
Kybernetika

Jiří Kopřiva
Generalization of well-translation of formal languages

Kybernetika, Vol. 2 (1966), No. 4, (305)--313

Persistent URL: http://dml.cz/dmlcz/125796

Terms of use:
© Institute of Information Theory and Automation AS CR, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125796
http://project.dml.cz

KYBERNETIKA ČÍSLO 4, ROČNÍK 2/1966

Generalization of Well-Translation of Formal
Languages*

M i KOPRIVA

An algorithm for translation of formal languages is described which combines two different
ways of translation. Its purpose is obtaining the target (translated) text having the same semantic
content as had the original text, on the one hand (this is ensured by the use of the well-translation
algorithm as our algorithm framework - "well-translation on the whole"), and allowing to
mark the same semantic content of certain characteristic parts of the input and output text
by writing them in the familiar form, on the other hand ("well- translation on a small scale").

1. INTRODUCTION

The concept of well-translation of grammars and formal languages (generated by grammars
the rules of which can be represented in the Backus'normal form) was introduced in [1] and [2],
Denotation and concepts from these two papers will be used without references here. In section 2,
the reader's attention is drawn to a small oversight in [2] and it is shown how it can be removed.
In the following section, a little disagreeable consequence of the definition of well-translation is
discussed. It is tried to eliminate this consequence by generalization of this concept. In the end,
the generalized well-translation algoritm is described.

The condition (2) in [2] (p. 48) contains implicitly (for both languages) the request

of knowing the meaning of S(x) for each x e G(a), where a is any standard symbol

of an arbitrary syntactic rule. But, at the same time, a may be also a proper symbol

(in VP), hence a terminal symbol. The meaning of G(a) is not defined in this case.

If we put then G(a) = {a}, which is entirely natural, the meaning of S(a) may still

remain undefined. Each of the terminal symbols need not be the value of some

metavariable, i.e. it need not belong to the set E of expressions. According to the

definition of the function S, no semantic content is given to it.

* Presented at the Second Conference on Cybernetics, Prague, November 16th—19th, 1965.

This small oversight may easily be put right by the integration of the definition of
G(x) in the way mentioned above and by the integration (also quite natural) of the
definition of S(x) with the help of the mapping T. If we do not wish to integrate
these definitions, it is sufficient to reformulate unsubstantially the condition (2)
in [2] (and in [1.]) as follows:

(2') Let a0 \: = fro^i^i ••• akbk and c0 : : = d0c1dl ... ckdk be the standard form
of the rules r e 91 and <P(t) e 91', resp. For 1 ^ v ^ m, where 0 :g m g k, let ajv

be all the metavariables from the right hand side of the rule t and let cn(jv) = T(aJv).
For l | v ^ m let xv e G(aJv) and yv e G'(c„(,v)) be such phrases that S(xv) =
= S'(yv). Then the functions S and S' assign the same semantic content to any two
phrases arising from the rihgt hand sides of the rules r, <P(r), resp. by the substitution
of the phrases xv, yv resp., for aJv, c„(Jv) resp., where 1 ^ v ^ m.

The condition (l) in [2] must be completed by c0 = T(a0). Also in [2], in the de­
finition of the G(x) (the third section on page 47), it ought to be only e instead of
eeE.

The proof of the fact that the corresponding algorithm (see [I] , [2]) affords the
well-translation also in this case may be performed easily by induction (e.g. for the
rang of the phrase marker, if we define the rang as the length of the longest of its
paths).

3.

Let us look into two grammars G and G' having the same sets VT = VT and V^ =
= VN of the terminal symbols and of metavariables resp. and the following sets of
rules. 91 contains the rules

<digit> : : = 0 | 1

<number> : : = <digit> | <number> <digit>

and 91' contains the rules

<digit> : : = 0 | 1

<number> :; = <digit> | <digit> <number> .

