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K Y B E R N E T I K A — V O L U M E 7 (1971), N U M B E R 3 

On the Coding Theorem for Decomposable 
Discrete Information Channels II 

K A R E L W I N K E L B A U E R 

In this Part II all the theorems are proved that were stated in Part I of this paper (cf. the 
pieceding issue of this journal), and that were used in the proof of the main theorem on £-capacity 
as established in Part I. A special paper is to follow in the next issue of this journal on the regul­
arity condition for decomposable channels where some other facts used sometimes in Part I 
without explicit proofs, will be established. 

3. PROOF OF THE FIRST INEQUALITY 

We have seen in Section 2 that the proof of the sufficiency of the regularity condition 
for the validity of the assertion given in the main theorem is based on two fundamental 
inequalities, viz. the first inequality as stated in Theorem 1, and the second inequality 
as stated in Theorem 3. The final purpose of this section is to establish the validity 
of the first inequality given in Theorem 1; however, another purpose of this section 
is to prepare some of the auxiliary tools that are needed in the proofs of the sub­
sequent sections. 

Let us assume first that we are given a finite non-empty set M; the following 
convention may be sometimes useful for the concepts defined in the space M7: 
if necessary, we shall write the subscript M in parentheses, i.e. 

(3.1) K(M), F(M), T(M), J/(M), Jt*(M), R(M) 

instead of the subscripted forms (cf. (1.2), (1.3), (1.9)). 
We shall make use of the following terminology: a probability measure p. defined 

on the er-algebra F(M) will be said to be n-invariant (n '= 1,2,...) if ji (T"E) — n(E) 
for every E e F(M), where T = T(M); [i is said to be n-ergodic (cf. the nomenclature 
employed in [12]) if it is n-invariant and not non-trivially decomposable into n-
invariant measures; hence, 

(3.2) JiM ~ Ji(M) = {/i:/ia 1-invariant measure on FM) , 

J{*M = J/*(M) = {[i : n e Jl(M), n 1-ergodic} ; 



especially, the concept of 1-ergodicity coincides with that of indecomposability 231 
(i.e. ergodicity with respect to TM). 

Lemma 3.1. If ft is an n-invariant measure, then the measure fi defined by 

(3.3) fi(E) = (l/n)"x ix(PE) for every E e FM(T = TM) 
i = 0 

is l-invariant, i.e. fie JtM; if p. is n-ergodic, then fi is l-ergodic, i.e. fie J(M. 
The facts stated in the preceding lemma are proved in [6] (cf. Theorem 5.2, and 

Theorem 7.1; cf. also [12]). 
In what follows we shall say that a probability measure p. defined on the class FM 

is n-independent if 

n(Tkn[z] n [z']) = u(Tk"[z]) n[z'] for every z, z' e Mk", 
and 

Hkn{(zu ..., zk)} = f i K{Zi} = n(Tkn[(zu . - , zk)]) 
i = l 

forevery (zu ..., zk)e Mk"(Zie M", i = I, ..., k), k=l,2,... (T = TM) ; 

Cf. the definitions (1.4), (1.5). The class of all n-independent measures in the space M1 

will be denoted by Jtn(M), n = 1,2, ... It is easy to see that an n-independent 
measure is n-invariant; a standard reasoning yields the fact that any n-independent 
measure is, at the same time, n-ergodic (cf. [11], Chapter l). Applying Lemma 3.1, 
we obtain that, for any p e Jtn(M), the measure fi defined by (3.3) is ergodic. We shall 
set 

(3.4) J(„(M) = {fi: fie Jtn(M)} c Jt*(M), 

J/n(M) = {/u : ji an n-independent measure} . 

In words, Jln{M) consists of all those (ergodic) measures fi' such that fi' = fi for 
some n-independent measure p., where fi is defined by (3.3). 

In the next section we shall make use of the following notation: if x is a mapping 
of the set M" into the set Mm +" (cf. (1.4)), then the symbol T[X] will designate the 
(measurable) transformation of the space M1 into itself defined by the relation 

(3.5) {(-[x]-)-m + k(m + n) + i}0^i<m+n = x({zkn+j}0<j<n), kel 

for every z in M1 (n > 0, m = 0). It is shown in [6] (cf. Theorem 7.2) that, for any 
probability measure defined on FM, 

(3.6) if n is n-ergodic, then JUT -1 is (m + n)-ergodic for x = T[X] , , . 

where 
fiT~i(E) = n(x~1E) for every E e FM . 



Let us remind the fact stated in Section 1 that the set RM of all regular points 
in the space M1 satisfies the relation 

(3.7) / J (R M ) = 1 for any p e JlM ; moreover , 

-^M = {Vz • z e RM) > 

RM = R(M) = {z : z e M1, z regular} ; 

cf. (1.9), (3.1), (3.2). Let us mention in addition that the results of ergodic theory 
that we shall make use of in the sequel, are collected in [9], Sec. 2 (references included). 

