f>.i(t) related to the t ime moment t and the ith 

output are introduced 

*..(«)= [yi(tU>Ut)) • 
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The dimension of the tth data vector is Li = U + \. 

Separated parametrization 

(4) P(y(t)\t°,e) = n(27r<7t)-
OSexp|^^[y,(<)-^V.,(0]2} 

= j W ^ 
where the (regression) data vectors •»,•(<), i = 1 , . . . , m , related to the t ime moment t 

and the tth output are introduced 

» i . ( 0 - W ' ) . . " . 3/i (<). fc.(01 • (5) 

The dimension of the i th data vector is L, = /, + i. 

P r o o f . By straightforward manipulations. D 

P r o p o s i t i o n 2 [Likelihood of MO ARX model.] The likelihoods of a Gaussian MO 

ARX model take the forms: 

Fundamental parametrization 

M(Q;tm) = |2«-trrM^exp|-0.5 £(»-')« [ ^ ] V*(t) [ ^ ]} (6) 

where the scalar ;/(<) and (L,, L,) matrices v'J(i), i, j = 1 , . . . , m , are sufficient statistics 

for est imating the parameter 0 . They are defined by the formulae 

j/(<) = i > ( < - l ) + l , p(0) = 0 

V'3(t) = Vi3(t - 1) + **(*)* ; . (<) . Vij(0) = 0, i , i = 1 , . . . , m. 

Generally, it is needed st = 1 + ^ " = i 0 .5 j , ( j , + 1) + £ £ i LL? storage elements for 

keeping the values of these statistics. 

Separated parametrization 

M(9;r) = n ( 2 ^ ) - ° M " e x P { - ^ [ ~\ ] V(t) [ ^ ] } (7) 

where the scalar //(2) and (Li,Li) matrices V'(t), i — l , . . . , m , are sufficient statistics 

for estimating the parameter 0 . They are defined by the formulae 

v(t) = v(t-\) + \, i/(0) = 0 

Vi(t) = V\t-\) + •«•(-)*{-(-) . V'(0) = 0, i = l , . . . , m . 
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Generally, it is needed st = 1 + J2T=\ 0.5L,(L, + 1) ss st/m storage elements for keeping 

the values of these statistics. 

P r o o f . Implied by the Bayes rule, and previous proposition. • 

The exceptional position of Gaussian AR.X model among practically used system de­

scriptions stems from the fact that it possesses finite dimensional statistics and thus 

admits self-reproducing prior p.d.f. 

P r o p o s i t i o n 3 [Estimation of MO ARX model with self-reproducing prior] Let us 

change the zero initial conditions in the recursions for sufficient statistics to: 

Fundamental parametrization 

;/(0) = ;/o, with a positive ;/0 

V,} 

V'J(Q) = VQ1 giving a positive definite 

Separated parametrization 

V" 

;/(0) = ;/o, with a positive ;/0 

V/'(0) = VQ with a positive definite V0'. 

Then the likelihood functions modified in this way are respectively proportional to 

p(Q\tm) and p(Q\tm) with finite proportionality factors. 

P r o o f . See [4]. D 

R e m a r k . It can be shown [4] that collection of the sufficient statistics is algebraically 

equivalent to least squares. The prior p.d.f. adds non-trivial initial conditions to recursive 

version of LS and regularize them. 

6. COMPUTATION AND REDUNDANCY ASPECTS 

6 .1 . R e l a t i o n s of t h e parame tr i za t i ons 

The parametrizations assumed are generically equivalent. 

P r o p o s i t i o n 4 [Relations of the fundamental and separated parametrizations.] Let a 

be a positive definite matrix with the (necessarily unique) factorization a = £ - 1 . S ' ( £ ~ ' ) ' 

where C is the lower triangular matrix with unit diagonal and 5 is the diagonal matrix. 



408 M. KARNY 

Then - with probability 1 specified by p(Q) - there is one-to-one mapping between 

both parametrizations which is given by the equalities 

a = S, h = li + i - \ (8) 

Mt) = i yj'(i) for k < * 6k, = [ ~£,k for k K ' 
\ V'(fc-;+i). for fc > i ' \ £ J = 1 B^i+vjCij for fc > i 

P r o o f . By straightforward algebraic manipulations. D 

Proposition 4 is seemingly in a contradiction with Propositions 2 as the sufficient 

statistics of both models differ. The real difference, however, enters through the self-

reproducing priors. 

P r o p o s i t i o n 5 [Richness of self-reproducing priors.] Let"P, V be sets of all proper 

self-reproducing priors related to fundamental and separated models, respectively. Let 

us denote T mapping of V described by (8). Then V is proper subset TV. 

P r o o f . The inclusion V C TV is implied directly by the definition of T. The strict 

inclusion is seen from the following example which will be used in the furher discussion 

too. 

Let m = 2 and p(Q) = p assign nonzero probability to the following O 

0u = [/', <?',0']i number of zeros = dim(k) ^ 0 

6i. = [0,n,K], number of zeros = d im( / ) ^ 0, dim(A) = dim(^) 

£ J I * a 

Then, there is no p € V such that the corresponding image is p because the mapping 

»u = [f',g',o'] = 9u 

67. = [ « / ' , Q(J + h', fc'] 

is non-invertible. D 

R e m a r k s . 

1. Proposition 5 exemplifies that the prize we paid for smaller dimension of sufficient 

statistics is the loss of modelling flexibility: we are not able to assign fixed (zero) 

values to arbitrary entries of the estimated regression coefficients. 

