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K Y B E R N E T I K A — VOLUME 2 £ ( 1 9 9 2 ) , N U M B E R 2 , P A G E S 9 0 - 9 9 

POLE PLACEMENT AND RELATED PROBLEMS1 

J E A N J . L O I S E A U 

We survey recent work in pole placement and related problems which are notably matrix completion, 
placement of the zeroes of a triple and feedback simulation. For each of these points we exam the 
existing and open field, and we point out the connection with pole placement by the use of matrix 
pencil formulation. 

1. I N T R O D U C T I O N 

A linear time-invariant system 

x = Ax + Bu (1) 

is called reachable when one can assign free the poles of the closed-loop system 

i = (A + BF)x (2) 

obtained by applying a static s tate feedback u = Fx. Even in this case, the dynamics 

of the system cannot be completely modified. The basic result of Rosenbrock (cf. [11], 

Chap . 5, T h m s 4.1 and 4.2) is tha t the freedom in assigning the dynamics of A + BF 

by choosing F depends of some inequalities linking the controllability indices of (A, B) 

and the degrees of the desired invariant factors. 

Inequalities similar to Rosenbrock's ones appear in other par ts of system theory. Iii 

this way, Heymann [3] defined and solved the so-called feedback simulation problem in 

terms of the controllability indices of the system and of the model. This comes to a 

characterisation of the freedom in assigning the controllability indices of (A + BF, BG) 

by choosing F and G. Descusse, Lafay and Malabre [1] (see also [9]) used in the context 

of Morgan's problem inequalities which link the infinite zero orders and the Morse's list 

I2 (Morse [12]) of a triple (C, A,B)to the infinite zero orders of (C, A + BF, BG) where 

G can be uon-invertible. 

Other inequalities which generalize Rosenbrock's ones appear in recent results in the 

area of matr ix completion. Zaballa [14], [15] describes the possible values of the invariant 

factors of a matr ix having some unknown rows. 

'Presented at the IFAO Workshop on System Structure and Control held in Prague during 25 - 27 
September 1989. 
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The aim of the present work is to exam these results within a unifying matrix pen­
cil approach. This permits us to show the exact relationships linking them, given an 
overview on the subject and offer some open problems. 

The following notations will be used. If a and /? are polynomials with real coefficients, 
a > /3 stands for "a is divided by /?". The least common multiple of a and (3 is denoted 
lcm (a, /?). The degree of a is denoted d(a). Any finite list of m integers n\, n2,..., nm 

is identified to the list of p (p > m) integers n-[,n2,... ,nm,0,0,... ,0. This permits us 
to identify the following two sums 

m p 

]T nj and ] T nj 
3=1 3=1 

especially when m is unknown, card {•} stands for the number of elements in the set {•}. 
We assume that the reader is familiar with the notions of poles and zeroes of a system 

[11], Kronecker indices of a matrix pencil [2], Morse's feedback invariants [12] and familiar 
with the relationships linking these concepts [7]. 

2. POLE PLACEMENT 

We consider system (1) where A € M"xn, B 6 Rnx"', and a list a\ > a2 > • • • > an of 
monic polynomials. Assume that (A,B) is controllable and have controllability indices 
<T],<T2,... ,crm. The basic result of Rosenbrock [11] is the following. 

Theorem 1 (cf. [11], [4] for an alternative proof). There exists a feedback F such 
that a\,a2,...,an are the invariant factors of A + BF if and only if 

J>-=£<.(«*,) (3) 
3=1 3=1 

and , , 

j > , - < $ > ( « , ) , fori = 1,2, . . . . (4) 
3=1 3=1 

In order to generalize this result, one can give various formulations of it. Let At be a 
left anihilator of B, that is any maximal rank matrix so that NB = 0, and A' S R9*9. 

