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K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 3 

On Steady State Minimum Variance Control 
Strategy 

VÁCLAV PETERKA 

The paper deals with the optimal digital regulation of stationary stochastic plant with single 
input and single output. It is assumed that the input-output relation is described by a linear dif­
ference equation and that the spectral density of additive stochastic disturbances is rational. The 
problem is to determine the control law (the algorithm of the digital controller in feedback) so 
that the variance of the plant output be minimum in steady state. 

1. INTRODUCTION 

The problem we shall ueal with became to be almost classical and has been con­
sidered by many authors who applied different approaches. A comprehensive dis­
cussion of the given problem including a practical application can be found in the 
book by Astrom [l , chap. 6]. Another solution was presented by Strejc [2] who 
applied the Wiener technique in complex domain. Related problems have been con­
sidered by Tsypkin [3], Chang [4], Volgin [5] and others. Many remarkable and 
highly important results in the control theory of stochastic discrete systems have been 
achieved. Nevertheless some confusing statements can be repeatedly found concerning 
the sensitivity and stability of optimal closed control loops in the case when the 
process to be controlled is of nonminimum phase type and/or unstable itself. Also 
most of the results do not apply for some special cases such as finite memory systems 
etc. 

After the transformation into the state space representation the given regulator 
problem can be solved as a special case by the more general modern stochastic control 
theory [1, chap. 8], [6, chap. 9]. When this theory is applied the steady state solution 
of the discrete version of the matrix Riccati equation has to be found. It is common­
ly believed that this approach is more suitable for numerical calculation on a digital 
computer. But the solution of the stationary Riccati equation is not unique and it 
turned out that to find the correct solution is sometimes not a simple task, especially 
when the system is of nonminimum-phase type. It shoud be emphasised here that the 



nonminimum-phase discrete systems are encountered rather frequently and that often 
the continuous minimum-phase systems get the nonminimum-phase property after 
the discretisation. 

The reasons mentioned above initiated the idea to brush up the complex domain 
approach and to find a solution more general than the results known up to now and 
bring it into a form which could be well algorithmisized uniformly for all cases. 

2. PROBLEM STATEMENT 

A linear discrete stationary stochastic system with single input {u(t); te T) and 
single output {y(t); t e T} is considered. T is the set of integers. It is assumed that the 
input-output relation for any t e T is described by the following equations 

(1) y(t) = x(,) + ,1(t), 

(2) x(t) + t aiX(t - 0 = 1 bi u(t-k- i) , 
( = 1 i=0 

where fy(t); t e T} is a weakly stationary sequence of random disturbances with zero 
mean and the autocovariance function 

(3) q>m(}) = En(t)n(t+j). 

It is assumed that the corresponding spectral density is a rational function 

(4) *JQ= I *JJW ***§$£ 
J - - • «(£)«(£ J) 

where /?(£) and a(£) are polynomials with real coefficients 

(5) /?(C) = 1 + j?1£ + /?2C
2 + ... + / V , 

(6) «(0 = i + «1c + «2c
2 + • • • + «vr 

and o2
e is a constant not necessarily known. The polynomials /?(£) and u(() in (4) can 

be always chosen to have no roots inside the unit circle. As the stochastic process is 
assumed to be stationary, a(Q in addition cannot have any root on the unit circle [7]. 

The degrees /< and v of the polynomials (5) and (6) as well as n and m in (2) may be 
any finite nonnegative integers. 

Due to the physical realizability the discrete closed loop must contain at least one 
step delay. Let us include this necessary one step delay into the system to be controlled 
and thus in (2) always k 2: 1. Then the physically realizable linear control law does 
not need to contain any time delay and can be written in the following form 

(7) u(t)= - l r i u ( t - i ) - l s i y ( t - i ) . 



The problem is to find the lowest possible integers N, M and all coefficients in the 221 
control law (7) that 

a) the output variance E y2(t) be minimum in steady state and, 

b) the closed control loop be stable. 

