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KYBERNETIKA — VOLUME 28 (1992), NUMBER 5, PAGES 413-423

ALGORITHMS FOR BAYESIAN ESTIMATION
OF SPLINE MODEL STRUCTURE

JAN SpousTA

A special case of model structure identification is studied. Convolution models with the kernel de-
scribed by first order spline-functions are tested. Fast algorithm for finding the most probable structure
of the model is described.

1. INTRODUCTION

There are two contradictory demands in practice of discrete adaptive control of contin-
uous dynamic systems.

- For good knowledge of system behavior, we must choose a short sampling period.

- If an adaptive regression model based regulator with a given order is used, the
numerical sensibility grows up with the sampling frequency. An increasing of the
order which can improve the robustness is often not possible because of limited

computing time, storage size etc.

One way to solve this antagonism is to use a continuous data filtration. In this pa-
per we use the filtration based on the spline-function approximation of the convolution
kernel in the convolution model of a linear dynamic system. The motivation is to ob-
tain a flexible tool for modelling kernels, particularly those with limited supports. An
approximating spline-function can be expressed as a linear combination of given base
spline-functions. The problem is to find the set of base functions, their number and
some other demands (order, defect) are given. The crucial demand is that they must
give “good” approximation of the (slowly changing) kernel of the system for purposes of
control.

We deal with the filtration derived from a spline-approximated convolution kernel
in the convolution model of linear dynamic system. The kernel (denoted by K(t)) is
parametrized through a fixed number of basic spline functions. This parametrization
can be more flexible in comparison with usually used exponentials in the case of limited
support of the kernel. The supports of the spline functions are namely limited, too.
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If the basic spline functions are denoted by fki(t) and some real parameters 6; for
i=1,2,...,m, we write K(t) & Y7, & fxi(t). The parameters 0; are then estimated
(and changed) on-line and through this estimation the adaptivity of the regulator is
realized.

The problem solved in the paper is to define the functions fx(t) before the adaptive
regulation starts. As a basis for this choice we have some knowledge of the system
behavior, that is the data d™) for some N.

Our solution is based on a Bayes decision algorithm, described in [2]. In our case, we
must choose one hypothesis about the basis spline-functions from a set of all a priori
defined hypotheses. In more detail we must:

~ define the set of all hypothesis {H” x,:“=! about the bases. Any hypothesis H?
corresponds to some basis B” for each p. From the data (or from a sufficient statistic
V') and from the corresponding bases (or from the filter matrices S, defined by the
bases B?) we shall then need to compute the probabilities of all so given hypotheses

in the Bayes manner. Therefore we must

- adapt the algorithm for computing probabilities of the above hypotheses i.e. prob-
abilities of the hypotheses about filter matrices on given data (see subsection 2.5.)
and

— find the optimal sequence of the hypotheses for the computation so that the results
from one step could be used in the next one (see subsection 3.1.) and find how to
do it (see 3.2.).

2. PRELIMINARIES

2.1. The System Equation

In this paper, we deal with the one-dimensional linear autonomous dynamic system
described by the equation

t
wt) = [ KEo)u(e=r)dr + o+ et Q)
a
where y(t) — asignal value at time ¢
K(.) — a convolution kernel
8y — an absolute term
e(t) — a Gaussian, zero mean term standing for

uncertainty of the system behavior.

We have measured the system output y(t) in N discrete equidistant time instants.
We introduce a data set d™) = {y(t,),y(t2),...y(tn)} which is, we suppose, all our
information about the system. Further we shall denote y; = y(t;) for simplicity.

Our problem is to estimate the structure of the kernel K.
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2.2. Spline-approximation

There are different ways for description of convolution kernels of linear dynamic systems.
One of them is the description through spline functions, piecewise polynomial functions.
We choose the splines with degree | and defect 1 as the most simple. These splines are
broken lines in fact.

The points of breaking are called nodes of the spline-function and the set of all nodes
A = {vo,v1,...,Umqs1} for some m is called splitting of the definition interval of the
spline-function. Spline-functions with the same splitting create a linear functional space.
The set of m “hat” functions

(& = Vi) (Vi = Vi) forz € (Vmu_ic1, Vm-i)
Tri(®) = { (Vm-it1 = &)/ (Vmoigr — Vi) forz € (vm—iy, Vmis) (2)
0 otherwise

form a functional basis in the subspace of all first-order spline-functions, which satisfy
the condition to be zero in vy and v,,41. The space (and so the basis) is then determined
through the number and the positions of nodes. In this paper we require to have the
number m fixed.

