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KYBERNETIKA- VOLUME 19 (1983), NUMBER 5 

SUB-ADDITIVE MEASURES 
OF INFORMATION IMPROVEMENT 

D. S. HOODA 

Additivity plays a great role in the study of information theoretic measures. However, it is 
very interesting to consider sub-additivity. Starting from sub-additivity for measures associated 
with three probability distributions of a discrete random variable and using another function 
of three probability distributions, it has been changed into generalized additivity. Using sum 
property of the functions and the generalized additivity, a functional equation and its complex 
solutions are obtained. In terms of the real continuous solutions of this functional equation, 
three sub-additive measures of information improvement have been defined and characterized. 
Particular cases and some simple properties including convexity of these new measures have 
also been studied. 

1. INTRODUCTION 

Let X be a random variable taking n values xu x2, ...,x„ having prediction pro­

bability distribution Q = (qu q2,..., o„), £ qt = 1, q{ > 0 which is revised as 
n i = l 

R = (rii r2, •••> rn)> E rt = 1> r i > 0 on the basis of a distribution P = (pu p2, .-•,£„)> 
n i = l 

YJ Pi ~ 1' Pt = 0 supposed to have been realized after some experiment, then the 
i = l 

information theoretic measure associated with these three probability distributions 
P, Q and R is given by 

(i . i) i(P;Q;R) = ipiiog2(rilql). 
i = l 

The measure (1.1) is called Theil's [7] measure of information improvement and 
it has many applications in economics. The measure (1.1) satisfies the property 
of additivity which can be expressed as 

(1.2) 1(P*P'; Q*Q'; R*R') = l(P; Q; R) + l(P'; Q'; R') 
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where P = (Pl, p2, ..., p„); P' = (p'lt p'2 p'm) ; 

P*P' = (PiPi, • • •, PiPm, •••; P„p\, • • •, P„p'm) etc. 

Using sum property given by 

(1-3) i(P; Q;R) = t h(Ph qb rt) , 
i=l 

some generalizations of the measure (1.1) have been studied by Sharma and Soni [5] 
and by Taneja [6]. 

Sharma and Taneja [4] have studied three measures of entropy satisfying the 
sub-additivity 

(1.4) H(PX*P2) ^ H(PX) + H(P2) 

and using another function G of a probability distribution such that 

(1.5) H(PX*P2) = H(Pt) G(P2) + H(P2) G(PX), 

where G(P1) and G(P2) both take values not exceeding unity. The property (1.5) 
can be said as generalized additivity. The three measures of inaccuracy and relative-
information associated with a pair of probability distributions and satisfying the 
generalized additivity 

(1.6) H(PX*P2; QX*Q2) = H(PX; Qx) G(P2; Q2) + H(P2; Q2) G(Pt; Qx) 

have been studied by Sharma and Gupta [3] and by Gupta [2]. 
In this communication, we study three sub-additive measures associated with three 

discrete probability distributions. Simple properties including convexity of these 
measures and particular cases have also been studied. 

2. GENERALIZED ADDITIVITY AND FUNCTIONAL EQUATION 

Let l(P; Q; R) be an information theoretic measure satisfying 

(2A) I(PI*P2; Qx*Q2; Rx*R2) ^ i(Px\ Qx; Rx) + I(P2; Q2; R2) 

Next let G be another function of three probability distributions satisfying 

(2.2) I(PX*P2; Qx*Q2; Rx*R2) = -"(-»,; Qx; R) G(P2; Q2, R2) + 

+ l(P2;Q2;R2)G(P1;Q1;R1) 

The relation (2.2) can be said as generalized additivity of information improvement. 
Now we suppose that 

(2.3) i(P;Q;R) =ih(Pi,qi,ri) 
i = l 

(2.4) G(P;Q;R) = fjg(pi,qi,rl). 
i = i 
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Using (2.3) and (2.4) in (2.2) we have the functional equation 

(2.5) £ £ h(pu, p2j\ quq2J; rur2J) = E )] h(pu, qu, ru) . 
i = i y = i i = i > = i 

g(p2J, l2j, r2j) + E Z h(Pij, <l2j, r2J) g(pu, qu, ru), 
i = i j = i 

where 

1u, l2j, ?-i i, r2i e (0, 1] and px „ p2J e [0, 1] . 

The continuous functions h and g that satisfy the functional equation (2.5) are 
the continuous solutions of the functional equation 

(2.6) h(xx', yy', zz') = h(x, y, z) g(x', y', z') + g(x, y, z) h(x', y', z') 

where 

y, y', z, z' e (0, l ] and x, x' e [0, 1] . 