3. NOTATION 

To simplify the writing the following notation will be used for polynomials 

d = d(C) = d0 + dt( + ... + d,{\ 

Id! degree of the polynomial d; ||djj = X, 

3 = d(r1), 
d polynomial reciprocal to d and normalized to d(0) = 1 

d(0 - U"d(rl) = i + ^ c + d~^t2 + ... + ^e, 
dx dx dk dx 

d+ factor containing all zeros of d lying outside and on the unit circle in 
the C-plane normalized so that d+(0) = 1, 

d~ factor of d containing all zeros of d lying inside the unit circle and ful­
filling the relation 

d~d+ = d, 

d* = d+d~ where d~ is the polynomial reciprocal to d~ and normalized to 
d~(0) = 1, 

C = z " : for convenience the complex parameter £ is used instead of customary z 
in z-transfoim. 

Notice that d~(t) = d0 and d*(() = d+(C) if the polynomial d(£) has no zeros in­
side the unit circle. 

Notice also that d*(£) has no zeros inside the unit circle and always d*(0) = d* = 1. 
Also ||d*I = ||d|| if d0 + 0. 

4. MAIN RESULT 

It is well known that the steady state output variance E y2(t) — o2 of the stable 
control loop described by (1), (2), (4) and (7) can be expressed as the complex integral 

<-l = -2-~j>Ч0Щrí)àf 



222 where the path of integration is the unit circle and 

(9) w(t) = £. 
a ar + £kbs 

a. and /? being the polynomials (5), (6) and 

(10) a = a(C)= 1 + fljC + ••• + --C", 

(11) 6 = K 0 = &o + V + ••• + bJT 

(12) r = r(Q = 1 + r , C + .. . + r„C" 

(13) s = s ( Q = s 0 + S l C + ... + sMCM 

Fig. 1. 

The function W(Q can be interpreted as the pulse-transfer-function between the signal e 
and y in the block diagram shown in Fig. 1. Then the complex integral in (8) is the 
sum of squares of the corresponding pulse response. 

To solve the problem formulated in section 2 the polynomials r(Q and s(£) are to 
be found, which minimize the integral (8) under the restriction that the closed control 
loop must be stable. The minimization procedure will be performed by decomposition 
of the integral in (8) into two terms 

(14) i = ±lw(0w(cl)d^ = il + i2 
2nj J C 

The first term i \ will be chosen so that it cannot be influenced by any stable regulation 
and thus represents the absolute minimum of/, while I2 is the term which can be fully 
compensated. To reach this situation the following rearrangement of the function 
W(t) is suitable 



(15) W ( ľ ) = í - r + ?Ьs-?Ьs_ß ß ikbs 
ar + t,kbs a a ar + _bs 

. _b- X P _ Pb+S I = r*_L_L f g-g-jS _ __g_*s I 
LC-fe-a a(ar + Ckbs)j &~h~ [a'?b~a. a~a(ar + t_bs\' 

The last operation in (15) is a trick, the sense of which will be apparent later on. The 
first term in the brackets in (15) can be further decomposed into two terms 

(16) f~~-~- - -Ѓ + 
ã b ß _ _ p _ + j ^ 

(*a~Ь~a C*!'" «~« 

This partial fractioning leads to the polynomial equation 

(17) a~b~.= a~ap + Ckb~q. 

As no restriction concerning the degrees of the polynomials [3 and a were accepted, 
the decomposition (16) may be not unique if p. > v. Therefore the degree at least of 
one of the unknown polynomials must be specified. It will be seen that the minimal 
possible degree of p 

(18) ! p | = x + k - 1 , 

(19) K - l i i 

is the only correct choice. Notice that always p(0) = p0 = 1. 
After the decomposition (16) the function W(Q (15) can be rewritten into the final 

form 

PO) ,-»_-£»:[£ + -] 
where 

q a~pb*s _ gar + (rkbg - a~^g~b+)s 

a~a a~a(ar + £kbs) a~a(ar + Ckbs) 

and using (17) 

(21) W = a*qr ~aPb + s 

a(ar + Ckbs) 

The expression (20) has to be substituted into (8). Before doing it notice that 

(22) E^1_^1^K 
ah a b 

which is a constant. This is the sense of the trick applied in the last expression of (15). 