Proposition 1. The following claims are equivalent, 
(i) There exist matrices F and T, T invertible, such that 

T(A + BF)T-l = A'. (5) 

(ii) There exist matrices P epic and Q invertible such that 

N(s\-A) = P(s\-A')Q. (6) 
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(iii) There exist matrices B', F, T, T invertible, such that 

T(A + BF)T-' =A' and TB = B'. (7) 

P r o o f . Clearly (iii) = > (i). Assuming that (i) hold, one obtains (ii) multiplying 

both members of (5) by At, and defining P = NT'* and Q = T. Finally, if (ii) hold, 

then N = PQ. Thus P is a left anihilator of B' = QB. In addition NA = NQ~lA'Q, 

so A + BF = Q-*A'Q for some F. The conclusion follows taking T = Q. O 

Claim (ii) gives us a matrix pencil formulation of Theorem 1. Claim (iii) shows the 

reversibility of conditions (4), when one wish to assign the controllability indices of 

(A',B') by choosing B'. To be perfectly clear, let O i , a 2 , . . . , o„ denote the invariant 

factors of A'. 

Coro l lary 1. There exist matrices P epic and Q invertible satisfying (6) if and only 

if conditions (3) and (4) hold. 

Coro l lary .2. There exists a matrix B' so that (A1, B') is controllable and <T\, <72,.. . , c„ 

are the controllability indices of (A1, B') if and only if conditions (3) and (4) hold. 

In the same way, inequalities (4) can receive various interpretations. In part icular , 

because of the rank condition (3), (4) can be replaced by 

X > > X > K j , fori = 1,2, 

One should think that one of the two conditions (4) or (8) is preferable to the other 

one. It is not the case, the two generalizations of Theorem 1 which follow, where the 

rank condition (3) fall down, are pleasant illustrations of this point. A' is now any matr ix 

having 0 1 , 02, • • • ,nq for invariant factors. 

T h e o r e m 2 (cf. [13]). There exists a state feedback F such tha t A + BF is similar 

to 

I 0 
where * s tands for unspecified values, if and only if conditions (8) hold. 

T h e o r e m 3 . There exists a matrix B' such that <7i, c r 2 , . . . , <r„, are the controllability 

indices of (A1, B*) if and only if conditions (4) hold. 

P r o o f . Theorem 3 can be proved by direct adaptation of the proof of Corollary 2, 

tha t is the proof of Theorem 1 proposed in [11], [4]. In this proof, condition (3) only 

traduces the hypothesis that (A', B') is controllable. In addition. Theorem 3 can be seen 

as a consequence of Theorem 5. O 
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Theorem 1 can also be generalized to more general systems. The last result of this 

chapter concerns the square singular system 

Ex = Ax + Bu, where E, A € R " x m , B e Rnxm. (9) 

Let us first introduce some vocabulary (see for example [5], [10]). System (9) is called 

- regular if sE — A has no column minimal indices nor row minimal indices, tha t is 

sE — A is invertible. 

- proper if sE — A only has infinite elementary divisors with order 1 and finite 

elementary divisors. In other words, the system is regular and the inverse of sE — A 

is proper. 

- polynomial if s — A only has infinite elementary divisors, the system is then regular 

and the inverse of sE — A is polynomial. 

- reachable if N(sE — A) has only column minimal indices. 

Assume now tha t (9) is reachable and let e\, e2,..., em be the column minimal indices 

of N(sE - A). 

T h e o r e m 4. There exists a proportional and derivative feedback (F, K) such that 

s(E + BK) — (A + BF) is regular and have finite invariant factors a\,a2,...,an and 

infinite elementary divisors with degrees p\,p2,.. • ,pn if and only if 

£>, • + !) = £((.(*,)+ Pi) (10) 

X> + 1 ^ D d K ) + w)' tori--1,2,.... (11) 
3=1 3=1 

The proof of Theorem 4 is removed in the Appendix. This proof is based on the 

variable change s = (1 + kp)/p which brings all the infinite zeros in finite positions: one 

can then apply Theorem 1. 