A kernel K(t) can be approximated as a superposition of the basis functions

K@)~ Y 0 fii(t), )

i=1

where the weights {6}, parametrize now the corresponding kernel.

The structure estimation means estimation of suitable nodes in A and thus estimation
of the corresponding basis.

The task will be solved through the Bayesian algorithm, described in [4]. We must de-
sign a set of hypothesis about the structure of K, i.e., a set of functional bases composed
of the above-mentioned “hat” functions. Now, our idea is to shape properly compara-
tively long kernel with a compratively small number of parameters and so to be able to
consider larger period of data sampling.

For approximation of a signal we take the first-order-splines, too. H the sampling
period is equal to one, we have also a basis for signal description:

z—n+1 forz€(n-1,n)
frilt) =X n+l—z forz€(n,n+1) (4)
0 otherwise.

The coefficients for the description are then simply the sampled values of the system
output y,:

N
y(O) =~ Y wi frilt). (5)

i=1
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2.3. Sufficient Statistics

For the computation of hypothesis probabilities we shall use the ideas proposed for a
multivariate regression model in [2]. Here, a sufficient matrix statistic V) € R™*™ is
described which is evaluated by the regression of “shifted” data:

V(l) = V((—l) + f-(t) f—(-l;), Vie-1 = €l, (6)

where € > 0 is some small number, ¢ = to, to+ 1,...,4 + k and the vector fu) has the
structure
for = W g1y -+ Y=y DT
for [ = m — 2 which corresponds to the lenght of the kernel.
The positive definite matrix V) (we shall write only V) can be decomposed into the
form
V=LDLT (M)
where L is a unique lower triangular matrix with units on the diagonal and D is a

positive diagonal matrix. The computing of the probabilities (see [2]) is based on in the
decomposition obtained values D;;.

2.4. Definition of the Hypotheses

Let us have an equidistant splitting A* of the interval (0, T'), where T' means the maxi-
mum a priori known lenght of the kernel K(.) — i.e. we suppose suppK C (0, T'). The
splitting A* consists of n nodes:

. - .
A" = {v],v3,...,v;},
where 0 < v} < v} <... < v} < T and moreover
vi—0=v;~v;=...=T -,

(equidistant splitting). Let m < n. Let us choose some subset of the splitting: 67 C A*,
67 = {v} }ir,. Then the set A” = §? U {0, T} defines a spline basis on interval (0, T)
according to (2), if we adjoin vf = 0,0} = v}, for k = 1 to m, and v},,, = T. For all
possible choices of the subsets §” we have .

v (z)

bases B? = {fP(t)}, forp=1to M.
A hypothesis H? corresponds to the basis B?: the hypothesis insists that the basis B?
is the most probable from all the M bases, if we know the data d¥ (and we have no

other informations).
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2.5. The Computation of Hypothesis Probability

A spline linear dynamic model can be converted to regression one by filtering the data.
Let the filter matrix S is given by the convolution at time n (see [4])

Si; = [fri * frs}(n), i=1...,mj=1...,n (8)

It follows from the substitution of both approximated the kernel (3) and the signal (5)

into the system equation (1). The convolution is theun reduced into a matrix multiplying,
where the middle term is the matrix S.

The “spline” model keeps the properties of multivariate regression models for filtered

data: f,‘p“,,&(t) = Sf_ms,m;u,‘(l). (The index “spline” means the spline model and “regres-
sion”means the original data.) It holds

Viptine() = S Viegression(ty ST 9)

and with the filtered statistics, we can compute the probability in the way of the following
decomposition algorithm.

The positive definite matrix Vpinery (we shall write only V) can be decomposed in
form

V=LDLT (10)

where L is a unique lower triangular matrix with units on the diagonal and D is a positive
diagonal matrix.

About the kernel, we have a set of hypothesis {H!, H?,...,H',..., HM}. For all the
hypothesis we can compute the statistics {Vy, V3,..., V,..., Vir} based on the observed
data:

Vi = SiVeegressionS1 » (11)
where the matrix S is given by (8), and decomposed them:
Vi= LiDILT,  Di = diag(d,da, ..., dus2). (12)

Then according to [2], it can be written:
1

V (2} [T d:

Computing all M probabilities is in real cases extremly demanding on the computer

p(H'|k + 1 measured data) o« (13)

time. The following chapter says how to carry out this computations as efficient as
possible.

