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KYBERNETIKA — VOLUME 15 (1979), NUMBER 3

On Axiomatic Characterization
of Information-Theoretic Measure of Type (5

1. J. Tanesa, H. C. Gurta

There are two information-theoretic measures (viz., Kullback’s relative-information and
Kerridge’s inaccuracy) associated with a pair of probability distributions of a discrete random
variable. These measures have found many applications in Statistics, Economics, Physics etc.
Two parameter generalization of these measures has been studied by many authors. A generalized

measure of type (z, /;) is characterized in this paper by taking a set of axioms. This measure
7

in particular contains relative-information and :inaccuracy and their generalized forms as the
limiting cases. Cases of bivariate extensions of this generalized measure and relations between
them have been also studied.

1. INTRODUCTION

Associated with a pair of discrete probability distributions P = (py, ..., p,), p; 2 0

R

pp=1and Q=1(qy,...,4,), 4:> 0, Y g; < 1 an information-theoretic mea-
1 i=1

sure of type @ p is given by
7, 0
(11 TGP ) = (70 = 27770 X (™ — pial™),
P

@ %+ y (B + J) whenever =6 (o = y).

The measure (1.1) has been studied by Sharma and Taneja [13] and Sharma and
Gupta [1 1] by generalizing a functional equation considered by Chaundy and
McLeod [1] and by Taneja and Gupta [15] by considering a functional equation
which is a generalization of the one considered by Daréczy [2].

Fory = & = 1 (refer Sharma and Autar [9, 10]) the measure (1.1) reduces to

(12) 1P Q)= (@ — ) (Ll - 1), Bta, a>0.
i=1



The measure (1.2) reduces to (i) Kullback’s [7] relative-information when § = 1
and there is a limiting case « — 1, (ii) Kerridge’s [5] inaccuracy when « = 1 and there
is a limiting case § — 1. )

Further when 0 = P and 2« =y = § = 1, (1.1) reduces to

s

(13) P(P; Q)= HI(P) = (2% — 1)1 (

i

-1, B£1, >0,

W

1

which is entropy of type f introduced by Havrda and Charvat [4] and later differently
studied by Dardezy [2] and Vajda [16].

In this communication we characterize the measure (1.1) by taking a set of axioms
(cf. Havrda and Charvat [4]). We also study bivariate extensions of measure (1.1)
and establish relations between them.

2. CHARACTERIZATION THEOREM

Recursivity plays a vital role in characterization of information-theoretic measures.
It is well known that the most elegant characterization of Shannon’s entropy given
by Faddeev (refer Feinstein [3]) so as those given earlier by Shannon [8] and Khin-
chine [6] use the recursive relation

(2.1) H(py, ..., ) — H(py + P2, 3y - -» Bs) = pi H(pi/pi» P2[P)) »

where p; + p, = p; > 0.
Certain changes in this property of additive measures lead to non-additive measures.

Havrda and Charvét [4] also used a modification of this property by introducing
a parameter f§ as ’

(22)  H¥py, ..., pa) = H(py + P2 Pss - .. pa) = P} Hpopis P2fP)), B> 0,

where p; + p, = p; > 0.

Further, Taneja [14] generalized (2.2) by taking a general continuous function
f(p;)in place of p} and established that such a change does not lead to new measures
and the only measures that arise are those studied by Shannon [8] and Havrda and
Charvat [4].

Also an axiomatic characterization of (1.2) which is a measure of a pair of pro-
bability distributions has been studied by Sharma and Taneja [13] by considering
the recursive relation of type (oc, [3) given by

(2.3) 1°9(py, ooty Pus @1y > 90) = T“P(py + P22 Pas s P Q1+ G20 3s s @) =
= P:qu—l 1eh (Pl/Pn Pz/Pi; ‘11/‘1;', ‘Izlqi) s

where p, + p, = p; >0, gy + g2 =4q; > 0 and «, § are the parameters.

