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K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 3 

On a Certain Type of Discrete Two-Point 
Boundary Problem Arising in Discrete 
Optimal Control*) 

JAROSLAV DOLEZAL 

It is demonstrated that in difference to the continuous case the necessary optimality conditions 
used in discrete optimal control have the form of a discrete implicit two-point boundary-value 
problem. A possible application of the modified quasilinearization method to its solution is 
discussed. 

1. INTRODUCTION 

This communication deals with a certain discrete two-point boundary-value 
problem (TPBVP), which is encountered during the solution of discrete optimal 
control problems. More exactly, it is shown, that the application of necessary optimality 
conditions on a quite common nonlinear discrete optimal control problem results 
in a special type of the discrete TPBVP, which can be alternatively denoted as the 
implicit one. 

For the numerical solution of this problem the so-called modified quasilinearization 
method is suggested. Finally, a brief comparison with the continuous case is perfor­
med, because the described phenomena has no counterpart when dealing with optimal 
control of continuous systems. 

2. DISCRETE OPTIMAL CONTROL PROBLEM 

Consider the following formulation of a discrete optimal control problem with 
system equations described by the recurrent equation 

(1) xk+1 =fk(xk,uk), k = 0.l,...,K- I, 

*) Originally presented on the Czechoslovak Conference on Differential Equations and Their 
Applications EQUADIFF 4, Prague, August 22 — 26, 1977. 



216 together with the given initial condition 

(2) x0 = a , 

where xk e E" is the state of the system and uk e Em is the control (input) applied 
to the system at the stage k, and / k : E" x Em -* E", k = 0, 1, . . . , K — 1. The posi­
tive integer K denotes the prescribed number of stages. If not otherwise stated, all 
vectors are supposed to be column-vectors, while all gradients are treated as row-
vectors. 

The optimal control problem consists in finding a control sequence u = (w0, fi., . . . 
. . . , « K _ I ) and a corresponding trajectory x = (x0, xt, ..., xK), determined by (1), 
i.e., to find an admissible process (x, u), which minimize the objective functional 

x- i 
(3) J = y(xK) + £ hk(xk, uk), 

k = 0 

where y : E" -> E1 and hk : E" x Em -> E1, k = 0, 1 K - 1. 

For the sake of simplicity, no further control and/or state constraints are being 
imposed. More involved formulation of this problem can be found in [1] —[4], 
where also the necessary optimality conditions or discrete maximum principle are 
derived. For our simple problem described by (1) —(3) these conditions can be stated 
in the following way. 

Assume that functions y and fk, hk, k = 0, 1, . . . , K — 1, are continuously 
differentiable on E" and E" x Em, respectively. If (x, u) is an optimal process, then 
there exist multipliers (row-vectors) Xk e E", k = 0, 1, . . . K such that 

(4) kk = A Hk+1(xk, uk) , fc = 0 ,1 , . . . , 2 . - 1 , 
dx 

(5) Ax=-fy(^), 
dx 

where 

(6) Hk+1(x,u)= -hk(x,u) + Xk+ifk(x,u), km0,l,...,K-l, 

and 

(7) ~Hk+1(xk,uk) = 0, k = 0,l,...,K-l. 
du 

Equations (4) and (5) define the so-called adjoint system and equations (7) repre­
sent the necessary optimality conditions. 

To proceed further, let us additionally assume that for the studied class of optimal 
control problems it is possible to determine uk as the explicit function of xk and 
Xk+1 using (7) for all k = 0, 1, . . . , K — 1. This means that (7) implies that (carets 



above xk and uk further omitted) 

(8) uk = gk(xk,Xk+i), ft-0,1, ...,K- 1 , 

where gk: E" x E" -* Em, k = 0, 1, . . ., X — 1, are continuous functions on £" x 
x £". 

Although this assumption is restrictive from the theoretic point of view, it is not 
otherwise possible to treat the original discrete optimal control problem as further 
studied TPBVP, i.e., to solve the original optimal control problem by indirect methods. 
If this assumption does not hold, it is then necessary to use direct methods, e.g., 
of the gradient type. 

3. DISCRETE IMPLICIT TWO-POINT BOUNDARY-VALUE PROBLEM 

After inserting (8) into (l) and (4) one obtains 

(9) xk + 1 = fk(xk, gk(xk, Xh+1)) =Jk(xk, Xk+i), k = 0, 1, . . .,K - 1 , 

(10) Xk = — Hk+i(xk,gk(xk,Xk+ij) = gk(xk,Xk+i), k = 0 , 1 , . . .,K - 1 , 
dx 

with Jk : E" x E" -» £", gk : E" x £" -» £", k = 0, 1, . . . , K — 1, being continuous 
on £" x £". Relations (9) and (10) together with the boundary conditions (2) and (5) 
form a discrete TPBVP. However, this problem has a rather special structure, be­
cause it is not solved with respect to the (k + l)-st or fc-th stage. To do this, it is 
necessary to exclude Xk+1 from (9) using (10) or to exclude xk from (10) using (9). 