Note tha t Kucera and Zagalak [5], [6] solved the problem of pole placement for singular 

systems by only proportional feedback, that is with K — 0. The remarkable fact is 

tha t in this case necessary and sufficient conditions are also provided by (10) and (11), 

together with t he unique additional assumption that the number of infinite zeroes of 

(sE — (A + BF)) have to be equal to the number of infinite zeroes of (sE — A) and so 

do not depend on F. 

The case where sE - A — BF is not assumed to be regular is studied in [16]. In this 

case the si tuation is more complicated, especially because the quant i ty 

£(<!(«,) + ?;) 
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cannot be assigned freely. The complete description of the solution in this case is still 

an open problem. 

Theorems 1, 2, and 4 are only available for reachable systems, Theorem 3 gives an 

incomplete answer to the problem of pole placement in the non-controllable case: nothing 

is s ta ted about the invariant factors of (A, B). We will see a more complete answer in 

the following chapter. 

3. MATRIX C O M P L E T I O N 

Let A € R."*", with invariant factors a\ > a2 > •• • > an, 0\ > a2 > • • • > am be 

positive integers and fi\ > fi2 > • • • > fin be n monic polynomials. The following was 

recently s tated by Zaballa [14], [15]. 

T h e o r e m 5. There exists a matrix B such that a\,a2,..., am and 0\, ft2,..., /?„ are 

the controllability indices and the invariant factors of (A, B) if and only if 

« . > Pi > «.+». for i = 1 ,2 , . . . (12) 

5 > =-£>(*>) (13) 

£ * ; < £ « * ( » > ) , for i = 1 ,2 , . . . (14) 
i=\ J=l 

allere 

BÌ = v3/nj+\ 
vJ = ní ni ^ 
i)J 5= km(ßj, Oi+j-i) for г, j = 1,2. 

Inequalities (14) are quite different from those given in [15]. This is only due to a 

different ordering of the invariant factors. 

Proposition 1 and Corollary 2 can convince anyone that Theorem 5 is a generalization 

of Theorem 1 and of Theorem 3. In fact Theorem 5 is the most achieved result in this 

area. An open challenge is to supress the rank condition (13) in the spirit of Theorem 2 

and Theorem 3. 

4. C O N N E C T E D P R O B L E M S 

We will rapidly recall two results which have direct connections with the previous work. 

Let (A, B) and (A',B') be two controllable systems with controllability indices a\ > 

a2 > • • • > (T,„ and a\>a!i>-> a'. N and N' are left auihilators of B and B'. 
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T h e o r e m 6 . The following claims are equivalent. 

(i) There exist a matr ix F, an isomorphism T and G monic such that 

T(A + BF)T~l =A' 

and m 

TBG = B'. 

(ii) There exist matrices P epic and Q invertible such that 

N (s\ - A) = PN'(s\ -A')Q. 

!> = £*; (15) 
i=\ j=\ 

] T o, > Yl a'v fori = 1 , 2 , . . . (16) 

J(i) = c a r d { ; K < i), for i = 1 ,2 , . . . 

J ' ( i ) = c a r d { j | c r ' < i } , f o r i = 1 ,2 , . . . . 

and 

and 

T h e equivalence of (i) and (iii) is a result of Heymann [3]. Equivalence between (i) 

and (ii) is shown as in Proposition 1. 

Let us remark that (16) specify all the possible lists of controllability indices of systems 

(A + BF, BG), when (F,G) vary, even in the non-controllable case. (15) only traduces 

the controllability of (A + BF, BG). 

Consider now a (C, A, B) triple and let rij > n2 > • • • > np and <Ti > a2 > • • • > am 

respectively be its Morse's lists 74 (in other words the ordered list of the infinite zero 

orders of our triple) and Morse's list I2 [12], and let n\ > n'2 > • • • > n'q be a non-

increasing list of positive integers. 