20"
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Here we consider a much different form of the recursive relation to characterize
(1.1) axiomatically. Precisely, for a pair of probability distributions P = (py, ..., p,),
n

p; 20, le‘. =1land 0 =(q;, ..., 4,), 4 > O, -Zlqi < 1 we consider the follow-
ing axioms:
(a) I&3(py, - - -1 Pu3 41s - - -» ) is & continuous function of its arguments;
(6) 121, 0:4,8) = 15 IGH(1,0:1,0) = 0
(c) 1?75%(171, s Pim1 0 Pits o Pas a5 o5 Gim15, 05 Qi -y qn) =
{;,a))(Pu e Pics Pivts - Pas 1y -5 Qim 15 Giv1s - -0 ’1»),

foreveryi =1,2,...,n;

(d) Ig,'g)(l—’x’ s Pictr Vi Vigs Pidts -+ s Py Qa5 oo 5 Dim1s Wips Wips i1y -+ o5 q,.) =

anlag(l’b ey Picts Pis Pitts -5 Pns Q15 - o 5 4i—15 45 is1s ~--,‘In) +

—a p{a, Vi Vi Wiy Wy
S eI (4, sy ~> +

Aspg — 4,5 Pi Pi 4 4
+—A"——pq"1“”< ”—LL)
Ays — Aoy Pi Pi 4 9

for every v, +v,=p; >0, w;, +w;, =¢;>0, i=1,2,...,n and 4,, =
=(2*f - 1)and 4,, = (227% - 1).

Theorem 2.1. Axioms (a)—(d) determine a measure given by

(24) IER(P P dn) = (Agp— A, 57" Z(p’ i — plgi ™),
Ap ¥ 4,5 a,7>0,

where*) A, ; = (2F — 1) and 4,, = (227° - 1).
The proof of the above theorem is based on the following lemmas:

m,

Lemmal. If v, 20, k=1,2,...,m Yv,=p;>0,w, >0, k=12,...,
m k=1 .

Y w, = g; > 0, then
k=1

(2-5) 157;5’3(171, ces Diets Vs oo Uy Pikts oo s Py s oo os Qi1 Wey oo o9 Wins

Givrs oo @) = IGB(D1 oo P Qs -0 da) +

*) Throughout this paper, we shall adopt the notation A4, 8 for *=# — 1) and A 6 for
@7 -



+ — pigl” "Ii‘i"i’)( ...,3'5;1‘,-'.,5'!>+
Agp — A s pi P G 4,
bt g Vlit"( ”“‘1>
Ay — Aup p: P 4 9

Proof. We prove the lemma by induction. For m = 2 the result holds (cf. axiom
(d)). Let us suppose that the result is true for m = t. We have (under the notation
V=v,+ ...+ 0, W=wo 4+ ...+ w0, +V=p;>0,w, + W=1¢g;,> 0)
(2~6) Iu a;(l’u o PictsUts oo 5 Uit Pits - s Py 415 -5 G- s

Wis oo s Werns Qiggs oo oy qn) =

I(/,ﬂ)(pb e P UL Vo Pists o B i s Gim s Wi W Giigs - vy qn) +

e (B, B Y e
vV w

Ay — Ay v w
b gy (B2 G Wa e
Ay — Agy v VW W

=I5 - P G 0 ) +

A, s gmajam (01 VW W
o (2 )
Azp = Ays P4 4

A, v, V. w, W
+ g UG <“, —; =t —) +
Ays — Aap P P 4 4

+ Aap Ve algaltlil) Eg},&"” Weer) o
Ay — Ays ’ V vow U w
+ oAy 44740 Ui W Wevr) _
Ay — Ay V’ vw T w
I(y a)(Pla s P gyl - ‘In) +
ial ISR, (ﬁ Vow _W_) +
Agp — Ay.e \2i' P 4 4
— 7w 1) P2 Per W2 LETA
A, g — A,s AV vV o w w
A, v, V w W
st g (2 —) +
Ays — Aup i i 4 4

+ A Vrwe-y [0 1) 2 Pir1, W2 Weet
Ay — Aup V’ v w U w
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208 One more application of the induction premise yields

(K}

i P 4 q;

nfvr V. ow W
(2 s T

pPi P 4 4
oA (VN(T ”_“pa,ﬂl) V2 Veer W2 Weer)
Aup — A, 5 \D: q; o v’ VoW w
4 i)

w

Ay,a - Aa,ﬂ Di q; o 14 ’ ’ vV W
Fory = &6 = 1(2.7) gives

] y v, V w, W
09 () g (T ),
v P q: q; i

V\* [W\ e ) ) :
SOV (F) (e,
Pi qi 4 w 4
For a = § = 1 (2.7) gives

1 (v Uppq W w 1,1
29) mggmuwiaA,mﬁsﬁ=mx
pi Di 9q; q;

3 8 (U1 Virr Wy Wigy
27) T e

N

v, V. w W
5, — |+
Pi P 4 4

w(OY (N7 jan (v Uisy . W2 Weey
GolSs v S s esT )
pi) \4 14 vV o w w

Expression (2.6) together with (2.8) and (2.9) gives the desired result.