Now the integral (14) can be rewritten into the following form 

(23) ! = K±:&J^& + K±&V9*+2K±-&-JL-T%. 
2nj J b~b- C 27ijJ C 2n) J Ckb- C 

The function f ( ( ) must be holomorfic inside and on the unit circle for any stable re­
gulation. Therefore the third integral in (23) vanishes if the degree of the polynomial p 
is chosen according to (18) 

K-L£-4-9£.b;±.&JL*dc-o. 
2njJCkb- C 2niJb-

Thus the desired decomposition (14) is achieved with 

and 

(25) I2=K 
2« j J C 

The term <T^/J is the unreducible part of the output variance (8) while a2J2 can be 
fully compensated by the choice 

<*» '—!£ 
r apb 

as it follows from (21). 
To determine the optimal regulator (26) it is not necessary to know the polynomials 

p and b+ separately. Only their product 

(27) v = pb + 

is required. After multiplication by b+a+ the polynomial equation (17) gets the form 

(28) a*b*p = accv + fbs , 

(29) \v\ = m + k - 1 

which makes it possible to calculate the polynomial v directly. Then 

(30) r = av. 

To cheque the stability of the optimal control loop let us calculate the characteris­
tic polynomial for the optimal control law (26): 

(31) ar + £kbs = a*b*p* . 



From this polynomial it can be seen that the optimum lies at the stability boundary 
if any of the polynomials a, b or p has some of its zeros on the unit circle. Otherwise 
the optimum lies always inside the region of stability. 

The result can be summarized in the following theorem. 

Theorem 1. Consider the weakly stationary stochastic system described by the 
equations (l), (2), (4). The linear control law (7) is postulated. 

The coefficients of the control law minimizing the output variance in steady state 
are given by the transfer function 

(32) I . - l 

r av 

where the polynomials v and s are determined by the polynomial equation 

(28) a*b*fi = aav + (kbs 

where 

(29) \\v\\ = m + k - 1 . 

When the polynomials a, b or fi have some zeros on the unit circle the optimum lies 
at the stability boundary, otherwise the optimum lies always inside the region of 
stability. 

Remark 1. Notice that the polynomial equation (28) does not contain b+ and b~ 
as well as a+ and a~ separately but only their product b* = b+b~ and a* = a+d~ 
which can be calculated from given b and a without the knowledge of the roots 
by a simple iterative procedure described in [8] and [9]. The polynomial equation 
(28) or (17) can be most efficiently solved by algorithmus for contraction of rational 
function developed by Nekolny [10]. The algorithms mentioned give the poss*bility 
to write a relatively simple computer program which solves numerically the given 
problem uniformly for all possible cases [11]. 

For by hand calculation the polynomial equation (17) and the relation (26) may be 
more suitable. However, then the full factorization of the polynomials is required. 

Remark 2. Notice that the order of the optimal controller can be reduced if the 
polynomials a and a have some common factor, which can be cancelled in (32) and 
on both sides of the polynomial equation (28). 

The same situation occurs if the polynomials a and b have some common factor 
with zeros lying outside the unit circle. 

Similarly, if a and /? have some common factor it appears also in 5 as it can be seen 
from (28) and can be cancelled in (32), too. 

Therefore it is advisable to cheque the rational function (32) for common factors 
if they are not apriori known. 



Remark 3. If the optimum lies near to or at the stability boundary even very small 
changes of parameters in unsuitable direction may cause the unstability of control 
loop. Therefore it is advisable to check the stability and the output-variance in the 
neighbourhood of the optimum and to change the adjustment to a suboptimal but 
less sensitive point if desired. The next simlpe example is given for illustration. 