Both grammars generate the same set £ (of unsigned dyadic integers). It is natural
to define the mapping T as the identical mapping of the sets VN and VT into themselves.
Then the mapping <P coordinates inevitably the rules from 91 to the rules from 91' in
the order as they are written above. This coordination forces the permutation
7t4(l) = 2, 714.(2) = 1 for the fourth rule. According to the condition (2) in [2] (and
[1]) eventually (2') above it would be e.g. S(0l) = S(10). Generally, the same seman­
tic content would be given to two dyadic integers such that each of them is the
reflection of the other one (cf. [1], example I). That does not agree with expected

work of the function S. It should yield the same semantic content for the strings"
expressing the numbers having the same numerical value.

Now, let us look into the following sets of syntactic definitions. The first of them
contains two rules, viz

<type list> : : = <sirnple variable> | <simple variable> , <type list>

(an ALGOL 60 syntax fragment, cf. [3], Section 5.1.1 of the Chapter 5.1. Type
Declaration); the second one contains also two rules, viz

<type list> :: = <simple variable> j <type list> , <simple variable> .

If we consider the strings generated by the two grammar fragments in the whole
language ALGOL 60 context (together with its semantics), then the condition (2')
having been brought to advantage does not cause any awkward consequences in
spite of the fact that the resulting situation is formally analogous to that in the case
of the grammars G and G' above.

It is possible to find more such examples. E.g. the ALGOL 60 syntax fragment
generating identifiers ([3], Section 2.4.1.) and the same set of rules but with the
corresponding change on the right hand side of the rule <identifier> : . = <identifier>
<letter> corresponds to the first case. Under certain conditions (cf. [3], Section
4.2.3.1.) the ALGOL 60 syntax fragment generating the left part of the assignment
statement ([3], Section 4.2.1) corresponds to the second case.

The following section will be opened with another importent example of well-
translation.

4.

The push-down memory is often used for compilation of various program parts
expressed with the help of some formal programming language. For this purpose,
the translated expression is temporarily represented in reverse Polish notation.
A simple example will show that the translation from mathematical notation (of
certain sort of expressions) into reverse Polish notation is the well-translation. (See
also example I in [1].)

Let us consider the following sets of rules. The first one contains the rules

(1) <variable> :: = at \ a2 \... \ an

(2) <unary operator> :; = Ax \ A2 \ . . . I Ak

(3) <binary operator> ; : = Qx | 02 \ ... | 0m

<expression> :: = <variable> | <unary operator> <expression> |

(<expression> <binary operator> <expression»

308 The second one contains the rules (l), (2), (3), and the rules

<expression> ;; = <variable> | <expression> <unary operator> |

<expression> <expression> <binary operator>

(cf. [4]). Now, it is sufficient to define x as the identical mapping of the set VN U VP

into itself (the brackets (and) are auxiliary symbols) and <P in such a way that it
coordinates the rules of the two considered grammars in the same order as they are
written above. The permutations nt and n2 for the last but one and the last rule resp.
are

TT1(1) = 2 , 71,(2) = 1 ;

7C2(1) = 2 , 7T2(2) = 3 , 7T2(3)= 1 .

. The numerical constants and identifiers stand instead of the variables at in the
programs. Let us imagine that the rules generating numbers of digits (as in section 3)
and identifiers of letters and digits (as in ALGOL 60) are substituted for the rules (l).
We can then observe that the well-translation yields a convenient form of the result­
ing expression on the whole. But the small formal difference of the corresponding
syntactic rules allowing the use of the well-translation algorithm may cause a disag­
reeable notation of some important substrings (e.g. of numbers and identifiers).
(The suitable notation question has a deeper sense here, of course, and depends
intrinsically on the compiler and perhaps on the performance of the operations in the
computer.) At the same time, the relevant changes of the rules are sometimes forced
by the used compilation manner (see e.g. [5]). The decision of whether we have an
analogy to the grammars G and G' case (section 3) or an analogy to the case following
that one cannot be done within the syntax. It is necessary to consider the semantic
aspect of languages, their semantics.