Therefore, we find the real continuous solutions of (2.6) in the following theorem: 

Theorem 1. The most general complex solutions of (2.6) are given by 

(2.7) h(x, y, z) = 0 , g(x, y, z) arbitrary 

(2.8) h(x, y, z) = e0(x, y, z) a(x, y, z); g(x, y, z) = e0(x, y, z) 

and 

(2.9) h(x,y,z) = ^[e1(x,y,z)-e2(x,y,z)]; 

g(x, y, z) = }[ei(x, y, z) + e2(x, y, z)] , 

where k + 0 is an arbitrary complex constant and a(x, y, z), e}-(x, y, z) (j = 0, 1, 2) 
are arbitrary functions satisfying respectively 

(2.10) a(xx', yy', zz') = a(x, y, z) + a(x', y', z') 

and 

(2.11) ej(xx', yy', zz') = e}(x, y, z) e/x ' , y', z') (j = 0, 1, 2) . 

The proof when functions are of single variable will be found in Aczel [ l ] , p. 
205. The above result also follows on the same lines with suitable modifications. 

Real Continuous Solutions of (2.6) 

The real continuous solutions of (2.6) depend on solutions of the well-known in 
auxiliary equations (2.10) and (2.11). If we substitute the solutions of (2.10) and (2.11) 
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in the solutions given by (2.8) and (2.9) respectively, these take the form 

(2.12) h(x, y, z) = xaypzr(c1 log x + c2 log y + c3 log z ) , 

g(x, v, z) = x a / z ' , 

where a, P, y, c l5 c2, c3 are arbitrary complex constants. 

(2.13) h(x, v, z) = — ( x a / z 7 - xsy"zv) ; 
2/c 

o(x, y, z) = i(x>"z ? + xVz1 ') , 

where a, /?, y, S, fi, v and k are arbitrary complex constants. Further, we see that 
g(x, y, z) in (2.12) would be real iff a, p, y are real and it would be continuous if a, p 
and y are non-negative. It follows that corresponding h(x, y, z) would be real iff 
cu c2, c3 are real and a, /?, y are non-negative. Thus one set of real and continuous 
solutions of (2.6) is given by 

(2.14) /z(x, y, z) = xaypz'(cl log x + c2 log y + c3 log z ) , 

g(x, y, z) = x ' y V , 

where a > 0 , /? 5: 0, } 2: 0 and cu c2, c3 are aibitrary real constants. 

Now g(x, y, z) in (2A3) would be real only under the following sets of conditions: 

(i) a, P, y, S, /.<, v are all real or 

(ii) a, p, y, are complex conjugate of <5, \.i, v respectively. 

The continuity of g(x, y, z) requires that a, p, y, 5, fi, v are all non-negative. When 
g(x, y, z) in (2.13) is real, corresponding h(x, y, z) is also real iff k is real. Thus one 
of the other two sets of real continuous solutions of (2.6) obtained from (2.13) is 
given by 

(2.15) h(x, y, z) = — (x*yV - xdy"zv) , 

2k 

g(x, v, z) = i ( x V V + x V z v ) , 

where a, p, y, S, n, v (all non-negative) and k are real arbitrary constants. 

For second set of solutions, let a = a t + k 2 ; p = fit + ip2; y = y^ + \y2; 
8 = a t — ia2; /. «= fit - \p2; v = yx - iy2; k = iR, then (2.13) gives 

(2.16) h(x, y, z) = - y / ' z " 1 sin (a2 log x + p2 log y + y2 log z ) , 
IV 

fl(x, J', z) = x * y ' z y ' ccs (a2 log x + p2 log y + y2 log z). 

Taking a, P, y, S, [i, v for a,, /?1( yu a2, p2, y2 respectively in (2.16), we have the third 

417 



set of solutions given by 

(2.17) h(x, y, z) = — xxyl!zy sin (8 log x + fi log y + v log z) , 
R 

a(x, j , z) = xa , /zy cos (8 log x + \x log >> + v log z) , 

where a(>0), jS(^O), y(^0), <5, /t, v and R are real constants. Hence (2.14), (2.15) and 
(2.17) are the only three non-trivial sets of real and continuous solutions of the func­
tional equation (2.6) for x e [0, 1] and y, z e (0, l ] . 

3. CHARACTERIZATION OF INFORMATION IMPROVEMENT 
UNDER GENERALIZED ADDITIVITY 

We adopt the following definition: 

Information Improvement. The measure of information improvement l(P; Q; R) 
associated with three discrete probability distributions P, Q and R is given by 

(3A) l(P;Q;R) = £h(pi,qi,ri) 

where h(p, q, r) is a real continuous solution of (2.5) under the conditions 

(3.2) h(\, \, J-) = 0 , /i(l, \, \) = 0 and h(\, 1, ±) = -1 . 

Now we characterize sub-additive measures of information improvement in the 
next theorem which follow from Theorem 1 and sum property. 