For example, the first possibility would lead to the equations 

(11) xk +. = fk(xk, Xk) = fk(xk, gk(xk, Xk)), k = 0, 1, . . . , K - 1 , 

(12) Xk+i = dk(xk,Xk), fc.0,1, ...,K- 1 , 

which describe together with (2) and (5) a discrete TPBVP of the more familiar type, 
considered in [4]. 

However, this representation is not usually possible due to the general form 
of (9) and (10). Therefore, it seems reasonable to treat the original TPBVP se­
parately. 

It is easy to see that such problem, described by (9) and (10) with boundary condi­
tions (2) and (5), is a special case of the following discrete implicit TPBVP given 
by the implicit recurrent equation 

(13) Fk(yk,yk + i) = Q, k = 0, 1, . . . , K - 1 , 



and boundary conditions 

(14) <p(y0) = 0, <MVK) = 0 , a(y0, yK) - 0 , 

where yk e EN, and Fk : EN x EN -> E", fc = 0 ,1 , . . . , K - 1, <p : EN -> Ep, ij, : EN -* 
-»• E" and a> : EN x EN -> Er. Clearly, AT = p + <j + r must hold. This formulation 
of a discrete boundary-value problem covers rather broad class of discrete optimal 
problems. For example, the problems with various constraints on initial and/or 
final state or problems with feedback can be handled in this way. 

4. MODIFIED QUASILINEARIZATION ALGORITHM 

To solve the implicit TPBVP given by (13) and (14), an iterative methods must 
be applied. A quasilinearization version of the Newton-Raphson method is described 
in [4] for discrete TPBVP of the explicit type, i.e., the equation (13) has the form 

(15) yk+1 = Gk(yk), k = 0,l,...,K-l. 

However, only the case of linear initial and final conditions is considered there. 
Further presented quasilinearization algorithm for discrete TPBVP includes the 
additional modification (stepsize control) as suggested in [5] for continuous TPBVP. 

This modification is based on the consideration of the auxiliary performance 
index P, which measures the cumulative error in the recurrent equations and the 
boundary conditions. This algorithm is generated by the requirement that the first 
variation of the performance index SP be negative. It differs from the ordinary 
quasilinearization algorithm, because of the inclusion of the stepsize a in the system 
of variations. The main property of the modified quasilinearization algorithm is the 
descent property. Namely, if the stepsize a is sufficiently small, the reduction in P 
is quaranteed. Convergence to the desired solution is achieved when the inequality 
P g £ is met, where E is a small, preselected number. 

For the explicite formulation of TPBVP, given by (15), the implementation of the 
modified quasilinearization method was studied in [6]. Now let us briefly describe 
the generalization of [6] to the implicit case (13) and (14). It is assumed that the all 
functions in these relations are continuously differentiable and that a solution of this 
discrete implicit TPBVP exists. 

The derivation of the algorithm is rather straightforward if we combine the results 
of [4] and [5]. The details of this procedure are discussed in [6]. The resulting 
numerical algorithm can be summarized as follows (superscript i denotes iteration 
number). 

Step 0. Select e > 0 and nominal estimate y° = (yg, yl, ..., yK). 

Step 1. Set i = 0. 



Step. 2. Compute Fk(y'k, y'k+1), k = 0, 1, . . . , K - 1, and (p(y0), xjj(yK), co(y0, yK), 219 
and evaluate the performance index (here N(c) = cTc = ||c||2 for a vector c) 

(16) P(y') = N(<p(y0)) + Nty(yl
K)) + N(a>(yl

0, y'K)) + £N(F4(y<, y ' + , ) ) • 
t = o 

Step 3. If P g e, stop; else go to Step 4. 

Step 4. Compute 

(17) f E*(4,4+1)> ^ 7 - ^ . ^ 0 . k-o,i . . . . ,K-i , 
°y* °y*+i 

and 

(18) — <p(y0), — - " / ' ( J ' K ) , -—«(.Vo» .vlt), T—^( j 'o , J 4 ) , 
3j'o ^ eJ'o ->y-

and solve the following discrete implicit linear TPBVP for z0, z\, ..., z'K: 

