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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 3 

SOME RECENT RESULTS IN SINGULAR 2-D 
SYSTEMS THEORY 

TADEUSZ KACZOREK 

Solvability conditions for the general singular model of 2-D linear systems are established. 
The general response formula for the general singular model is derived. The concepts of local 
reachability and local controllability are extended for the singular model. Necessary and sufficient 
conditions for the local reachability and local controllability are established. The minimum 
energy control problem for the singular model is solved. 

1. INTRODUCTION 

The most popular models of two-dimensional (2-D) linear systems are the models 
presented by Attasi [1], Fornasini and Marchesini [2, 3], Roesser [20], and Kurek 
[17]. The Kurek model has been extended for 2-D linear systems with variable 
coefficients by Kaczorek in [4]. Singular models of 2-D linear systems have been 
introduced by Kaczorek [5 — 7]. In this paper some recent results for the general 
singular model of 2-D linear systems will be presented. Solvability conditions and the 
general response formula for the singular model will be established. 

2. SINGULAR MODELS OF 2-D LINEAR SYSTEMS 

Consider the general singular model of 2-D linear systems [8] 

EXi+lJ+l = 

= A0xtj + Axxi+1J + A2xiJ+1 + B0Uij + Bxui+1J + B2uiJ+1 (1) 

ytJ = Cxu + Duu (2) 

where /, j are integer-valued vertical and horizontal coordinates, respectively, xis 

is the n-dimensional local semistate vector at (i,j),utj is the m-dimensional input 
vector, y(i,j) is the p-dimensional output vector and Ak, Bk (k = 0, 1, 2), C, D, E 
are real matrices of appropriate dimensions and E may be singular and nonsquare. 
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Boundary conditions for (1) are given by 

xi0, i ^ 0 , x0J, j = 0 . (3) 

From (l) and (2) for Bx = 0, B2 = 0 we obtain the first singular Fornasini-Marche-
sini model (FSF-MM) and for A0 = 0, B0 = 0 we obtain the second singular For -

nasini-Marchesini model (SSF-MM). Similarly, for —A0 = A_A2 = A2AX the 
singular Attasi model (SAM). 

The singular Roesser model (SRM) is given by 

ElxV+Ji\ U i ^ - J U J + U J Uij 

yij-lCn C ^ ^ + DUÍJ 

(4) 

(5) 

where Xy is the n^dimensional horizontal semistate vector, Xy is the n2-dimensional 
vertical semistate vector, M(J- is the m-dimensional input vector, ytj is the ^-dimensional 
output vector. Au, Bijr Ctj, (i,j = 1, 2), D, E are real matrices of appropriate di­
mensions and E may be singular and nonsquare. In a similar way as for regular 
(det E 4- 0) models it can be shown that FSF-MM is a particular case of SSF-MM 
and SAM is a particular case of SRM. 

Defining Xy = ExiJ+l — Axxtj and Xy = xtj we may write (1) in the form 

E 
ЛИ-ыjl Г°^olГ4l , Г-*o в_ 
J W J U^J J L° ° в. 

UІJ 

Ui+l,j 

_ui,j+l_ 

Therefore, SGM is a special case of SRM. 

3. SOLVABILITY CONDITIONS 

Consider the equation (1) in the rectangle 

[0, N/J x [0, N2] : = {(i,j): 0£l__\Nl,0__\j__\ N2] 

Let us denote 

XNiN2 '• ~ l-^OO.' * 0 1 > • • •» X0N2-> • " ' lO ' * 1 1 » • • •> X1N2
X20> • • •» XNiN2) 

UNiN2 '— UNiN2 ~ UNtN2 

where uNlNl is defined in a similar way as xNlNz. 
Boundary conditions are called admissible for (1) in [0, Nf] x [0, N2] for a given 
input sequence uNiN2 iff there exists a sequence xNlNz satisfying (1) for 0 ^ i _^ N_ 
and O ^ j ' l N2. The sequence xNlNl will be called a solution to (1) in [0, N.] x 
x [0, N2] for uNlN2. We shall say that (1) has a solution for uNiN_ and (3) if there 
exists XNIN2 satisfying (l) for all Nx and N2. 

Theorem 1. The equation (l) has a solution for any sequence {«./} and any bound-
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ary conditions (3) iff 

rank E = rank [E, A0, Al5 A2, B0, Bl5 B2] (6) 

Proof. Let rank E = r. It is well known that there exists a nonsingular matrix P 
such that 

PE = 

where E is r x rc full row rank matrix. Premultiplying (l) by P and using (7) we 
obtain 

J_x / + 1 J + 1 = l0xtJ + A1xi+1J + A2xiJ+1 + B0Uij + BxU^x.j + 

+ B2uiJ+1 (8a) 

0 = A0Xij + Atxi+1J + A2xiJ+1 + B0utj + Btut+ltJ + $2uiJ+1 (8b) 

A where 
PAt. = -H PBk =\Zf\ for k = 0, 1, 2. 