Lemma 2.1fv; =2 0,j = 1,2, ..., m Ziu,.j:pi>0,i =1,2,..,nYp=1
i= i=1

1A

wy>0,j= 1,2,.‘.,m,-,Azlw,«j =¢;>0,i=1,2,...,n, _th— 1, then
=

(2,8), ) . =
(210)  IGB(0115 - > Utmgs - o> Pats + - o> Dumad Wit == o> Wimgs <=3 Wats'e o o Wo) =

(o,

=IED(Pys oo P 1y - r ) +

+ _ s ip?qgw](a{,ﬂl) Bag o B Wi Wimg)
) a0
Agp — Ay 5051 qi q;

i
A, L _ v; v w Wim;
o N Pl I (s L )

Ay — Agpi=t p; P 4 T q:



The proof of this lemma directly follows from the Lemma 1. 209

Lemma 3. If F&8(mir) = IS5(Um, ..., t/m; tr, ..., 1/r)1 < m £ r, then

A, A,
(2.8) = Jab N S -
(2.11)  F&B(m;r) = A F&b (m;r) + A= Ay, CFG(ms )
where
(212) FER(mir) = AZg(m' ™70 ~ 1), A, +0
and
(2.13) Fa(myr) = A7z (m' =™ ~ 1), A, 0.

Proof. Replacingin Lemma 2 m; by m,v,; = 1/mn,w;; = 1frs, g; = 1s, i = 1, ...
~..,n,j=1,...,m where m, n, r and s are positive integers such that 1 < m <
s r. 1 < n £ s we obtain

(.18) B (mns 1) = FG8(ns5) + A28yt FER(m ) +

a8 A)',(7
A,
b ptovg=d gD ms r)
Ays — Asp
A e
(215 F&h)(mn; rs) = FEB(m; ) + ,7'1,;“314,,, m'=5E b FER\(nys) +
a,fp 7.0

A
r.8 1-y,=0 g(1,1)( .
Ya A, P FGs (3 s) -
18 T “ap

Putting n = 5 = 1in (2.14) and using F;'3(1; 1) = 0 (forall ¢, 8,7, 6 > 0) we get

4, e Ay
F&l(m; r) = e F&B(m;r) + . ) w F A (m; )
B 7 e *

Which is (2.11)
Equating (2.14) and (2.15) we get

(2.16) F&B(n; s) + ey ptes b FEA (m; ) +
Aup — Ays
BT R SFQu)(myr) =
Ays = Aup

A g
FEDm; 1) + —— bl ~a=b plb) (p; s) +
A B~ AM

H

A
7,0 1=yy=4 p(1,1),,.
+ - ” m! 7= FD(n; s) .
A5 — Aap

7



210 Expression (2.16) together with (2.11) gives
(217) A, [(1 = m' Y FER (s s) + (n %278 — 1) FGA(m; )] =
= Ay [(1 = m* ) FG)ng s) + (077772 — 1) FG ) (my r)] -
Putting n = 1, s = 2in (2.17) and using
FeB(1;2) =158(1,0;4,3) =1 forall «,8,7,6 >0
we get
Aggl(L = m!=r70) 4 (2277 — 1) FG B (m; 1)] =
= A (1 = ) @0 = ) ] = € (sa)
Form = 1,r = 1 we get C = 0. Thus we have
Fih(ms 1) = AZ5(m' =P — 1), A, +0
and
Foilmyr) = 4;5(m* 72 — 1), A,,+0
which are (2.12) and (2.13) respectively. This completes the proof of the lemma.
Now (2.11) together with (2.12) gives
(2.18) Fgg;(m, r) = (Agy — A,5) " (m! 7o =m0y

Proof of the Theorem. We prove the theorem for rational values of p’s and ¢’s
and then the continuity axiom (a) extends the result for all real values. Therefore
let m, a; and b; be positive integers such that a, < b; for every i = 1,2, ..., n

and if we put p, =a,/m g, =bfr, i=1,2,...,n where Y a;,=m, 3 b, <,

then the application of the Lemma 2 gives i=1 i=1
(@) (1 1 1 11 1 1 1
1(1;5) T e T e T e T T ey Ty ey Ty T | =
m m m m r r r ”
dy a, by b,

= I8Py - Pai Q15 -0 d0) F
4, & o papapy [ L 1 1
+ = ¥ piq! 121'.‘?) T R PR B
b; b,

Agp— Ay 5i=1 .
A, " _, 1 1 1 1
bt $ g v&::;e(—,u.,—»;,...,_)

i

1
Ays— Agpi=t a; a

i

or
FEB(m;r) = IEB(pyr - s Pus G1r -+ dn) +



A, o A 5 1,1) 211
+ ot )_p“q”“FE’i(a.,b)+ ~—M~-):pq, " Fiyin(as; by)
A,,,—A”._ - Ay — Agp Tt "
ie.
(2.19) 1??:??(1)1, e Pai s dn) =
(3:6) Z piat " F&Nan by) —
- A i1

—A A Zp’q" TFaas by) .
4, &

Expression (2.19) together with (2.12), (2.13) and (2.18) gives (2.4).