Theorem 2. Corresponding to the real continuous solutions (2.14), (2.15) and 
(2.17), the three sub-additive measures of information improvement satisfying (2.2) 
can be only one of the following three forms: 

(3.3) I\P; Q;R:a, /?, y) = 2" £ pfafrj log2 (rj<?;) , 
;=i 

a > 0 , / ? ^ 0 , y ^ 0 , 

(3.4) I"(P; Q;R:a, fi, y, 8) = (2'"> - 2'~')-» £ p^f-V' - q ^ ) , 
;=i 

a > 0 , j3 = 0 , < 5 > 0 , j8 4=y, <S + y 
and 

(3.5) /S(P; & K : a, ft 7, 5) = — £ filV'i sin f<5 log2 - ) , 
sin 8 ;=i \ fl;/ 

« > 0 , jS = 0 , y > 0 , <5 + 0 . 
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4. PARTICULAR CASES 

(a) Taking a. = 1, /? = 0, y = 0 in (3.3), we get 

ll(P; Q; R : 1,0,0) = t Pi^g2(rijq^ , 
; = i 

which is Theil's [7] measure of information improvement. 

(b) Taking ft = y = a — 1 and 5 = 0 in (3.4), we have 

IP(P; Q; R : a, a - 1, a - 1,0) = (21"'" - l ) ' 1 ! ^ - 1 - ^ _ 1 ) 
i = l 

which is information improvement of order a. Further we have 

lira IP(P; Q; R : a, a - 1, a - 1, 0) = £ Pi log2 (rf/cj,), 
a~*l i = l 

which is Theil's [7] measure of information improvement. 

(c) We see that 

lim IS(P; Q;R:a, p, y, 8) = V £ fiq\r\ log2 (rjq) 
d-*0 i = l 

which is (3.3). 

5. PROPERTIES 

Some of the common simple properties of the three subadditive measures of infor­
mation improvement are enlisted below: 

(a) Generalized additivity 
(b) Sub-additivity 
(c) Sum property 
(d) Symmetry with respect to its arguments 
(e) ln(P; Q; Q) = 0. 

Next we discuss the convexity of the sub-additive measure IP(P; Q; R; a, P,y, d) 
with respect to the probability distributions Q and R. 

Theorem 3. The sub-additive measure of information improvement IP(P; Q; R : 
: a, p, y, 8) is a convex n function of the probability distribution Q whenever /? < 1 < 
< t) or 8 < 1 < p. 

Proof. Let us consider r probability distributions 

Qj(X) = {qj(Xl), ..., qj(x„)} , qj(xt) > 0 , £ qj(x{) = 1 , 
i = i 

j = 1, 2, ..., r and a probability distribution 
r 

Q0(X) = {q0(x1), ..., q0(x„)} of X such that q0(x,) = X a3 qj(x^ , 
j = i 

419 



i = 1, 2 , . . . , n, where a/s are non-negative numbers such that Ŷ  cij = 1. The pro-
, = 1 n 

bability distribution Q0(X) is a bonafide probability distribution of A' since £ q0(x,) = 

= 1 L «,«,(*.) = !• Let 
i = i ; = i 

A = F(P(A); Q0(A); R(X) : a, p, y, 5) - £ a, I"(P(X); Q/X); R(A'); a, /?, y, 5) . 
; = i 

Then I"(P; Q;R : a, /?, y, 8) will be a convex n or u function of the probability 
distribution Q according as A ̂  0. 

Now we have 

(5.1) A = (2*-' - 2 " - r ' [ i P*(x) {««(*,) r'-'(x,) - <,'„(*,) -'"'(x.)} -
i = 1 

- £ «, £ rf*d {<$*.•) r>-'(x.) - «•(„) ^ (* i )} ] = 
j = i i = i 

= (2S-y ~ ̂ r 1 [L^OKEa^/x^r-^) -
i = i j = i 

- ( I «; «j-(*iF ^A*i)} - t Pt*,.) { I a, «5(*«) ̂ * 0 -
j = i i = i j = i 

- £ a; aj(x.) >--(*,.)}] = 
; = i 

- P " ' - 2'-0~' £ Pa(xf) [{( i a, qfrdf - £ «, ,$(„)} ^*(*i) -
i = i j = i j = i 

-{(i«i«M-Z«i«Mt'-W]. 
J = I j = i 

Now by Jensen's inequality 

(5-2) (I«,^i)riI«,gX^)» 
J = l J = l 

according as k ^ 1 with equality iff fl/.X;) are constants. Further we have 

(5.3) (2d~y - It-iy1 < 0 
according as /? % 8. 

By taking j S < l < < 5 o r < 5 < l < j S i t follows from (5.1), (5.2) and (5.3) that 
A > 0. The result of the theorem is now obvious. • 

Theorem 4. The sub-additive measuie of information improvement F(P; Q; R : 
: a, P, y, 8) is a convex n function of the probability distribution R whenever 
y-P<l<y-8 or y — 8<l<y — ft. 

The p roof is exactly similar to that of Theorem 3. 
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Theorem 5. The sub-additive measures of information improvement Il(P; Q; R : 
:a,p,y), IP(P; Q; R : a, P, y, 5) and F(P; Q; R : a, /?, y, 3) are convex n or u 
functions of the probability distribution P according as a ^ 1. 
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