It is often possible to find such disjoint parts of the input text (i.e. of the program
written in some programming language) that the following conditions hold:

a) A certain subphrase of the output text corresponds in one to-one-way to
each such subphrase of the input text.

b) These corresponding subphrases of the output text are disjoint in it.
c) Each two corresponding subphrases have the same semantic content.

The mutual relation between two corresponding subphrases need not be the well-
translatability (with regard to the grammars of both languages). Examples of such
input program parts are numbers, identifiers etc. in ALGOL 60. The analysis of
these parts may often be performed by a simpler technique than that chosen for
performing the whole program analysis (or its major parts). The idea of the Turing
machine or the transition table may be used here (see e.g. [7], [6]).

It seems to be natural to use here two different methods of translation. For the
first one we find out the relevant subphrases of the input text, translate them into the

output language with the help of some suitable translation algorithm. The output
text parts prepared in this way are then stored for later use. (In some cases, these
found subphrases of the input text may be placed at the relevant places of the output
text without any changes.) The relevant metavariables are substituted for the found
subphrases in the input text which is now prepared for the use of the second trans­
lation method, viz the well-translation process.

The well-translation algorithm constructs only the framework of the output text.
The definitive form of the output text is then obtained by placing the prepared sub­
phrases on the relevant places of the framework.

We formalize the described process in the following section.

5.

We suppose that the subphrases which are not to be translated with the help of the
well-translation algorithm are values of certain metavariables from VN. We call them
auxiliary metavariables.

The translation process may be decomposed into the following nine phases. The
more detailed description of the processes performed in the separated phases is
given further. The denotation used in the following item II differs a little from that
used in [1] and [2].

I. Syntactic analysis of the input text; its result is the sequence {(p;, qi)}^ of
number pairs.

II. Construction of the phrase marker, i.e. construction of the sets P =
= {(i, r,) | 1 g . ^ m} and Q = {(au bb c;) | i « 1 m - 1}.

III. Quest of such elements (i, r;) e P that the left hand side of r ; is an auxiliary
metavariable. Among all such vertices being placed on the same path we take that
one whose distance from the root is minimal.

IV. The subtrees having their roots in the vertices found in III are the phrase
markers of the subphrases mentioned above. We find these subphrases. Simulta­
neously, we omit from P and from Q the elements corresponding to the vertices of
these subtrees.

V. Translation of the found input text subphrases.
VI. Construction of the new rules having the auxiliary variables images on their

left hand sides and the relevant subphrases translations on their right hand sides.
VII. Translation of the rests Pl and Qt of the sets P and Q with the help of the

well-translation algorithm; we get P[and Q[.
VIII. Adding to P[new pairs containing the new rules.
IX. Synthesis of the output text.

Some explanation to the individual items:

I. The syntactic analysis may be performed e.g. with the help of the algorithm
described in [1]. pt is the index of the rule used at the (in — i + l)-st derivation step

consisting in replacing the g;-th symbol of the string obtained as yet by the right hand
side of the rule rP(. The rule tPm is used at the first step, then is used rPm_1 etc.

II. The phrase marker vertices are denoted by positive integers. The labelling of
the vertex i by the rule r ; is performed by putting the pair (/, r;) into the set P. As to
the meaning of the triple (at, bt, c;) from Q, (a;, bt) is the phrase marker branch
and the right hand side of the rule labelling the vertex bt is substituted for the c;-th
standard symbol of the right hand side of the rule labelling the vertex at. The algorithm
from [1] constructing the sets P and Q, given the sequence {(p;, qt)}, must here be
changed a little, because it does not give c; as the distance of a standard symbol
from the left border but the distance of a symbol in general.