3. MAIN RESULTS

3.1. Idea of an Algorithm for the Sequential Computation of all the Hy-
potheses Probabilities ‘

Computing all the M probabilities in the way of (8),.(11), (12), (13) step-by-step takes
too much time. But, it is possible to choose a sequence of computed hypothesis so that a



418 J. SPOUSTA

large part of computations-results in the previous step executed probability-computation
(matrix rows, columns etc.) is utilized for the next steps.

The idea is simple: we choose the sequence of the computed probabilities (and also
the corresponding bases) so that the next basis differs from the previous one only in
the position of a single node. This implies that in the next basis {fl(\f’“)} there are
maximally 3 basis-functions fl(\”f_’z, ,(\f‘:']) and f}((”ﬂl) different from the previous base
{ f,(}’)}. It implies that in the filter matrix S,41 at maximum three rows differ from rows
the matrix S,. Moreover, the elements of the three rows can be recalculated even more
efficiently.

We shall see that the re-computation of the LDLT decomposition after the change of
one node is more efficient if we change a node with small index.

Example. We show the work of the algorithm on a very simple example with n =6

and m = 3.
Position

No. || Ist 2nd  3rd 4th 5th 6th
1 . X X x
2 x X x
3 . X x x
4] x X x
5] x b3 X
6 x x x
7 X x
8 . x x X
9l x . X x
10 x X . X
1] x x . X
12 x . X X
13 3 x x
14 x x x
15 . x x x
16 ff x . X x
17| x X . x
18 x X . b3
199 x x X
20 X X X
21 x X x ’
22 x x x
24 x- «x X

(“x” means “node”, “” means “the position is free”. The standard defined nodes in
the Oth and 7th positions are not displayed.) In this example M = 20, but we need
23 steps. Bases No. 17, 21 and 22 had been already computed in previous steps. The
algorithm does not compute the probability in this cases; it changes only the matrices

. .. a

in the storage.
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On the assumption that the first node and the last one are fixed on positions 0 and

n + 1 respectively and that p is the vector of the nodes positions, the algorithm works
in following manner:

~ Put all nodes as right as possible.

- Change step-by-step the position of the second node to all its possible positions.

~ While the nodes are not as left as possible do:

SXfp(3) =2,
then find the lowest left shiftable node, shift it once to left and shift all the
left neighbours of this node step-by-step as right as possible;
else shift the 3rd node once to the left, but before that “clear” the place for
it, if it is not empty.
end of if

~ Change step-by-step the position of the second node to all its posible positions.

end of while
end of the algorithm

3.2. The Data Matrices and Their Re-calculation

There are the auxiliary algorithms described in this section.

3.2.1. Storing of the Filter Matrix

The way of writing the filter matrix into the storage is described here.
Detailed analysis shows that the filter matrix S has not more than L = 2(m +n - 2)
elements different from zero. (For the proof see [6].) Between two non-zero elements in

every column (row) are only non-zero elements. So, the whole matrix can be stored in
four data vectors:

- real-vector values(L) containing rowvise values of the non-zero elements of the
matrix;

-~ integer-vector first(m) containing in its ith element the column index of the first
non-zero element in the zth row of the matrix;

- integer-vector last(m) containing in its ith element the column index of the last
non-zero element in the ith row of the matrix;

- integer-vector index(m) containing in its ith element the index of the first non-zero
element in the 7th matrix row in the vector values.
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This method does the computation with the matrix more efficient and economizes the
storage.

Example. Let us have a filter matrix 12 x 5.

an G2 a3 ay; 0 0 0 0 0 0 0 0
0 0 a3 ap @ ap a7 0 0 O 0 0
0 0 0 0 a3z aze asr azs azy O 0 0
0 0 0 0 0 0 ay e 4 a0 G G2
0 0 0 0 0 0 0 0 asy asi0 @sn asn2

The data vectors are then:
values(30) = (ayy,...,014,023,...,027,035, . .., 839, Ga7, . . ., 4,12,
asg,. .. ,a512,0,0,0,...,0);
first(5) = (1, 3,5, 7, 9);
last(5) = (4, 7,9, 12, 12);
index(5) = (1, 5, 10, 15, 21). : a]

3.2.2. Re-calculation of the Elements of Filter Matrix

If the position of oue node is changed, maximally three rows of the filter matrix are
changed: the node is an element of supports of three basic spline-functions, in maximum,
and one basic function corresponds with one row. Moreover, according to the definition
it is not necessary to compute all elements of the changed row. This subsection shows
how to re-calculate most of elements without computing of convolutions.