Example 1. Consider the process described by the stochastic difference equation 

y(t) - 0-7y(t - 1) = u(t - 1) + u(t - 2) + e(t) + 0-95e(i - l) 

where {e(t), t e T} is a stationary sequence of uncorrelated random variables with 
zero mean and a2 = 1. The corresponding polynomials are • 

a(C) = a+(C) = «(C) = 1 - 0-7C , 

b(Q = b+(Cj = b*(() = 1 + C, 6~(C) = J , 

KC) - 1 + 0-95C, 

k = 1 . 
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According to (18) | |p| | - 0 and thus p(£) = 1. The polynomial equation (17) 

1 + 0-95C = 1 - 0-7C + Cflo 

gives q0 = 1-65 and the pulse transfer function (26) of the optimal controller is 

»(0 _ so 

KO i + г.c 
with s 0 = 1'65 , rl = 1 . 



As the polynomial b(C) has a zero on the unit circle the optimum hes at the stability 
boundary. It can be seen in Fig. 2, where the output variance of the regulated process 
is plotted for different rx and s0 = 165. The control loop is unstable even for the 
smallest deviations of s0 from the value s0 = 1-65 if rl = 1. To show the situation 
more clearly also curves for other fixed s0 (Fig. 2) and rt (Fig. 3) are plotted. The 
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diagrams show that a suboptimal adjustment of the controller can be found, which 
is not very close to the stability boundary and the corresponding increase of the out­
put variance is well acceptable. For instance ry = 0-9 and s0 = 1-3 give the output 
variance o2

y = 1-38 while the absolute minimum is 1 and the outputvariance without 
control was 6-34. 

5. IMPORTANT SPECIAL CASES 

Various models can be used for description of stochastic controlled processes 
[12]. In this section the Theorem 1 will be applied for the most important of them. 

Impulse response model 

Consider the stochastic process described by the equation of the following form 

(33) y(t) = igiu(t-i) + ihie(t-i). 
i = l i = 0 

The variance of the discrete white noise e(t) can be chosen so that h0 = 1. 



228 The coefficients gh i = 1, 2, ..., Lean be interpreted as the ordinates of the pulse 
response of a finite memory deterministic system (Fig. 4) with the pulse transfer 
function 

(34) g(0 = яtí + g2C
2 + ••• + gJL-

Similarly the coefficients ht are the ordinates of the pulse response of the finite memory 
filter with the pulse transfer function 

(35) h(c) = 1 + htC+ ... + кe 

The filter represents the second order statistical properties of the stationary additive 
noise \] in Fig. 4 and the polynomial h(() can be always chosen so that it has no zeros 
inside the unit circle. 

Fig. 4. 

U 
1 »»- 9(0 —é 

s(() 
r(0 
s(() 
r(0 

If the system has a time delay of k steps (k > 1), thenoj = Ofor i = 1, 2, ..., k — 1. 
The application of the Theorem 1 to this case gives 

Corollary 1. The coefficients of the linear control law (7) minimizing the output 
variance of the stochastic system described by impulse response model (33) are 
determined by the polynomial equation 

(36) 

where 

g*h = r + gs 

(37) Irll = L - 1 



Regression model 

Stationary stochastic processes are often described by the regression model 

(38) y(t) = i At y(t - i) + £ B: u(t - i) + e(t) . 
; = i i = i 

If the polynomials 

(39) 4C) = I - ^ I C - ^ C 2 - - . - M ' V . 

(40) B(Q = B,C + B2C
2 + ... + BMCM 

are introduced then the optimal control law is given by 

Corollary 2. / / the stochastic process is described by the regression model (38) 
the steady state minimum variance control strategy is determined by the polyno­
mial equation 

(41) B* = Ar + Bs 

with 

(42) \\r\\ = M - 1 . 