III. We begin with i — m — 1 (we suppose that the input text is not the value of
an auxiliary variable) and decrease i sequentially. If we find the requested element
(/, r;) e P, then we do not investigate the vertices of the subtree having its root in
the vertex i. In this way, we ensure that the found pair (/, r,) is one whose distance
from the root is minimal. The omission of the elements of P and Q mentioned in IV
above may be performed also in connection with the just described process (see also
IV below).

IV. The subphrases obtained by the synthesis on the basis of the phrase markers
being the subtrees of the main phrase marker and having their roots in the vertices
found in III are obviously the values of the auxiliary variables. We omit from P all
pairs (i, r;), where i's are the vertices of the just mentioned subtrees including their
roots (found in III). From the set Q, we omit the three-tuples (at, bt, c;), where a'ts
are the vertices of the mentioned subtrees (including their roots). After this process,
the main phrase marker will contain the branches ending in the roots of the subtrees.
We can say (with a certain inaccuracy) that we have formed an incomplete phrase
marker. The synthesis made on the basis of it does not yield a string of terminal
symbols, but a string containing the (auxiliary) metavariables, too.

V. The translation of the subphrases found in IV may be performed with the help
of any algorithm translating a context free language into another one. (See also the
end of the last but one paragraph of section 4.)

VI. The left hand side of each new rule will be the image of the auxiliary variable
which is the left hand side of some rule found in III. The translation of the subphrase
found in IV and being the value of this auxiliary variable forms the right hand side
of the new rule.

VII. The translation of the sets Pl and Q1 means what follows. At first, the rules r ;

in the pairs (/, r,) are replaced by the rules <£(r;). Then the numbers c; in triples
(at, bt, c;) are replaced by the numbers 7ta.(c;). Of course, we must assume the fragment
Gt and Gi of the grammars G and G' resp. of the input and output language resp.
requisite to the translation of the incomplete phrase marker, are in the well-translata-
bility relation. This condition need not hold for the parts of G and G' requisite to
the translation of the subphrases from IV.

Let us show a method of finding out in G the rules not used during the application

of the well- translation algorithm. The metavariable fi is said to be subordinated to
the metavariable a if the following condition holds (see [8] or [9]):

(n « ~ / ?) A (a e ^ r D /) 6 a .

Let the metavariables a, /i, y satisfy the following condition. Let fi be an auxiliary
one and let p be subordinated to a and y subordinated to /?. (Then obviously y is
also subordinated to a.) Let a = a.u a2, ..., a„ = y be any sequence of metavariables
such that at p- ai + 1 for i = 1, ..., n — 1 (see [9]). Then af = fS for some i, 2 :£
< i < n.

Let the input text be the value of the metavariable a. Then it is obvious that we
shall not use the rules containing the metavariables of the type y (on their left hand
or right hand sides). The same affirmation holds for the rules containing the auxi­
liary variables on their left hand sides.

The remaining rules (in G/J must have their images in G[in the sense of the well-
translation definition.

VIII. The vertices which are the roots of the subtrees described in IV and the ends
of certain branches from Q[have no corresponding pairs in P[as yet. This deficiency
will be removed by completing P[by the new pairs. The first member of each such
pair is the vertex which are the root of a subtree mentioned in IV. The second member
is the corresponding new rule found in VI.

IX. The output text synthesis will not be described in detail here. Let us note only
that under the given circumstances it is advantageous to replace the last metavariable
of the string found up to now. In this way, the number of the metavariables whose
distance from the left border is to be computed at each step is minimal. The reduction
which is inverse to such a synthesis is just the canonical reduction described in [10].

6.

The described generalization of the well-translation does not vitiate its main pro­
perty, viz the meaning conservation. That may be proved with the help of induction
in a quite similar way as for the original well-translation algorithm (see the last
paragraph of section 2). Of course, we must suppose that the corresponding
characteristic subphrases of the input and output text, resp. have the same semantic
content.