An element of a filter matrix S is defined by the convolution s = (fx * fy](7). The
function fx is the lst-order spline, linear everywhere except the nodes njen < fcenter <
Tright, continuous everywhere and fi(nien) = fic(nrige) = 0 and fx(ncemer) = 1.

— Suppose, that in the next step the node ncenter is changed: ficenter = Tcenter + &,
€ € (s —Ncenters Tright ~Noenter)- The nodes nie, Acenter, Nright define a new function
fx and 3 = [fx * fy)(7). Then the following implications are valid:

Tcenter — et s, (14)

supp fy C (—oo, min{ncenters Reener}) = § = ———
Ncenter = Teft

Tright — Mcenter
Bright ~ Meenter (15)

supp fy C {max{necenter, fcenter} +0) => 5= ~
Tright — Ncenter

- Suppose that in the next step the node nygm is changed: fisight = Trighe +_§, te
(Ncenter — Mrighty +00). The nodes Nieft, Neenters Tirighe define a new function fx and
&= [fi * fr)(r). Then the following implications are valid:

supp fy C (—00, Teenter) U (max{ntrigh, firign}, +00) = 3 =5, (16)
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Supp fy C (Rcenters Min{Rrights rigm}) = 17)

+oo
3 fr(t)dt.

Nright — Ncenter s

== -
Tright — Tlcenter Tright = Tcenter J -
- Suppose, that in the next step the node njen is changed: fijery = npene + €, € €
(=00, Neenter — Tenr). The nodes fiienr, Ncenters Trigt define a new function fx and
3 = [fx * fr](7). Then the following implications are valid:

supp fy C (=00, min{nien, e }) U (Reenters +00) = 3 = s, (18)
supp fy C (max{nien, fen}s Neenter) = (19)
+oo
—n
=>§="cemer _M's— 4 - fy(t)dt.
Neenter — Nleft Tcenter = Meft J-o

Thus we may simplify the re-computation of the matrix.

Example. Three rows of a filter matrix are given. We change the common node of
the three corresponding basic functions. Letters in the rows mean the implications: A
means (14), B means (15), C means (16), D means (17), E means (18). K means “the
convolution is computed per definition”.

C CKKDDIKK
B B B B KK A
K K K E

The equation (19) is in this example not used.

3.2.3. The Product SV ST and Its L D LT-decomposition.

There are only three rows and three columns changed in the actualized SV ST matrix
product after one step. If the changed node is the (m+1—:)-th the changed rows/columns
arethet —1,4,7+ 1.

Example. for m = 12,¢ = 7 (“x” means “modified”, “.” means “not modified”,

omitted means “zero”. ):
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X X X
X X X
X X X
X X X
. X X X . .
SVST=XXXXXXXXXXXX
X X X X X X X X X X X X
X X X X X X X X X X X X
X X X
X X X
X X X
X X X
LD= X X X X X X
X X X X X X X
X X X X X X X X
X X X X
X X X X X
X X X X X X
X X X X X X X

(w]

Even, it is not necessary to change all elements of matrices of the L D LT-decomposition
are all changed. In the matter of fact, the non-changed elements are all elements in the
first ¢ — 2 columns of the matrix L with exception of the rows i —1, 7, 7 + 1 aid the i —2
“first” (in index) elements of the matrix D.

This implies that our algorithm for the next-step -search is correct: it changes mostly
the low-index nodes.

4. CONCLUSIONS

This work links up the results from papers [2] (automatic estimation of the model order)
and [4] (spline approximation in adaptive controllers). The solved problem is to estimate
the most probable structure of spline description of the convolution kernel.
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The above algorithm computes m-times faster compared with the computation “per
definition” (m means the given number of base functions). The structure of the main al-
gorithm is open to parallelisation and/or adaptable to consider an additional information
(omitting of hypothesis known as non-probable etc.).

A remaining problems are to extend the results to a more general linear system and
to restrict the big number of prior hypotheses by using some another additional prior
knowledge.

(Received July 18, 1991.)
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