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K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 3 

Suboptimal Control on Finite Time Interval 

ZDENĚK VOSTRÝ 

In the paper an algebraic approach to the numerical computation of suboptimal open-loop 
control on finite time interval is developed. The linear time-invariant continuous system with 
known transfer functions are considered. 

INTRODUCTION 

Some optimal control problems can be considered as finite time problems. In this 
paper only linear time-invariant continuous systems are considered and hence their 5£ 
transfer functions are rational. 

Our problem can be formulated as that of finding the best approximation g(t) 
of the given impulse response/(f) in the following sense: 
the integral 

j\f(t)-g(t)fdt 

is minimized subject to the conditions 

J?(f(t)) = »(s)lp(s), 

J?(g(t)) = x(s)ly(s), 

dv < dp , dx < dy , 

where v, p and x, y are polynomials and dv, dp and dx, dy are their respective degrees. 
For example an approximation of the high order <£ transfer function by a low 
order one may be needed. Assuming the impulse response g(t) partially predetermined 
by the system with transfer function bja, y(g(t)) — bx\(ay), the problem can be 
described more generally as that of open-loop control. 



Consider the open-loop control system in Fig. 1, where 

Sf is a realization of the transfer function b(s)\a(s), 
u(t) — input signal with S£ transform x(s)\y(s), 
f(t) — reference signal with <£ transform v(s)\p(s), 
e(t) — error signal, 

then for any given 8y we can find an input u(t) such that J"J" e2(t) dt is minimized. 

ІЃ 

Fig. 1. 

Problem formulation: 

Let an integer K and polynomials b, a and v, p be given such that db ts da, dv < dp. 
Find the polynomials x, y such that dy = K, dx < dy and the following integral 

(f(t)-в(t)Уdt 

A-)-*- 1 (&), g(t) = ^(b-^& 

is minimized for 

p(s)J \a(s) y(s) 

The solution of this problem is complicated due to finite T. 
To begin with we introduce same special notation and operations which are more 

precisely described in [1] and [2]. The mathematical background is the congruence 
of analytic functions modulo a polynomial. 

Consider a polynomial m(s) = m0 + mys + ... + memsdm with real coefficients 
and degree dm > 0. Then the set Ji = {s : m(s) = 0} is called the spectrum of the 
polynomial m. 

Let functions /, g be analytic on Jt'. Then /, g are congruent modulo m, written 
/ = g mod m, if there exists a function h analytic on Jt such that f' = g + hm. 

For any function / analytic on Ji only one polynomial r exists such that 

(1) / = r mod m , dr < dm . 

The polynomial m is called the modulus. The operation which yields such a poly­
nomial r is called the reduction of/ modulo m and it is denoted as 

(2) [/]„-r. 

Denote $Fm the set of all functions analytic or having at worst removable singularities 
on Jl. 



PROPERTIES OF REDUCTION MODULO m 

Let a modulus m, dm > 0, and function /, g e 2Fm be given. Then for [/] m = a, 

[g\m = a a n d any complex number X the next equations hold: 

(3) [/ + g\m = [/]„ + [g]m = a + b, 

(4) [A/L = A[/]m = Aa, 

(5) [f9lm = [[f]m[9Um-[^m, 

(6)) if f\ge&m then 

mmлi 
If the function / is a polynomial then the reduction of / modulo m produces the 
remainder after dividing / by m. Procedures for the computation of [/] m for the 
functions In (s), <zks, Js, sk with k real, and for b\a, b . a with polynomials a, b are 
described in [1], 

Now we introduce a new operation 

where k = da 

,7) ^-шл-iш 

[/]« = c 0 + clS + . . . + ck_lS

k l 

and the subscript s denotes the variable with respect to which the operation <.> s 

is performed. 
The next Theorem is proved in [2]. 