T h e o r e m 7 . There exist a feedback F and G monic such that n\, n'2,..., n'q are the 

infinite zero orders of (C, A + BF, BG) if and only if 

P — P« > 9 — Ii f o r i = 1 ,2 , . . . 

and , t 

^ > i > E > * for i = 1,2,... (17) 
j=i j=i 
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where the list Ai, Aa, • • • is obtained by reordering in a non-increasing order the sequence 
of differencies p\ - Pi, and where 

Pi = card {j | tij > i} for i = 1,2,... 

p'i = card {j | n'j > i} for i = 1,2,... 

and 
7,- = card {j \ CTJ > i} for i = 1,2,... . 

Note that pi = p and that p'x = 9. 

This last result was stated in [9]. Note that Theorem 5 generalized Theorem 7 if the 
rank of the system is not modified - in other words \( q = p. 

In that case, Zaballa's result generalizes Theorem 7 to the simultaneous placement 
of finite and infinite zeroes of (C, A + BF, BG). This is given by Proposition 1 and 
the following Proposition 2. Be given two linear triples (C, A, B) and (C,A',B'), with 
A, A' e R"*", let /V (respectively At') be a left anihilator of B (B1) and K (K') be a 
matrix basis of C (C). 

Proposit ion 2 (cf. [6]). There exist matrices P epic and Q invertible such that 

N(s\ - A)K = P • N'(sl - A')K' • Q'1 

if and only if there exist a feedback F and G monic such that (C, A + BF, BG) and 
(C, A', B') have the same Morse's lists. 

If then we assume that (C, A, B) is right invertible (that is N(s\ — A)K has only 
column minimal indices a\ > a2 > • • • > am, finite invariant factors a\ > a2 > • • • > an 

and infinite elementary divisors with degrees nx > n2> • • • > np) and that (C, A', B') 
is invertible (N'(s\ — A')K' has only elementary divisors, the finite ones form invariant 
factors a\ > a2 > • • • > a'n, the infinite ones have degrees n\, n'2,..., n'p), we can apply 
Theorem 5. 

Corollary 3. There exist G monic and F such that the Morse's lists of (C, A + 
BF, BG) are those of (C, A', B') if and only if the following conditions hold 

<*'i > ai > a'i+m fori = 1,2,... (18) 

n'i >ni>n'i+m fori = 1 , 2 , . . . (19) 

£ K + 1) = E 0 (20) 

j> J + l ) < £ 0 , for i= 1,2,... (21) 
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where , ,+i 

0 = 4tfi*») + V-*'*< 
VJ = ^ • ^ • • • ' " ? " ' 

-.» ._ '̂ + v4 + --- + ^' 
?/• = fan (a,-, a . + J _ j ) , 

0 / = -max («„ n - + i _ , ) for i, 3 = 1 ,2 , , . . . 

The proof of Corollary 3 is reported in the Appendix. 

Corollary 3 provides necessary and sufficient conditions for the freedom in assigning 

by feedback the Morse's lists of a right-invertible system (C,A, B), when the closed-

loop system has to be invertible. This certainty provides a good way to solve Morgan's 

problem with stability. These conditions also have been used in the field of model 

following problem [8]. 

5. CONCLUSIONS 

The equation 

(sE-H) = P-(sE'-H')-Q-1 (22) 

where P is epic and Q is invertible, is the link between the different results discussed in 

this paper. 

Rosenbrock's Theorem concern the case where (sE — H) has only column minimal 

indices and (sE' — H') has only finite elementary divisors. Zaballa's result generalizes 

it when (sE — H) has also finite elementary divisors. Theorem 4 and Corollary 3 show 

how .this can be extended to the case where (sE — H) and (sE' — H') have also infinite 

divisors. Finally, Heymann's Theorem corresponds to the case where the two pencil have 

only column minimal indices. 

This unified point of view permits us to generalize Rosenbrock's result for singular 

systems (Theorem 4) and to generalize Theorem 7 to the simultaneous placement of 

finite and infinite s tructures of a (C, A, B) triple (Corollary 3). 