3. BIVARIATE DISTRIBUTIONS

Let X = (x;,...,x,) and Y= (y;, ..., y,) be two discrete random variables.

a, f

The information-theoretic measure of type ( 5) for two probability distributions

P(X) and Q(X) of X is given by
G IEEPE); X)) = IG5 (p(xa), - p(x)s alxy), - alxa)) =
= (Aup = 4,07 X () 2 () = Px) 47 (5),

where p(x)=PX =x;), qx)=0X=x),i=12..,n and Y p(x)=
n i=1

=Lt =

An analogous formula holds for the random variable Y.

Next if p(x;, y;) = P(X =x, Y=y)) and q(x;, y;) = O(X = x,, Y = y;} are
the joint probabilities of (x,, y;) then the joint information-theoretic measure of type

s

o, BY. .
(7, 6) is given by
(32) IGHPX, Y) 5 O(X, V) =
=IEB(p(x> ¥1)s - P(X0s Ym)s - s P(Xus V1o -+ s P(Xns V)
q(xl’ yl)’ R q(xl’ }’m), trve Q(xm .VI) (xm Vm)

= (Aup = Ayg)” '.-; ,-2(1’“(":, v @ (= ) = P ) @75 )

whcreé1 élp(xi, V) :.i )Eq(x,, v =
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Further P(¥[x;) = {p(ys[x)), - -, P(yuf*0)} and Q(¥[x) = {a(vs/x)), - - d(ym/

| x;)} are complete distributions of Y given X = x,, therefore the conditional informa-

tion-theoretic measure of type (:’ g) of Ygiven X may be defined as follows:
(33) IGH(P(Y]X) 5 Q(Y/X)) =
A, i
= T § () o) IER(P(Y) s Q) +
a,p = .8 i=1

b S ) ) LD P(Y); 0(Y)).

‘A.,',, — A,5i=1

where

(64 IR (1) = 47 LS r0uix) o (fx) - 1]
and

(3 IO o) = 473 LT ) 8 yix) - 11,
i=12...,n.

Similarly we can obtain the information-theoretic measure of type (“’ §> of X
given Y. %

The interdependence and relationships among these bivariate measures are studied
in the following theorems:

Theorem 3.1, If X and Y are two discrete random variables then
(3:6)  IGHP(X, Y); (X, Y)) = IGH(P(X): 9(X)) + IGB(P(Y/X); Q(¥]X)) =
= IGR(P(Y); oY) + IGH(P(X]Y); o(X[Y)),
where p(x;, y;) = p(x;) p(v;/x:) = p(y;) p(xify), i=1,2,...,m, j=1,2,...,m

Proof. From the definitions given above we have
IGH(P(X); 9(X)) + IGE(P(YIX); 9(¥]X)) =

= (Aep — 4,07 Z(P () @ 7(x1) — p'(x0) @ 77(x0)) +
+ (g = 4,7 5 @70 [ P02 0 = 11+
+ (Ays = Ayt va(x,) a°7"(x) [ Z Pifx) 7 vyfx) — 1] =



=y = 4,07, Z () P € s) 0 —
= ) P(0,x0) 4 7) @ 0] =
= (es = Ara) —xé, 2 [P*(xir ) @ (i ) = P50 ¥3) €731 9))] =
| = IGH(PX. Y); (X, Y)) -

Theorem 3.2. If X and Y are statistically independent discrete random variables
then

(2)
R (0.8 Y)' Q(X, Y)) = GGR(P(X); QX)) IGAP(Y); Q(Y)) +
GER(P(Y); QYD IGHP(X); 2(X))

where
68 GERER): o) = 1T (k) ) + P (k).
(b)

(3:9)  ISHEX, Y); 0X, Y)) = IGH(PX); 0(X)) + IGH(P(Y); Q(Y),
foralla,y 2 1, —a=1andd -y = 1.

Proof. The proof of the part (a) follows by simple computation.

(b) Fora,y 21, —a = 1land § — y 2 1 we have from (3.8)

(3.10) GERPX): o(X) < 1.

Expression (3.7) together with (3.10) gives (3.9).
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