Theorem 1. Let polynomials b, a, db < da, with real coefficients be given. Then 
the inverse Laplace transform of bja denoted as £C~ 1{bja), is the real-valued function 
f{t) given by 

(*) /(0 = (^l><], 
and furthermore 

5 * 0 - ( i { A < l : > . <-«.2 

EVALUATION J0
r /( .) g{t) dt 

The basic formula of this paper is in the following Theorem. 



-34 Theorem 2. Let polynomials b, a, v, p, db < da, dv < dp be given. Denote/(f) = 
= <£-\b\a), g(t) - Se~\v\p) then 

._ /-Lg-e-^ge-Ts-j 

where v(s) = v(-s), b~(s) = b(-s). 

Proof. Using Theorem 1 and the linearity of the operation <•>, we can write 

It is evident that 
'-(ftjrH).-

f es' g(t) dí = I V g(t) át - Pe s ř g(t) dř 
Jo Jo Jr 

and $ e" g(t) dt = vjp by definition of S£ transform. 
By Theorem 1 

вЮ=Ҷ^[-e-l 

and 

Hence 

«(T + x) - (t [V e - es<]p) = (t [[- e s r ] p . e s ' ] p ^ . 

Pe5' fl(f) dt = e s r f V a(T + t) dt = es r G-5-JD* 
Jr Jo P 

and the proof is complete. Considering f(t) = .Sf^y/p), g(t) = .Sf_1(6/a) the 
second formula follows. 

Remark. The computation of the formula (9) can be rearranged in the following 
way. Denote 
(10) [ i ie- s r ] p o = x, 

then dx < dp + da. Use division algorithm for xjp, then 

(11) x = pq + r, dr < dp 

and 

/ = £ / « ,(0 d. = (i [fc e* ^ ^ - (J [* *'T9l)i • 



MINIMIZATION PROCEDURE 

Denote 

and 

*>-*-(*). Л0--"(J). 

' - £(/(>) - s(i)У di. 

Assuming the polynomials a, y, p in normalized form, aia = 1, » , = 1, plp = 1, 
we can write 

From the problem formulation the next formula follows. 

(12) l(x,y)=j\f(t)-g(t)ydt. 

Using the variation approach the condition for minimizing (12) is given by 

(13) 8I = 2F(/(t)-g(t))5g{t)dt = 0 

for any variation of ~g(t) which is given as 

V ay ay J 
Hence using Theorem 2 

( 1 4 ) 51 = (-£- lb5x(F - G)]„A - (-£- [bx6y(F - 5)]„,A = 0 , 

for all 6x, 5y, where 

F = 
г -• e + -[e- sт  

F = 
p 

G = 
Ђx — e "þ- °тЂxìv G = 

ay 

ð(S) = A ( - -s). 



'•:. 236 Since 

<5x = 5x0 + s5xL + ... + s * " 1 * * ^ - ! , 

5y = Sy0 + sdyi + ... + s^-15ydy_1, 

.Fay = 1 

the equation (14) may be written as a set of conditions 

( 1 5 ) ^ = ^ = ( ^ [ ^ - ^ = 0 , 

i = 0, 1, ...,dy - 1 . 

To solve these nonlinear equations we use Newton's iteration method in the form 

(16) I[!) + 61? = 0 , for i = 0,1, . . . , dy - 1, 

if + 61? = 0, 

where SI?, 51? denote variations of l['\ I? with respect to <5x, <5>. 

Note that the application of Theorem 2 to equations (15) gives 

Iił)=Ґ(/(0-ø(0)Ä(i)(0dí = o, 

where hU) = ^ _ 1 ( s ' 'H) , H = bjay 

and similarly 

where 

Hence 

I(
2

i, = | r(/(O-0(O)^ , )(Odt = o, 

c^(t)= <e-\slc), c = ~ 
ay 

àlf = ґ((/(0 - 0(0) -5 ҺЩ - h«\t) ð g(t)) dí, 

ðW = Ґ((/(0 - g(t)) ðcҢt) - c«>(f) 5 g(t)) dt, 



where 

Define 

\ ay2 ay3 ) 

MO-W—-^V 
\ ay ay2 ) 

- y „ _ 5 ( - 5 ) ' - e ' r [ e - ' r ( - - ) ' 5 ] w > 

ay 

and the elements of the matrices A, B, C, D of the dimension dy x 8y in the following 

way. 