As to the entropy rate, let us point out that #? maps the class JiM of indecom­
posable measures (cf. (3.2)) onto the entire closed interval [0, log 7i(M)]; in more 
detail, 

(3.8) 0 g Jf(n) = log n(M) for peJtM, 

n(M) = the number of elements in M , log = log2 ; 

for any t, 0 ^ t ^ log n(M), there is p. e Jix(M) such that Jf(p) = t 

(i.e. p is 1-independent; cf. (3.4)); the proof may be found, for instance, in [6], 
Sec. 6, Lemma 7. Let us emphasize that the notion of entropy rate as defined by (1.7) 
makes sense for any n-invariant measure p; it is shown in [6] (cf. Theorem 6.7) that 

(3.9) J^(p) = 3V(p), n n-invariant, p defined by (33) for n . 

The following lemma was proved in [6] as a part of Theorem 6.8. 

Lemma 3.2. / / pi is an n-invariant measure, and if y. is a one-to-one mapping 
of M" into Mm+a (m, n non-negative integers, n > 0), then (cf. (3.5)) 

(m + n) ^(ixx~l) = n je(/x) for x = x\x\ . 

As another useful fact, of which we shall make use in this section, we state that 

(3.10) lim j |(l/n) log u[z0, zt, • • •, z„-1] + JP(fiz)\ d/i(z) = 0 for any p. e Mu, 

[ z 0 , z 1 ) . . . , z n _ 1 ] = [ ( z 0 , z 1 , . . . , z n _ 1 ) ] for z e M ' (cf. (1.4)) ; 

the proof may be found in [9], Sec. 2, Theorem 2 (cf. also [4]); in words, the sequence 
—(l/n) log/t[z0, Z j , . . . , z„_ t] converges in the mean (with respect to p) to the entropy 
rate of the ergodic component p2 (cf. (1.9), (3.7)). It was shown by Pathasarathy 
in [13] that 

(3.11) 3V(p) = f 3f(Hz)Mz) for every peJ/M. 
J R(M) 



If we define the quantity L„(e, n) as the minimum (1.6), then it is known (cf. [ l ] , 
Part I, and [7], Theorem 9.2, for the general case) that, for 0 < e < 1, 

(3.12) lim - log L„(e, p) = j f (/.) for fie J/% (cf. (3.2)), 
„ n 

i.e. the limit exists for any indecomposable measure \i independently of e and equals 
precisely the entropy rate; the latter fact will be used several times in the sequel. 

Given the alphabets A, B, let us add some remarks as to the information rate 
associated with measures in Ji(AB). It is well-known that 

(3.13) 0 g l(to) = Jf(toA) + Jf(toB) - X((o) S log n(B) 

for any to e Jt(AB), where .?f (toA), j4?(toB) are the entropy rates of the marginal 
measures associated with to; cf. (1.11), (L12), and (3.8). The equality in (3.13) shows 
that the notion of information rate makes sense for any n-invariant measure to 
(n = 1,2, . . . ) . Putting 

(3.14) mn(to) = Hn(to
A) + H„((oB) - Hn(co), n = 1, 2 , . . . , 

(cf. (1.8)), we obtain the relation 

(3.15) /(to) = lim -@m(to) 
m-oo m 

for any n-invariant measure to on F(AB). 
Let us mention that in Section 2 we have made use of the following shorthand 

notation 

(3 A 6) lz=l(toz) for zeRAB, 

where wz is the ergodic measure associated with the regular point z according to (1.9). 
As an easy consequence of (3.H) and (3.13) we find that 

(3.17) l(co) = J 7(toz)dco(z) for any to e Ji(AB) ; 
JR(AB) 

it is because x e R(A), y e R(B), (toxy)
A = fxx, and (toxy)

B = \iy for any xy e R(AB) 
(cf. (1.10)) as immediately follows from the definition of the set R(AB); cf. (3.7), (1.9). 
Let us remind that the measurability of lz is an immediate consequence of the measur-
ability of toz and of the definition (1.12) or relation (3.15); moreover, lz is an invariant 
function (with respect to T = T(AB)), i.e. lTz = Iz, since coTz = coz for z e R(AB). 

To simplify our notations, we shall define two auxiliary quantities /*(co) and /*(to) 
as the essentia] extrema 

(3.18) l*((o) = ess.sup {/, : z e RAB[to]} , 

/*(<o) = ess.inf {/, : z e RAB[(o~]} for to e JtAB . 



Let us denote by c*(0, co) and c*(0, co) the upper and lower 0-quantile of the random 
variable Iz taken with respect to a probability measure co on F(AB), i.e. 

(3.19) c*(0, co) = sup {r : ro{/z ^ r} = 1 - 0} for 0 g 0 < 1 , 

c*(0, co) = inf {r : co{/, = r} = 0} for 0 < 0 £ 1 . 

We have 

(3.20) I*(co) = c*(0, co), I*(co) = c*(l, co) for co e JtAB . 