Note that Ak = 0 and _?fc = 0 for k = 0, 1, 2 and (8b) is satisfied for any {utJj and 
any (3) iff (6) holds. 
Solving (8a) we get 

Xf+U+i = A0Xtj + A[xi+1J + A2xiJ+1 + B'0Uij + B'1ui+lJ + B2uiJ+l (8c) 

where 
A; = ET[E ET1^, B'k = ET[E ETylBk for k = 0,1,2. 

The equation (8c) has a solution for any {uu} and any (3). • 

It can be shown [11] that (1) has the unique solution for any {«,-;} and admissible 
boundary conditions (3) if 

rank G(zl5 z2) = n for some z l5 z2eC (9) 

G = G(zl5 z2) := [Ez1z2 - A0 - AiZi - A2z2] 

and C is the field of complex members. 

4. GENERAL RESPONSE FORMULA 

Following [8] we may write the expansion 
00 00 

G'1 = Z E W'z? (io) 
p = - n i q = - n 2 

where Tpg are real matrices defined by 

'AoToo + AxT10 + A2T01 +1 for p = q ** 1 

ETM = jAoTp-! , , - ! + - l 1 r - , -_ 1 + A 2 T p _ l i , for p = M and/or q # 1 

0 for p < -n1 and/or q < -n2 (11) 

7 is the identity matrix. 
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The pair of positive integers (««., n2) is called the index of the model. In general 
nt and n2 are not finite. It is easy to show that n t and n2 are finite if the coefficient 
dmim2 of the polynomial 

m i n%2 

d e t G = Z Z^7z'iz2 

is not zero. 

Theorem 2. If (9) holds then the unique solution to (l) with admissible boundary 
conditions (3) is given by 

i + «i j + n2 i + ni + l j ' + nj 

*(U)-E E ̂ - P J - A ^ + Z Z-1-P+IJ-A«M + 
p = l q = l p=l q=1 

,+» , j + n2 + i f + m + i r -I 

+ Z Z r«-f.v-,+A«« + Z ^_p+1>/ [.4- *,] *-*1 + 
P = I g=i p = i LMpoJ 
i+m T v "1 j + n2+i r -i 

+ I r,.„^„ B0] *" + E r„. t+ ,[42 * j *- + 
P=l LMPOj q=l LM0«J 

+ E T,j-JLAB B0] M + T ^ B0] M (12) 
q=l LM°9J LM0°J 

The proof is given in [8]. • 

The desidered response formula for GSM can be obtained by substitution of (12) 
into (2). Tpq can be found from the series expansion (10) or from (11). The general 
response formula given by Kurek [17] is a particular case of (12). Note that the set 
of admissible boundary conditions for GSM is specified by (12) for i = 0 and / = 0. 

Now let us assume that 

det G = 0 for all zu z2eC (13) 

and rank G = r < n. In this case there is a nonsingular matrix M of row elementary 
operations such that 

MC - [ J ] (14) 

where Gx is r x n matrix of full row rank for some zu z2 e C. Premultiplying the 
equation [8] 

GX(zu z2) = (B0 + BlZl + B2z2) U(zx, z2) - BtzxU(0, z2) + 

- B2z2U(Zl, 0) - AlZlX(0, z2) - A2z2X(zu 0) + EZlz2(X(Zl, 0) + 

+ X(0, z2) - x(0, 0)) 

by M and using (14) we obtain 

G,X(Zl, z2) = (B0 + SlZl + B222) U(Zl, z2) - BlZlU(0, z2) + 

- B2z2U(Zl, 0) - AZlX(0, z2) - A2z2X(zu 0) + EZlz2(X(Zl, 0) + 

+ X(0, z2) - x(0, 0)) (15a) 
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and 
O = (B0 + BlZl + B2z2) U(zlt z2) - BlZlU(0, z2) - Ř2z2U(zlt 0) + 

- AlZlX(0, z2) - A2z2X{zlt 0) + ĚZlZ2(X(Zlt 0) + X(0, z2) + -x(0, 0)) 
where (l5b) 

'A 
MA, = MBft = r ^ l , k = 0,1,2, ME = R H 

It is assumed that (15b) is consistent and it is satisfied by the admissible boundary 
conditions for a given sequence {«,•;}• In a similar way as in [8] solving (15a) we 
obtain 