(19) --— E*(>i y*+i) 4+i + T 5 - F*(y*, y*+0 4 + I^14, y*+i) = o, 
<5y*+i <9y* 

fe = 0 , 1 , . . . , 1 _ - 1 , 

(20) ~ <p(y0) z0 + rp(>.0) = 0 , 
Sy0 

----- .>(>£) zi + ^(yk) = 0, 
SyK 

— «(y0; J'i-) 4 + " ~ <yj>, y0) 4 + < 4 , yi) = o. 
dy0 dyK 

Step 5. Consider one-parameter family of solutions y'(a'): 

(21) yi = yl + a}zi, k = 0,\,...,K, 

and perform a one-dimensional search on function P(a') = P(y') for the minimizing 
a'*; specifically, perform a bisection process on a' (starting from a1' = 1), and continue 
the process until the inequality 

(22) P(a< *) < P(0) = P(y<) 

is satisfied. Then compute 

(23) 4 + 1 = y * + « ' * 4 , k = 0,l, ...,K, 

set i = i + 1 and go to Step 2. 



Remark 1. It is clear, that the performance index P given by (16) is zero if and 
only if the corresponding sequence y solves (13) and (14). For any other sequence 
y, P is always positive. It can be shown that the function P(a') exhibits relative 
minimum with respect to a', i.e., there exists a point a'* such that 

(24) fjy*) = o, 
da 

because 
(25) f P(0) = - 2 P ( 0 ) . 

da 

As the exact determination of such a'* takes usually excessive computer time, it is better 
to perform this search in a noniterative fashion, e.g., using the indicated bisection 
process starting with a' = 1 and terminating if (22) is met. The existence of such a'* 
is guaranteed by (25). 

Remark 2. The linear TPBVP given by (19) and (20) can be solved, for example, 
using the discrete version of the method of adjoints [7], as described in [4] and [6] 
more in detail. To apply this scheme, it is sufficient to assume that the (W x N)-
matrices 

T - ^ - ^ O ^ + i ) . k = 0,l,...,K- 1 , 
Syk+i 

are nonsingular. Clearly this assumption also implies that (13) can be locally resolved 
with respect to yk+1. The numerical experience is reported in [8]. 

5. CONCLUSIONS 

The studied problem connected with discrete optimal control systems has no 
counterpart in the continuous case. Namely, for continuous systems, the necessary 
optimality conditions lead always to the explicit TPBVP for a system of first-order 
ordinary differential equations, which are resolved with respect to the derivative, i.e. 
they have form analogical to (11) and (12). Of course, the implicit formulation 
of continuous TPBVP is also possible [9], however, it is not necessary when solving 
continuous optimal control problems. 

On the other hand, the discrete implicit TPBVP of the type (13) cannot be generally 
avoided during the solution of discrete optimal control problems by indirect methods, 
as demonstrated by (9) and (10). It is further clear, that the somewhat special structure 
of (9) and (10) can be sometimes exploited during the solution of a problem in ques­
tion. It was the aim of this communication to point out and discuss this interesting 
problem arising in discrete optimal control theory. 

(Received September 11, 1978.) 



REFERENCES  

[1] M. D. Canon, C. D. Cullum, E. Polak: Theory of Optimal Control and Mathematical Pro­
gramming. McGraw-Hill, New York 1970. 

[2] B. r . EOJITHHCKHH: OnrHMajiMoe ynpaBJienne flHCKpeTHbiMii cucTeMaMH. HayKa, MocKBa 1973. 
[3] J. Doležal: Necessary optimality conditions for discrete systems with state-dependent control 

region. Kybernetika 11 (1975), 6, 423-450. 
[4] E. Polak: Computational Methods in Optimization: Unified Approach. Academic Press, 

New York 1972. 
[5] A. Miele, R. R. Iyer: Modified quasilinearization method for solving nonlinear two-point 

boundary-value problems. J. Math. Anal. Applies 36 (1971), 3, 674 — 692. 
[6] J. Doležal: On the Modified Quasilinearization Method for Discrete Two-Point Boundary-

Value Problems. Research Report ÚTIA ČSAV, No. 788, Prague 1977. 
[7] S. M. Roberts, J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods. 

American Elsevier, New York 1972. 
[8] J. Doležal: Metoda modifikované kvazilinearizace pro řešení implicitních nelineárních 

dvoubodových okrajových úloh pro soustavy diferenčních rovnic. Symposium ALGORITMY 
'79, Vysoké Tatry, 23.-27. 4. 1979. 

[9] J. Doležal, J. Fidler: K otázce numerického řešení implicitních dvoubodových okrajových 
problémů. Research Report ÚTIA ČSAV, No. 857, Praha 1978. 

Ing. Jaroslav Doležal, CSc, Ústav teorie informace a automatizace ČSAV (Institute of Informa­
tion Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou věží 4, 
182 08 Praha 8. Czechoslovakia. 


		webmaster@dml.cz
	2012-06-05T06:09:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