Lemma 3.3. If co is a probability measure defined on F(AB), then 

(1) both c*(0, co), c*(0, co) are monotonically increasing as functions of 6, and 
c*(0, co) < c*(0, co) for 0 < 0 < 1 , c*(6u co) ̂  c*(02, co) for 0 ^ 0X < 02 ^ 1; 

(2) c„.(0, co) is continuous from the left at every positive 0 ^ 1 , c*(0, co) is conti-
nuous from the right at every non-negative 0 < 1, and 

c*(0 - 0, co) = c«.(0, co), c#(0 + 0, co) = c*(0, co) ; 

especiaZ/y, 

lim c*(0, co) = lim c*(0, co) = /*(co), lim c„(0, co) = lim c*(0, co) = /,(co) ; 
9-»l 0->l fl->0 9->0 

(3) the equality c*(6, co) = c*(0, co) holds if and only if 0 is not a discontinuity 
point of c*(6, co), or equivalently, if and only if 0 is not a discontinuity point of 
c*(0, co). 

Proof. Denoting by F the probability distribution function of the random variable 
I„, e.g. F(t) = co{/r 5S /} , t real, we may rewrite the definitions (3.19) in the form 

c*(0, co) = sup {r : F(r) = 0} = inf {r : F(r) > 0} , 

c*(0, co) = sup {r : E(r) < 0} = inf {r : E(r) ^ 0} . 

The latter equalities immediately imply the first assertion of the lemma. Since 

U{r : F(r) > 0 + 2""} = {r : F(r) > 0} , \J{r : F(r) < 0 - 2'"} = {r : F(r) < 0} , 

we easily obtain from the same equalities that c*(0 + 0, co) = c*(0, co) for 0 = 0 < 1, 
and c+(0 - 0, co) = c*(0, co) for 0 > 0 £ 1. This together with the first part of the 
lemma implies the assertion of the second part. The third part is a direct consequence 
of the validity of the assertions stated in the first two parts of the lemma. 

To be more in accordance with the notations employed in [8], we shall use the 
symbol JVSI as an alternative notation for the class J/(A | B) of all stationary channels. 
Similarly, we shall denote the class of all stationary inputs by Ji^, and that of all 
ergodic inputs by Jfcn; summarized in symbols: 

(3.21) J/St = Jt(B), Jt„t = J/*(B), Jf%l = Jf(A | B), i.e. 



•^"st = {v : v a stationary channel, A its output alphabet, B its input alphabet}; 235 

cf. (3.1), (3.2). 

Lemma 3.4. If v e JTM, \i e Jicr%, G e F(AB), and TG = G for T = T(AB), i.e. G 
is TAB-invariant, then (cf. (1.15)) 

vTy(GTy) = vy(Gy) for T = TB , »{y:ye RB, vy(Gy) = v pt(G)} = 1 , 

i.e. vy(Gy) is TB-invariant, and vy(Gy) = v fx(G) a.s. [//J. 

Proof. Since (T^x) (TB.y) — TiB(xv), it follows from the stationarity of v that 

v({x : x(TBy) e G} | TBy) = v({x : TAB(xy) e G} \ y) . 

Then the T,B-invariance of G guarantees the TB-invariance of vy(Gy). The second 
part of the lemma follows from (1.15) because of the almost sure constancy of an 
invariant function relatively to an ergodic measure; cf. also (3.7). 

We shall see in what follows that we cannot restrict ourselves in our analysis 
to channels with finite duration of past history: we must make use of such quantities 
in our considerations that make sense for any stationary channel; so is another 
pair of auxiliary quantities, viz. 

(3.22) C*(v) = sup {I*(vfi): /. e Mcr%} , C^v) = sup {U(vif) : n e Jicri} for v e JTtt. 

Let us remark that the extremality properties of/*, /* (cf. (3.20)) enable us to assert 
that 

(3.23) C*(v) ^ C*(v) ^ log K(B) , 

C*(v) = sup {I*(vfi) : n e J/tt} , C+(v) = sup {^(vfi) : M e Jist} . 

The inequalites follow directly from the definitions (3.22) and (3.18), and from the 
inequality Iz ^ log n(B) valid for any z 6 RAB (cf. (3.13), (3.16)); the equalities are 
simple consequences of the relations 

v n{Iz ^ r} = f vny{Iz ^ r} dn(y), 
JR(B) 

v n{Iz ^ r} = v/ij,{/z ^ r} d/x(y), r real, p 6 J/u 

JR(B) 

which follow from (1.15) and from the second part of Lemma 4 * stated in Sec. 2 

* The evident misprint concerning the formula standing in the second part of Lemma 4 given 
i n [9] is to be corrected as follows: the formula is to state that 

{/<« - J , [[/*.] «*>. 



236 of [9]. It is because the latter relations imply that 

l*(vp) < C*(v), I*(v/i) < C,(v) for any fi e Jtu , 

which gives the desired result. 