O7) ^-,+i^^L^B^, 

-w« = ( ^ [ ^ n . ^ - ( ^ [^,+^ - 5).w.)f. 

^ i + I J + l = Bj+ 1,1+1 , 

- W + . - ( ^ [a*'*^ - G)l,*)t ~ ( ^ C * * ^ ' ] ^ , 

j = 0, 1, ...,3_.> - 1, ; = 0, 1 dy - 1 . 

Using Theorem 2 it is simple to prove that A, D are symmetric matrices. 

Using the matrix notation 

/ _ ( * . Y) = J(0) 

Ii« 

j(вy-i) 

, Jг{X,Y) = 'l2

0) 

Jř = *o , ľ » "Уo 
X. Уi 

_ X вy-l_ / ð y - l _ 

^ y - l ^ 

, Уõy = 1 , 



238 then 

(18) SJt = -ASX + BdY, 

SJ2 = B'dX + DdY. 

Let us point out that l[l) can be computed as 

^ - ( - ^ [ ^ ^ - ( ^ [ b x я n 

V - (s—Vьғ]*)) ~Yлi+UJ+lXj j = 0 

and l2

l) corresponds to the second term in the formula for Bi+l t . Hence in our itera­
tion process, we can define for given Y the optimal X by 

(19) X = A~l J^Y). 

Substituting (19) into (18) and using Newton's formula 

- A8X x B5Y=0, 

J2 + B'dX + D8Y=0 

we obtain 

SY= -(D + B'A-'B)'1 J2. 

Now we summarize the iteration algorithm. 

(1) Start from initial condition y = sdy. 

(2) Compute optimal X given by X = A~lJ1. 

(3) Compute the value Y= Y + 5Y, where 

5Y= -(D + B'A-'B)'1 J2. 

(4) If the n-th iteration and the (n-l)-th iteration are not sufficiently near go to (2). 

(5) Print results. 

This algorithm was programed and tested on IBM 370/135 computer using PL/I 

language. 

Example 1. Consider the reference signal f(t) = .£?-1(i)/p), 

where 

v = 0-03387 - 0-06093s - l-1634s2 - 0-43164s3 + 8-6775s4 -

- 9-525s5 + 0-9898s6 + l-5379s7 , 



p = 001129 - 003329s - l-1056s2 + 5-82213s3 - l-77933s4 -

- 6-36952s5 + l-97685s6 + s7 + 0-5s8 , 

and the system transfer function bja, where 

6 = 1, 

a = 1 + 0-2s + 0-04s2 . 

Find polynomials x, y such that dy = 3 and the integral 

[ V ( 0 - »(0)2 dt, where g(t) = <?"' f$\ , 

is minimized. 

The result is obtained after five iterations in the form 

x = 0-8023 - l-225s + 0-1849s2 , 

y = -0-01124 - 0-007296s - 0000608s2 + s3 . 

The functions f(t), g(t) are plotted in Fig. 2. 

5 t 
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Fig. 2. 

Example 2 Consider the transfer function vjp as in Example 1. Find a 3-order 
approximation of this transfer function such that the integral 

f(/(O-0(O)2d<> where §(t) = <?-\Xjy) 

is minimized. The solution is similar as in the previous Example, but b -« 1, a = 1. 



After five iterations we obtain the result 

x = 0-69452 - 1-2376s + 0-5877s2 , 

y = 0-6626 - 0-6487s - 1-01 Is2 + s3 . 

The function #(f) is plotted in Fig. 2. 
(Received December 6, 1978.) 
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