Astrom model 

The model introduced by Astrom and Bohlin [13], [14] became very popular in 
practical application 

(43) y(t) + £ Aty(t - i) = I !*, u(t - k - i) + e(t) + £ C; e(t - /) . 
i = l ;=o i = l 

The coefficients C;, i = 1, 2 , . . . , N are chosen so that the polynomial 

(44) C(C)= 1 + c,c + ... + cNcN, 

has no zeros inside the unit circle. 

Introduce also the polynomials 

(45) .4(0= 1 + A,i: + ... + ASC, 

(46) B(C) = B0 + B1C + . . . + BMCM 

When the common factors in both equations (28) and (32) are considered (a = A ; 

a = A*, b = B, /J = C) the Theorem 1 gives 



Corollary 3. The process described by the stochastic difference equation (43) 
is considered. The polynomial C(Q has no zeros inside the unit circle and BM # 0. 
The linear control law (7) minimizing the output variance in steady state is deter­
mined by the polynomial equation 

(47) B*C = Ar + £kBs 

with 

(48) ||r|| = M + k - 1 . 

Remark 4. Notice that the regression model is a special case of Astrom model (43) 
forC(C) = 1. 

Notice also the interesting fact that instability of the plant does not make any 
exception when the Astrom model is applied. The simple equation (47) is valid 
generally. 

The classical model considered in our problem formulation can be recalculated 
into the Astrom form using the following relations A = aa ; B = ba ; C = a*/}. 
The calculation of C contains already the necessary factorisation of a. The charac­
teristic polynomial of the closed control loop is C(C) B*(C)- All this shows that the 
stability of the plant actually does not play any role but it must be considered in 
the classical model only for the correct calculation of the polynomial C. From this 
point of view the Astrom model appears to be a very practical and general repre­
sentation of stochastic systems. 

(Received December 4, 1971.) 
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K strategii regulace minimalizující rozptyl v stacionárním stavu 

VÁCLAV PETERKA 

Článek se zabývá číslicovou regulací stacionární stochastické soustavy s jedním 

vstupem a jedním výstupem. Předpokládá se, že stochastickou soustavu lze rozdělit 

na deterministickou část popsanou lineární diferenční rovnicí a aditivní šum s racio­

nálním spektrem. Řeší se problém určení optimálního algoritmu číslicového regulá­

toru ve zpětné vazbě, který minimalizuje rozptyl regulované veličiny v ustáleném sta­

vu. Uvádí se řešení tohoto problému, které je jednak obecnější než dosud známá ře­

šení a jednak je snadno algoritmizovatelné. Hlavní výsledek je shrnut do následující 

věty. 

Věta I . Uvažuje se slabě stacionární stochastická soustava popsaná rovnicemi 

(l), (2) a (4). Předpokládá se lineární zákon regulace (7). Koeficienty optimálního 

zákona regulace, který minimalizuje rozptyl výstupu v ustáleném stavu, jsou dá­

ny diskrétním přenosem číslicového regulátoru 

(32) °-.±, 
r av 

kde neznámé polynomy v a s jsou určeny polynomiální rovnicí 

(28) a*b*p = aav + £kbs , 



232 přičemž stupeň polynomu v je 

(29) |t>| = m + k - 1 . 

Leži-H některý kořen polynomu a, b nebo fi na jednotkové kružnici, leží optimum 
na hranici stability. Jinak leží optimum vždy uvnitř oblasti stability. 

V odstavci 5 se uvádějí aplikace tohoto obecného výsledku na některé důležité spe­
ciální případy (popis soustavy impulsní charakteristikou konečné délky, regresní 
model, Ástromův model). 

Ing. Václav Peterka, CSc; Ústav teorie informace a automatizace ČSA V (Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Vyšehradská 49, Praha 2. 


		webmaster@dml.cz
	2012-06-04T22:11:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