Applying formula (3.17) to the information rate l(v/i), we obtain that 

l#(v(i) <; l(vfi) < I*(v/u) for any n e Jist ; 

hence the inequalities 
(3.24) C*(v) < (£(v) <; C*(v) , v e JTtt, 

hold for the transmission-rate capacity #(v); cf. (1.22). If v is an ergodic channel, then 

h(vji) = I*(v/i) = I(vn) for any p e Mtt%; 

it is because then the measure VJI is ergodic so that v/i{Iz < r} equals 0 or 1 according 
to l(vp) > r or l(v[i) <^ r (cf. Lemma 3 in [9]). Consequently, 

(3.25) C„(v) = C*(v) = *(v) for any v e JTtt% ; 

cf. (1.21). 
In our analysis an important role plays the following pair of auxiliary quantities 

(based on the concepts of 0-quantiles as defined by (3.19)) given by 

(3.26) c*(0, v) = sup {c*(0, V(i):fie Mtt%} for 0 g 0 < 1 , 

c*(0, v) = sup {c*(0, vfi) : n e J(tt%} for 0 > 6 < 1 , v e JTst ; 

the first definition, of course, coincides with that given in (2.2); cf. (3.1), (3.21). 
We have (cf. (3.20)) 

(3.27) C*(v) = c*(0, v) , C*(v) = c*(L v) for any v e JTst . 

Lemma 3.5. If v e JTst then 

(1) both c*(0, v), c*(0, v) are monotonically increasing functions of 8, and 

c*(0, v) < c*(0, v) for 0 < 0 < 1 , c*(0,, v) < C!);(02, v) for 0 < 9X < 02 < 1 ; 

(2) c*(0, v) is continuous from the left at any point 0 such that 0 < 0 <. 1, and 
c*(0 — 0, v) = c*(0, v); especially, 

lim c*(0, v) = lim c*(0, v) = C*(v); 
».-»l e-> l 

(3) 0 + 0 /s « discontinuity point of c*(0, v) ij and on/j if 0 is a discontinuity 
point of c„.(0, v); i/ 0 is no* a discontinuity point of c*(9, v) (or c*(0, v)) then 

c*(0, v) ^ c*(0, v) . 



Remark. In general, c*(0 + 0, v) ^t c*(9, v), especially, 

(3.28) C*(v) = lim c*(0, v) = lim c*(0, v) 
0-0 0 - 0 

(cf. (3.27); it is because 

c*(9 + 0, v) = infE>0 sup„ c*(6 + £, v/i) ^ 

2: sup,, infE>0 c*(6 + £, v/x) = c*(9, v) 

as follows from the second part of Lemma 3.3. 

Proof. The first and the second part of the lemma immediately follow from the 
corresponding parts of Lemma 3.3. As to the third part, assumming, for instance, 
that 6 (0 < 0 < 1) is not a discontinuity point of c*(9, v), and applying the relations 
stated in the preceding parts of the lemma, we get that 

c*(6 - 0, v) = c*(0, v) < c*(9, v) < 

< c*(0 + 0, v) = c*(6 + 0, v) = c*(6 - 0, v) = c*(0 - 0, v) 

which shows that c* is continuous at 0, and that c*(6, v) = c*(0, v), Q.E.D. 
If v is a stationary channel, then the information rate l(vfi), called here also the 

transmission rate (of the source fi relatively to v), as defined for the measure co = v/i 
by (1.12), makes sense for any n-invariant measure pi defined on the class FB (n = 
= 1, 2 , . . . ) ; it is because the measure vpi as defined by (1.15) is n-invariant on FAB 

for fi n-invariant on FB, v e Jfsx arbitrary: more generally, 

(w) T'AB = v^Ti ) for any v € JTti, 

H an arbitrary measure on FB (iel). Making use of the latter relation, and applying 
the equality (3.9)'to measures n, vpi, and (vn)A, we obtain the equality 

(3.29) /(v/i) = I(vfi) , n n-invariant, p. defined by (3.3) (v e JfM), 

as follows from (3.13) since, written symbolically, 

v/ i=v/J, ((vpi)A) = (vfi)A . 

Given v e Jr,t, and \x an n-invariant measure, we shall denote by Jf(n | v) the 
equivocation of n with respect to v, i.e. 

(3.30) „?(> | v) = X(vft) - ^((vn)A). 

Putting 

(3.31) H„(n | v) = Hn(vn) - Hn((vn)A), n = 1, 2, . . . , 



238 (Cf. (1.8)), we obtain the relation 

(3.32) J!>(n\v) = \im—Hm(n\v) 
mm 

(cf. (1.7), (3.8)); on the other hand, we have 

(3.33) I(vn) = JPO) - JTO | v), 

®n(M = H„(n) - H„(n | v) 

(cf. (3.13), (3.14)). The inequality 

(3.34) Hk„(n | v) = k H„(n | v), p n-invariant, 

which follows from the well-known properties of conditional entropies (cf. [11], 
Chapter 2, Sec. 6, or [6], Sec. 2, esp. Theorem 3, and Theorem 4), together with 
(3.32) yields the relation 

(3.35) J f (n \v) = - H„(n I v), n n-invariant (v e .#, ,) . 
n 

Lemma 3.6. If \i is an n-independent measure, i.e. n e Ji„(B) (n is a natural 
number; cf. (3.4)), and if v is a stationary channel, i.e. v e JVSI (cf. (3.21)), then 

k Mn(vy) = 0tk„(vn) for k = 1, 2, ... 