X(zlt z2) = Gt[(B0 + BlZl + B2z2) U(Zl, z2) - BlZlU(0, z2) + 

- B2z2U(zlt 0) - AlZlX(0, z2) - l2z2X(zlt 0) + EZlZl(X(Zl, 0) + 

+ x(0, z2) - x(0, 0))] 
where 

Gr = G][GI Gi]-1 

Note that G^ plays the same role as G_1 in the regular case det G + 0. Let 
00 00 

GÎ = I I - V Г ^ 
P = ~n\ q= -ñ2 

where nltn2 are positive integers. 
Substituting Tpq, A0, Alt A2, B0, Blt B2 and E by Tpqt A0, Alt A2, Blt B2, E, 

respectively we may use also (12) for finding a solution (if it exists) to (1) when 
det G = 0. 

5. CAYLEY-HAMILTON THEOREM 

Let 
m\ )7i2 

d(zlt z2) = det G = £ X dtJz[4 (16a) 
i = 0 j = 0 

and 
m i ' W2' 

Adj c = n -vi*. K -=n - -«m2 -=» - 1) ( i 6 b ) 
i = 0j' = 0 

Theorem 3. The matrices Tp? for GSM satisfy the equation 

V V A T n f.J^0 a n d m'i < P <m1 + nt 

YWi-pj-q = 0 for k < 0 a n d m , < 8 < m 2 + „2 (17) 
Proof. From (10) and (16) we have 

nt\' m2' m\ m2 oo oo 

£ £H^zi =(n .vMXE I -vr'»a"*) 
i = 0 j = 0 i = 0j' = 0 P = n\ q = n2 

Equating the coefficient matrices at the same powers of zx and z2 we obtain (17). • 
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6. LOCAL REACHABILITY AND LOCAL CONTROLLABILITY 

The following partial ordering of 2-tuple integers will be used 

(h,k) < (ij) iff h < i and k <j 

(h, k) = (i, j) iff h = i and k = j 

(h,k)<(ij) iff (h,k)<(i,j) and (h,k)+-(ij). 

For (h, k) < (p, q) we define the rectangle [(h, k), (p, q)\ as follows [(h, k), (p, q)\ : = 
:={(h,k)<(i,j)<(p,q)} 

Definition 1. GSM is called locally reachable in the rectangle [(0, 0), (h, k)\ if 
for admissible boundary conditions (3) and every vector xf e Rn there exists a se­
quence of input vectors utJ for (0, 0) ^ (ij) <. (h + nt + 1, k + n2 + 1) such 
that xhk = xf. 

Theorem 4. GSM is locally reachable in the rectangle [(0, 0), (h, k)\ iff 

rank Rhk = n (18) 
where 

Rhk= [M0,M\,...,Ml,M\,...,Ml,Mll,...,Mll,M2l,...,Mhk\ 

-Wo = ThkBo>MP = Th-P,kBo + Th-P+i,kBi > 

p = 1, ..., h, h = h + nt + 1 

M\ = r M _ - B 0 + TM-,+ 1B2 , q = \,...,k,k = k + n2 + \ 

Mpq = Th_pk_qB0 + Th-p+lk-qB1 + Th-pk-.q+lB2 

The proof is given in [8]. • 

Definition 2. GSM is called locally controllable in the rectangle [(0, 0), (h, k)\ 
if for admissible boundary conditions (3) there exists a sequence of input vectors utj 

for (0, 0) < (ij) < (E, k) such that xhk = 0. 
A different definition of the local controllability for regular 2-D systems was 

given by Sebek, Bisiacco and Fornasini [21]. 

Theorem 5. GSM is locally controllable in the rectangle [(0, 0) (h, k)\ iff 

rank Rhk = rank [Rhk, Phk\ (19) 
where 

°hk = IfO> °11' •••' P\h> °21> -•••> P2JEJ 

°o = Thk^o > °ip = Th-pkA0 + Th-p+1>kAx , p = 1, ..., h 

Piq = Th,k-qAo + Thk-q+1A2 , q = 1, ..., k 

The proof is given in [8]. • 

From (18) and (19) it follows that if GSM is locally reachable it is also locally 
controllable but if GSM is not locally reachable it may be locally controllable. 
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7. LOCAL OBSERVABILITY 

Following [20] we may define the local observability of GSM as follows. 

Definition 3. GSM is called locally observable in the rectangle [(0, 0), (h, k)~\ if 
there is no local initial semistate vector x0 0 4= 0 such that for zero input vectors 
uij, (0,0) < (i,j) < (E, k) and zero boundary conditions: xi0 = 0, 0 < i <. K, 
x0j = 0, 0 < j < k, the output is also zero yu for (0, 0) < (i,j) < (h, k). 