A simple example showing the applicability of the described algorithm is that of
translating the expressions from the familiar mathematical form into Polish notation.
Instead of variables a; (see section 4) we may consider the numbers to be translated
from the decimal into dyadic system and the identifiers whose certain limited initial
(or final) part is to be retained in the output text.

The described generalized well-translation algorithm will be tried out on the com­
puter MINSK 22.

(Received December 6th, 1965.)

REFERENCES

[1] Čulík K.: Well-translatable grammars and ALGOL-like languages. IFIP working con-
fereпce "Formal language description languages", Vienna, 14—19 September 1964. To

appear.

[2] Čulík K.: Semantics and translation of grammars and ALGOL-like languages. Kybernetika 1
(1965), 1, 47-49 .

[3] Backus J. W. et al.: Revised report on the algorithmic language ALGOL 60. Numerische
Mathematik 4 (1963), 420-453.

[4] Péter R.: Über die Rekursivität einiger Übersetzungs-transformationen. I. Mitteilung.
Publ. Math. Inst. Hung. Acad. of Sciences, Vol. VII (1962), Series A, Fasc. 1-2, 69-78.

[5] Morris D.: The use of syntactic analysis in cornpilers. "Introduction to system programming".
Academic Press, London and New York 1964, 249 — 255.

[6] Naur P.: The design of the Gier ALGOL compiler. BIT 3 (1963), No 2, 124-140; 3, 145
to 166.

[7] Naur P.: State analysis of linear texts. Preliminary report, Regnecentralen Copenhagen,
June 1965.

[8] Čulík K.: Formal structure of ALGOL and simplification of its description.Tn "Symbolic
languages in data processing" (Roma 1962). Gordon—Breach, New York 1963, 75 — 82.

[9] Kopřiva J.: A note on the structure of certain predicates concerning the sublanguages of
ALGOL 60. Kybernetika 1 (1965), 2, 122-126.

[10] Eickel J., Paul M., Bauer L. and Samelson K.: A syntax controlled generator of formal
language processors. Comm. ACM 6 (1963), 8, 451 — 455.

Zobecnění dobrého překládání formálních jazyků

JIŘÍ KOPŘIVA

Některé způsoby kompilace formálních programovacích jazyků si vynucují změny
syntaktických pravidel. I když někdy malé formální změny tohoto druhu neporuší
vztah „dobré přeložitelnosti" ([1], [2]), a tedy možnost použití algoritmu pro dobré
překládání, mají v některých případech nepříjemné důsledky na zápis jistých částí
výstupního textu (příklady v odstavcích 3 a 4). Ve snaze vyhnout se těmto důsledkům
dobrého překládání „v malém", je vytvořen a popsán algoritmus pro dobré překlá­
dání „vcelku", který vsak ponechává možnost užít jiného způsobu překladu pro jisté
charakteristické podfráze vstupního textu. Tím je dána možnost vyznačit stejný vý­
znam jistých sobě si odpovídajících částí vstupního a výstupního textu tím, že je
zapíšeme způsobem obvyklým v tom kterém jazyku. Při tom vztah mezi nimi nemusí
být dobrá přeložitelnost vzhledem ke gramatikám vstupního a výstupního jazyka.

Jsou proto v průběhu překládacího procesu kombinovány dva způsoby překládání
formálních jazyků. Libovolným způsobem jsou přeloženy jisté části vstupního textu.

Tyto části jsou pak v něm nahrazeny příslušnými metaproměnnými. Takto vzniklá
„kostra" vstupního textu je pomocí algoritmu pro dobré překládání přeložena na
„kostru" výstupního textu. Zasazením předem připravených překladů částí na přísluš­
ná místa této kostry je dokončeno vytvoření výstupního textu. Přitom není porušena
základní vlastnost dobrého překládání, totiž zachování stejného významu překlá­
daného textu.

Doc. Dr. Jiří Kopřiva, CSc, Laboratoř počítacích strojů, Třída Obránců míru 21, Brno.

		webmaster@dml.cz
	2012-06-04T12:46:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