Proof. The /.-independence of measure /x implies the validity of the relation 

Hk„(n) = k H„(n), fc = 1,2,.. . 

Making use (3.33) and (3.34), we easily deduce from the latter equality the desired 
inequality, Q.E.D. 

Let us recall that if v is a stationary channel with finite past history, then m(v) 
means its duration, i.e. 

(3.36) m(v) = min {m : v satisfies (1.16) for m} , v e ^f.past 

(cf. (1.21)). It is well-known that the space B1 is a compact metric space relatively to, 
for example, the distance function 

(3.37) max {(1 + \i\)~l : yt * y\(i e /)} , y, / e B\y * y'), 

and that FB coincides with the class of all Borel sets in the metric space B1. As an 
immediate consequence of the finite-past-history condition (1.16) we obtain that 

(3.38) vj,(£), E 6 KB, as a function of y is continuous 



on the metric space Bl with respect to the distance function (3.37); i.e. the assertion 2 3 9 

(3.38) is valid for any finite-dimensional cylinder E lying in the space B1 provided 

tha t v e ^"f.past-

Given a non-negative real number r, we shall associate with any channel v e J/"t pasl 

a pair of channels v, v (in general, both with infinite duration of past history) by 
definitions 

(3.39) v,(£) = (1 - q,)'1 vy(E n Gy) for qy < 1 , 

v,(E) = vy(£) for qy = 1 , 

qy = 1 - vy(Gy), G={z:ze RAB, l2 = r}; 

(3.40) v,(£) = q;1 vy(E n Gy) for qy > 0 , 

vy(E) = v,(£) for qy = 0 , 

qy = vy(Gy), Gy={z:zeRAB,Iz^r}; E e FA , y e B> 

(cf. (1.13)); we assert that 

(3.41) veJ/~sl, and v e XiX. 

We shall show that, for instance, v is stationary. Owing to Lemma 3.4 we have that 
qTy = qy for T = TB; on the other hand, 

v(T,£ n {x : x(TBy) e G} | TBy) = v(E n {x : TAB(xy) eG}\y) 

since v is stationary so that the stationarity od v follows from the T,,B-invariance of G. 
Now we are able to proceed and prepare some lemmas which are needed in the 

proof of Theorem 1. Let us define the following auxiliary quantity J„,m(z; co) for any 
z e (A x B)1, co e JtAB, n, m non-negative integers (n > 0), by 

(3.42) In,m(xy; co) = 

m i l o g QJ{X' / : {x;}0< , .<n = {x,}0g t<B, {y't}-m<t<n = {yt}-m<i<n} 

n coA{x' : {x';}0</<„ = {Xi}0<j<„} coB{y' : {/,}_m$i<B = {y i}-mg i<„} 

for x e A1, yeB' (log = log2, - = 0 J. 

Lemma 3.7. For any integer m = 0, and for any co e JtAB, 

lim J |j„,m(z; co) - l(co2)\ dco(z) = 0 . 
" J R(AB) 

Proof. Since x e RA, y e RB (cf. (3.7), (1.9)), and 

l(coxy) = jr(ns) + se(ny) - je(coxy) for xye RAB 



240 so that 

\l.Jxy;co) - Ц < | - ( l / и ) l o g ü И [ x 0 , .'..,x._Л - Ж(џx)\ + 

+__ (_ZL\ l 0 g cO»(TRy_m y,,,]) 
n \m + n) 

+ \(lln)\ogco{x'y' :x'e[x0,...,xn_1],y'eTm[y_m,...,yn_1]}-je(coxy)\, 

it easy to deduce from the latter inequality the desired result by applying (3.10) 
to coA, coB, co because of the inequalities 

co(Tm

AB[(x.m,y_m), . . . ,(x.-_,y._ .)]) __ 

__ co{x'y' : x' e [x0, ..., X-_,], y' e Tm[y_m, ...,yn__]} t_ 

< co[(x0,y0),...,(xn_1,yn_1)]. 