Theorem 6. GSM is locally observable in the rectangle [(0, 0), (h, kj] iff 

rank Qhk = n (20) 

where 

Qhk = [#00> #10> •••" QhO> #01» •••' #0k» •••> #11? •••» Qhk] * 

qu = CTUA0 , i = 0 , 1, ...,h; j = 0, 1,. . . , k 

Proof. From (12) and (2) for uu = 0, (0, 0) < (i,j) < (E, k) and zero boundary 
conditions we have 

ytj = CTijAO^OO ^ QijX00 

Taking into account that yu = 0 for (0, 0) ^ (i,j) = (h, k) we obtain 

0**00 - 0 (21) 

From (21) it follows that GSM is locally observable in the rectangle [(0, 0), (h, k)~\ 
iff (20)'holds. • 

Following Kurek [18] necessary and sufficient conditions for strong observability 
and strong reconstructibility of GSM can be established. In [12] necessary and 
sufficient conditions for global and causal observability and causual reconstructibility 
of SSF-MM have been given. With slight modifications the conditions can be ex­
tended for GSM. 

8. MINIMUM ENERGY CONTROL 

Consider GSM and the performance index 

'(«) = ! Z4e«u (22) 
i = 0 J = 0 

where Q is an m x m symmetric and positive definite matrix. The minimum energy 
control problem of GSM can be stated as follows: given Ak, Bk for k = 0, 1, 2, 
admissible boundary conditions (3), Q, and h, k, find a sequence of input vectors 
U;J for 0 < i < h, 0 < j <, k which transfers GSM from x00 to xx, xh>k = xf and 
minimizes (22). 

To solve the problem we define the matrix 

Whk := I ZMH-i,k-jQ~XMl-i,k-j =-RhkQXk (23) 
i = 0 j = 0 
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where 
a,-=diag[e-1

J...,Q-1] 
{TtJB0, p = q = 0 

Mt-pJ-t = I T,-PJB0 + T^p+XJBX , p>0, q = 0 

{TiJ_qB0+ TtJ-q+1B2, p = 0, q> 0 

Mi-pj-q = Ti_pj_qB0 + Ti-p+ij-qBx + Ti_pj_q+XB2 

for p > 0 , q > 0 

It is easy to show that Whk is nonsingular (positive definite) if GSM is locally reachable 
in the rectangle [(0, 0), (h, k)~\. 

Let us define 

u-j : = Q-xMT
h_^k_jWh-k\xf -x0), O^i^h, O^JSk (24) 

where 
s 

* o = ThkA0x00 + /_i\Th-PtkA0 + lh-p+ i,fcAi) xpo + n : > > ; 
p = i 

k~ 

L,\Th,k-qAo + Th<k~q+XA2) x0q 

Theorem 7. Let assume that GSM is locally reachable in the rectangle ([0, 0, (h, fe)]. 
If Uj is any sequence of input vectors for 0 ^ i ^ h, 0 ^ j ^ k which transfers 
GSM from x00 to xf, then the sequence (24) accomplishes the same task and 

I(u) = I(u) 

The minimum value of (22) is given by 

I(u) = (xf - x0) Wh\~\xf - x0) 

The proof is given in [8]. • 

Sufficient conditions for the existence of a solution to the linear-quadratic optimal 
regulator problem for GSM with variable coefficients have been established in [15]. 

9. CONCLUDING REMARKS 

The general response formula for GSM of 2-D linear systems has been presented. 
The well-known Cayley-Hamilton theorem has been extended for GSM. Necessary 
and sufficient conditions for the local reachibility, the local controllability and the 
local observability of GSM have been established. It has been shown that the local 
reachability of GSM implies its local controllability. The inverse theorem is not 
valid in general case. The minimum energy control for GSM has been solved. The 
general response formula can be also extended for GSM with variable coefficients 
[9]. In [13] sufficient conditions for the existence of full order asymptotic and 
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deadbeat observers for SSF-MM have been established and design procedure for 
finding observer matrices have been given. With slight modifications the conditions 
and design procedure can be extended for GSM. The Luenberger's shuffle algorithm 
has been extended for GSM in [14]. This algorithm can be used for decomposition 
of GSM into its dynamic and static parts. A method for eigenvalue assignment by 
state feedback of SRM has been presented in [16]. 

The eigenvalue assignment problem by state or output feedback of GSM is one 
of the nontrivial open problems for singular 2-D linear systems. 

(Received October 8, 1990.) 
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