It also permits us to point out some open problems. A first challenge is to give for 

problem (22) necessary and sufficient conditions of solvability in terms of the Kronecker 's 

invariants of the pencil (sE — H) and (sE' — / / ' ) , in the general case. 

A second axis of research is offered when some rank conditions - the invertibility of 

Q-fall down, in the spirit of Theorem 3, Theorem 4 and Theorem 7. 

One can hope for generalizations of these concepts to more general systems. Theorem 4 

gives an example of such extension for singular systems. The formulation of the solution 

to control problems in terms of s t ructure of systems offer real perspectives for non-linear 

systems. 

Let us finally point out the importance of problem (22) for control theory. In [6], 

Kucera shows how the construction of linear regulators, optimal est imators or dead-

beat controllers can be reduced to the problem of pole placement. Descusse, Lafay and 
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Malabre [1] used the zero placement [9] as a key-point to study Morgan's problem. Corol­

lary 3 is the s tar t ing point of [8], in which is studied the model following problem. We 

hope for more developments in this area. 

A P P E N D I X 

L e m m a 1 (cf. [10]). Two systems (A, B) and (A1, B') are equivalent under proportion­

al and derivative feedback if and only if their restricted pencils N(s\—A) and N'(s\ —A') 

are equivalent in the sense of Kronecker. 

L e m m a 2. Let (sH — J) be a matrix pencil having 

- finite elementary divisors (s — li)k", (s — 7i)A''12,. ..(s — 7i) f c l", (s — 'y2)
k21, •.., 

(s — 71 )**" which correspond to the invariant factors o^, a2,..., an like follows 

ai = (s- 7l)
fcl< • (s - l2)

k2', • •., (s - 7.)*" f o r » - I , - , • • •» 

- infinite elementary divisors with degrees pi,P2, • •• ,pn, 

- column minimal indices $i, £2, • • •, £m, 

- row minimal indices r/i, i]2,... ,rjp. 

Consider now the pencil (p(kH — J) + H) obtained by the change of variable 

s = (1 + kp)fp. (23) 

T h e KronecEer's invariants of (p(kH — J) + H) are .. 

- finite elementary divisors (p - <j>i)kn , (p - </>i)*12,..., (p - <t>i)kln, (p - & ) * " , -. •, 

(P - 4t)k",,PP1, P " , • • •,Pr", where fa = ^ j for each i so tha t a,- ^ k, 

- infinite elementary divisors with degrees fc,i, ki2,..., kin, if for some i, a,- = k, 

- column minimal indices £i , £2, • • •, £ « , 

- row minimal indices iji,T}2,..., rjp. 

P r o o f o f T h e o r e m 4 . We are now able to prove Theorem 4. Using Lemma 1 and 

the change of variable (12), our problem comes to find P epic and Q isomorphic such 

tha t 

N(p(kE-A) + E) = P(p(kE'-A') + E')Q . 

where sE' — A' is any matrix pencil having invariant factors a^,a2,...,an infinite ele­

men ta ry divisors with degrees pi,p2,.. • ,pn-

Withou t any limitation, we can assume that k is neither in the spect rum of sE — A 

nor in the spect rum of sE' — A'. kE — A and kE' — A' are then invertible, so we are 

searching P epic and an isomorphism Qx so tha t 

N(p\ + E(kE - A)'1) = P(p\ - E' (kE' - A')-1) Qi 
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where 

Q1 = (kE'-A')Q(kE-A)-\ 

Lemma 2 and Corollary 1 then give the conclusion. • 

P r o o f of C o r o l l a r y 3 . Using Proposition 2 and the change of variable (23), find 

T, E and G as in Corollary 3 comes to find P epic and Q invertible so tha t 

P(kNK - NAK) + NK = P(p(kN'K' - N'A'K') + At'A") Q. 

The conclusion then follows from Lemma 2, Proposition 1 and Theorem 5. • 

(Received November 30, 1990.) 
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