In the proof of Theorem 1 we shall make use of another group of auxiliary quanti­
ties, viz (cf. (1.4), (1.5), (1.3), (3.8), (1.1)) 

(3.43) 

(3.44) 

(3-45) 

<onJx, y) = co{x'y' : x' e [x], y' e T£[y]} , 

\JX | y) = <»»Jx, y)l<om+n{y} ; x e A", ye Bm+n (- = 0 j ; 

onJW) = _Z<x,v)*wQ>nJx, y) . tomjE | y) = S„g_o„,m(x I y) ; 

W c A" x B m + " , E c A" , y e J_m+n ; 

S„jl/; e, co) = n{y : y e Bm+n, conJ^j~l{y} \ y) > I - e} , 

SnJe, co) = max {S.(^; e, co) : \j/ e (Bm+n)'4"} ; 

^ : A" -• Bm +" , 0 < £ < 1 ; 

/„ m(x, y; co) - ~ log f0"-""-* ' y' ; x_An, ye Bm+n; 
n <on{x} 

n, m non-negative integers, n > 0, coeJtAB, cf. also (1.18), (1.19). 

Lemma 3.8. If coe Jt'AB, 0 < s < 1, f positive, and 

t°n,m{(^. y) '• In,m(x, y, ») > f} > 1 - _£ 

then SnJe,co) > (\E) 2"'. 
Proof. Let us set 

E(y) = {x : I„Jx, y; co) > t} , yє Bm+n. 



Let us construct a finite sequence y1, y2, ...,ys of points in Bm+- such that 

co„,m(Aj | yi) > 1 - e , A, = _ ( / ) - U % ' ) ; j = I, ..., S ; 
> = 1 

s 
conm(E(y) - \J E(yJ) I y) _ 1 - e for every y 6 £ m + n ; 

J = I 

the possibility of the construction performed by induction follows from the inequality 

YySB^»a)m+n{y} con,m(E(y) \ y) > 1 - (e/2) 

which coincides with that given in the assumptions of the lemma, and which shows 
that conm(E(y) | y) > 1 — e holds for at least one y. According to (3.45) 

«Vm(* I y) > 2"t(at{x} for x e E(y), co*{x} > 0 . 

The rest of the proof is based upon the latter inequality and follows the lines of the 
proof of Feinstein's lemma given in [ l ] (cf. also the proof of Theorem 12.1 in [6]). 
By the method just mentioned we deduce the inequality S > (e/2) 2"'. If \\i is a mapping 
of A" into Bm*n such that \j/x = yJ for x e As, then (cf. (3.44)) 

S„>m(e, co) = S„,m(^; e, co) = S > (±s) 2"' 

which is the desired result. 

Lemma 3.9. If r is a given non-negative real number, ifv is the channel associated 
with a given ve^T f p a s t by definition (3.39), and if fie M„t then 

q < s < 1 implies S„(e, v) _ S„m(e — q, vfi), n — 1,2, ... , 

where q = vfi{Iz < r}, and m = m(v). 

Proof. Making use of Lemma 3.4 and putting q = 1 — v/j(5), where G is defined 
in (3.39), we obtain that n{y : qy = q} = 1 so that, owing to (1.15), we find that 

vn(G) = (1 - q)-1 L(Gy n Gy) d»(y) < (l - q)~l v»(G) , G e FAB(q < 1) . 

From here and from (1.17) and (3.43) we deduce that 

v„(£ | y) _ MB.w{(x.y):xe_} , 

for _ c A", yeBm+n, where we have set co = vju (hence a»B = jtt); consequently, 

co„jm(£ | y) > 1 — e implies v„(E | y) > 1 - (q + e) 



242 for 0 < e < 1 — q (q < 1). Now we easily deduce from the latter implication by 
making use of definitions (1.18) and (3.44) that 

S„(i/; q + e, v) = S„,m(iA; e, co), ij/ : A" -> Bm+n , q+e<\ 

which together with (1.19) yields the desired result. 
Before stating Theorem 1 we recall that c(e, v) is defined as the lower limit in (2A) 

for any v e Jft.vuv and that c*(9, v) is defined by (3.26) or (2.2), respectively. 

Theorem 1. If v is a stationary channel with finite past history, then 

0 ^ 0 < e < 1 implies c*(8, v) = c(e, v) . 

Proof. Let us assume that we are given 0, e such that 0 g 0 < e < 1, c*(8, v) > 0; 
the case c*(9, v) = 0 follows from the inequality c(e, v) > 0 universally valid. It is 
sufficient to prove that, for any positive r < c*(6, v), the inequality c(e, v) >, r 
holds. 

In the remainder of the proof we shall assume that we are given a positive real 
number r such that r < c*(9, v). Let fx e J/etg be such that r ^ c*(G, vju); the existence 
of such \x follows from definition (3.26). Let v be the channel that corresponds to the 
given channel v and the given r according to definition (3.39). Let us set 

(1) co = vn , 1 — q = vn(G), m = m(v) ; 

cf. (3.39), (3.36). Then co e Jt(AB) as follows from (3.41). Since the sequence T„,m(z; co) 
converges in the mean (with respect to co) to the information rate Iz of the ergodic 
component coz according to Lemma 3.7, it converges to the same limit in probability. 
Let us choose X such that 0 < X < r. Then there is h0 = n0(e') with the property 
that 

(2) co{z : z e RAB, In>m(z; co) > Iz - X) > 1 - | e ' 

for n ^ n0 , e' given (0 < e' < l ) . 