2. The superfluous parameters introduced are called redundant. With this notion, we 

can formulate the above statement in another way: redundancy is the price paid 

for handling MO model as independent single output models. 
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6 .2 . Spec ia l cases 

Various special cases of the above parametrizations have been published. This paragraph 

discusses mutual relations of the most often met cases. 

- Matrix coefficients: 

This is the case for which the fundamental parametrization fulfils /, = / and ip,i(t) = 

tp(t) with some fixed / a n d il>(t). If we look on ip„fas selections from a "maximal" 

%l>, the definition is equivalent to the requirement: if indices k, i exist such tha t 

hi = 0 then 6k, = 0. 

Separated-parametrization counterpart is gained through the mapping (8). 

- Independent parametrization: 

This case is specified by diagonal noise covariance a in the fundamental parame­

trization. 

P r o p o s i t i o n 6 [Relations of special parametrizations.] 

- Matrix parametrization 

' n ) c x | ä Г o - 5 i ; « > e x p J - 0 . 5 t r l J І Vм(t)\ l I ! 

where / is unit matr ix of an appropriate dimension, the matr ix 6 consists of columns 

hi and 

VM(t) = VM(t - \) + *(.)*'(<), *'(*)«- \y'(t),i>'(t)], VM(o) = o. 

For separated parametrization, the likelihood M(9\ tm) coincides with (7) for V'(t) = 

VM(t),i= l , . . . , m . 

If VM is the set of prior p.d.f. in V restricted to matrix models then the mapping 

T restricted to it is always invertible. 

- Independent parametrization 

T h e separated parametrization coincides with the fundamental one, thus likeli­

hoods are given by (7): models related to the respective outputs are est imated 

independently. 

P r o o f . By straightforward algebra. D 
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P r o p o s i t i o n 7 [Redundancy ordering of special parametrizations] Let up, « s , nM 

be minimal numbers of parameters of fundamental, separated and matrix parametriza­

tions of the ARX model for describing of the same data, respectively. Then, 

«F < ns < nM 

P r o o f . The minimality of np is implied by the construction. The second inequality 

can be proved by induction (over m) starting from the case given in the proof of Propo­

sition 5. • 

R e m a r k s . 

1. The matr ix version is rather often used in MO system modelling. When some entry 

of i/> influences some output then this entry has to be assumed in the remaining 

channels too. This is the key drawback of this model. 

Separated model brings no advantages in this case. 

2. Independent parametrization is plausible as it requires no redundant parameters . 

As the noise models all unmeasurable influences, the independency of the noise 

entries might be quite poor model of reality in MO cases. 

6 . 3 . S e l e c t i o n m a t r i c e s in off-line e s t i m a t i o n 

The collection of statistics may be quite demanding task. In off-line identification, 

especially in connection with structure estimation, the collection of maximal statistics 

combined with use of "selection" matrices may be advantageous. 

The maximal data vectors 4>(i) are defined as known functions of t° which: 

- have a fixed length L; 

- the da ta vectors ^f,i ($„•(£)) can be constructed from them by fixed selection (Li, L) 

((Li,L)) matrices St.. (Si..) 

Ф„(ť) = Š,..Ф(ť), Ф„(ť) = Si.Җt), ť = 1,2, 

Typically, £',», and Si., consist of zero and units and they are of a row-like shape. Some 

entries of the maximal da ta vector <J>(i) have to coincide necessarily with y(t). 

P r o p o s i t i o n 8 [Likelihood functions with selection matrices] Using selection ma­

trices, the statistics VM(t) (see Proposition 6) with.4'(<) = $ ( i ) have to be stored for 

determining likelihoods for both parametrization assumed: 

Fundamental model 

M(e;r) = |2™r5^exp j-o.5£>-% [ ~? ] s^vms^ [ T| ]I. 
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Separated parametrization 

M(Q;n = n(2^)-°-5"("exp j - M [ ̂  ]'9,„F(i)5„, [ ^ ] } 

The posterior p.d.f.'s are gained from the above likelihoods by choosing a positive 

definite VM(0) iff for 

Fundamental parametrization 

V"J(0) = SiMVM (0)S**j, i , i = 1 , . . . , m . 

Separated parametrization 

V\0) = 5 , - . .V M (0)5„i , i = 1 , . . . , m. 

P r o o f . A simple consequence of the definitions of the elements involved. • 

R e m a r k . The second part of Proposition 7 stresses again the influence of the prior 

p.d.f. on the parametrization: the possibility to update the statistics VM(t) only depends 

on properties of VM(0). 

7. CONCLUSIONS 

Parametr izat ions of multi-output ARX model have been discussed. They are character­

ized as follows: 

Fundamental parametrization has symmetrical noise covariance and unit matr ix at the 

predicted output ; 

Separated parametrization has diagonal noise covariance and a triangular matr ix at the 

predicted output . 

Matrix parametrization coincides with the fundamental one when no regressor entry can 

be omit ted in predicting any output entry. 

Independent parametrization coincides with the separated one with triangular matr ix 

reduced to unit matr ix. 

Methodological gain of the paper lies in the recognition of the key role of prior prob­

ability density functions in defining a model structure. 

From the practical view point, it has been shown that 

- the fundamental parametrization is the most flexible in exploiting a priori known 

values of regression coefficients; the flexibility is, however, paid by substantial 

increase of computational demands; 
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- the separated parametrization retains a lot of flexibility of the fundamental param­

etrization; it introduces some redundant parameters but it spares a lot of compu­

tations; 

- the matrix parametrization used up to now is uniformly worse tha t the separated 

one and should be avoided; 

- the independent parametrization often recommended and used is computationally 

close to separated parametrization but rather often it can be poor model of reality 

and should be avoided, too. 

(Received August 6, 1991.) 
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