It follows from the definition of v that v fi(G) = co{Iz=; r} = 1; then we can deduce 
from (2) that 

(3) co{z :/„,m(z; co) > t} > 1 - \e' for n = n0 , 

where we have set t = r - X (hence t > 0). Rewriting (3) with the aid of (3.43) 
and (3.45) (cf. (3.42)), we obtain that 

^^.{(x, y) : /„,m(x, y; co) > t} > 1 — y for n > n0 . 

Since the latter relation shows that the assumptions of Lemma 3.8 are satisfied for 
n = n0, we shall find that 

(4) S„,m(e', co) > U' . 2"' for n ^ n0(e'). 



On the other hand the assumption that r < c*(9, vfi) implies that (cf. (3A9) and (l)) 243 
q _ 9, i.e. q < s so that Lemma 3.9 may be applied: we obtain that 

S„(e, v) = S„,m(e', co) for e' = s - q (n = 1,2, . . . ) . 

The latter inequality together with the inequality (4) imply that 

c(e, v) = lim inf — log S„(e, v) = t = r — A 

for any A, 0 < X < r because X was chosen arbitrarily; hence it follows the desired 
result that c(e, v) _ r which proves the validity of the theorem. 

4. FORMULA FOR CAPACITY 

This section will be devoted to the proof of Theorem 2. Here we have to work 
with a group of other auxiliary quantities which are connected with the concept 
of the probability of error. First we define 

(4.1) c„(co) = 1 - Y,xeA» maxy6B„ co[xy] 

for any probability measure o on FAB (n = 1, 2, . . .) . Then we may assert that (cf. 
(3.31)), for any v e Jfst, ft n-invariant, 

(4.2) H„(n \v)<n e„(v/i) log JT(_) + 1 (log = log2) ; 

the latter inequality corresponds to a well-known lemma of Feinstein (cf. [ l ] , Part II, 
Sec. 2, Lemma 2.3, or [6], Theorem 3.1). 

In accordance with [8] let us set 

(4.3) . e„(/i, v, T) = 1 - X ^ " max2EB„ f VTC[X] dfi(Q 
Jw 

for v £ Jfsx and for any probability measure JX on FB; T is a measurable mapping of Bl 

into itself. The following lemma will be used in the proof of Theorem 2. 

Lemma 4.1. / / v e / s „ /* a probability measure on FB, n, m integers (n > 0, 
m = 0), and if x is a one-to-one mapping of B" into _m + n

; then 

em + „(v(/UT"1T™)) < e„(/z, v, T) for T = T [ x ] 

(cf. (3.5)). 

Proof. Let 5 be a mapping of A" into _" such that 

(4.4) vtC[x] dfx(C) = maxItB„ vt,[x] du(Q , x 6 ^ . 
J[^x] J [z] 



244 then the probability of error (4.3) may be expressed in the form 

(4.5) c„(n, v, T) = 1 - Y.zeB„ f v([5-*{z}] | rQ dM(C), 
J[«] 

where we have set (cf. (2.4) and (2.5) in [8]) 

[E] -=U{rx]:xeE}, E c A". 

It follows from the assumption of the lemma that [x - 1 .y] = T " 1 TB[.y] for y e Bm +" 
since x = x[x] as defined by (3.5) so that from (4.5) we obtain that, because of x 
being one-to-one, 

(4.6) 1 - e„(M, v, t) = -^B-J v([<r > " - ,}] | if) d,.(C) = 
. Jr.*-1*] 

= E ^ - f Vao-H^^l^d/.T-1^). 
J TB»[,] 

Let us define \j/ : Am+" -• Bm +" by 

$rx = x(5(xm+l,..., xm+B)) , x e A m + " . 

Then it follows from the stationarity of v (cf. (1.14)) and from (4.6) that 

1 - C„(H, V, T) = ZyeB^ f V~y-l{y)l | ") d ^ - ' T ^ ) . 
J[«] 

Then latter relation together with the formula 

ejn+nM/JT-1^)) = 1 - Sxex— max„eBm+„ vTx] dfix'^TKn) 
Jw 

imply the desired inequality. 

Lemma 4.2. If v e JfiK, m = m(v), n a positive integer, x a one-to-one mapping 
of Bn into Bm+", T = x[x] (cf. (3.5)), and if v is the channel associated with v by 
definition (3.40) for r = c,(0, v) [cf. (3.22)], then 

6c„(p, v, T) = e„(p, v, x) for any p. n-ergodic (0 < 9 5S 1) . 

Proof. If S : A" -* B" possesses property (4.4), then it follows from (4.6) and from 
definitions (3.40) that 

1 - e>, v, T) = Z , e B m + „ f (d, v,[rHx-V}] + (1 - «,)) d„ T-^n) . 
J TBm[»] 



Let us define the measure n' by 

(4.7) /.' = (l/(m + n))^ ^ T ' . 
i = 0 

Since by assumption fi is n-ergodic, jtT_1 is (m + «)-ergodic according to (3.6) 
so that Lemma 3.1 applied to fix~ l yields that n' is 1-ergodic, i.e. y,' e Jtcrg. Making 
use of the relation 

Vfi' = (l/(m + nyf £ v(nx-l)nB, 
i = 0 

and putting q = v(nx"1)(G), we obtain from the T^-invariance of <? (cf. (3.40)) 
that v fi'(G) = q. Applying Lemma 3.4 we get y'{n : qn = q} = 1, where q„ = v„(G„) 
by definition (3.40); since q„ is TB-invariant so that the set {n : q„ = q} is T„-invariant 
as well, it follows from (4.7) that 

\.i T~x{n :q„ = q}= pi'{n ; qn = q} = 1 . 

From here we obtain the inequality 

1 - e„(/i, v, T) = q £ y s B m + „ f VjLS-l{x--y}] dnx~\n) + (l - q) ; 

according to (4.6) we have 

e„(/x, v, T) 2: q e„(jU, v, T) . 

On the other hand, it follows from the assumption that r = c*(9, v), the inequality 
r ^ c*(i9, v/i') so that q = vfi'{Iz = r} ;> 9 which implies the desired result. 

In what follows we shall set in accordance with [8] (cf. (1.5), (1-17)) 

(4.8) e ^ , v, x, 5) = 1 - £_B„ vJi8--{z} \ xz) n„{z} 

for v E / f , p i s t , / i e l s , (cf. (3.21), (1.21)), 

x : B" -» 5 m + " (m = m(v)) , «5 : .4" -> B" (n = 1, 2, . . .) . 

It is easy to see that (cf. (3.5)) 

(4.9) e„(n, v, T[X]) = s„(fi, v, x, 5) for any 5 e (B")An ; 

see [8], formula (2.9). Repeating word by word the proof of Lemma 2.1 from [7] 
in our notations, we immediately obtain the following 

Lemma 4.3. If v e jV(.p:ist, H<~Jtsi, 0 < e < 1, 0 < e' < 1, then the inequality 
(cf. (1.6), (1.19)) 

£»(«', /.) _ S„(6, V) 



246 implies that there are a one-to-one mapping x : B" -> Bm + n (m = m(v)), and a 
mapping 5 : A" -» B" such that 

e'„(/A, v, x, d) < e + E' . 

In the next lemma which will be used in the subsequent section, we have set (cf. 

(3-5)) 

(4.10) e„(n, v) = min {e„(n, v, T[X]) : x e (Bm + n)B"} . 

Lemma 4.4. If v e JT*,t, p. e M„v and <&(v) < 3f(n) then 

lim inf e„(/», v) = hm e„(fi, v) = 1 . 

The proof of the lemma is the same as that of Lemma 10.1 stated in [7] if use 
is made of (3.12) and the strong-stability condition (1.23). 

Now we are prepared to derive a basic lemma which constitutes the main tool 
in proving Theorem 2. 

Lemma 4.5. If v is a stationary channel with finite past history, then the ine­
qualities 0 < e < 6 < 1 imply the inequality (cf. (3.26), (2.1)) 

cjd, v) + - log iz(B) > c(e, v) . 
6 

Proof. Let us assume that we are given e, G such that 0 < s < 6 <. 1. Excluding 
trivial cases we may assume that c(e, v) > 0, and k = log 7t(jB) > 0. 

Choose X such that 0 < X < 1. Owing to (3.8), there is /. e Ji\(B), i.e. /J. 1-inde-
pendent, having the property that 

(1) c(e, v)- \X< Jf([i) < c(s, v) . 

Choosing e' > 0 such that 

4/c 

and making use of (3.12) and the definition of c(e, v) (cf. (2.1)), we may conclude 
from (1) that there is nx with the property that 

(3) L„(e', n) g S„(e, v) for all n ^ n1 . 

Putting m = m(v), and 

(4) n2 = 4(m + \)kk~l , 



and taking a natural number n = max (n,, n2) fixed, we deduce from (3) and Lemma 247 
4.3 that there are a one-to-one mapping x : B" ~> Bm + ", and a mapping <5 : A" -* B" 
such that 

(5) e^(/i, v, x, (5) < £ + E' . 

Let us set (cf. (3.5)) 

(6) T = T[X] , AI* = / H - ' T Z , r = c,(0, v). 

Let v be the channel associated with v by definition (3.40) for r defined in (6). Since ft 
is 1-independent, it is n-independent; hence \i is n-ergodic, /xr'1 is (m + n)-ergodic 
by (3.6) so that /t* is (m + n)-ergodic as at once follows from the definition of n*. 
Consequently, J(vp*) as given by (3.33) makes sense. 

Making use of Lemma 4.1 and Lemma 4.2, and of (4.9) and (5) yields the inequality 
(cf. (4.1), (4.3)) 

i~ *\ £ + £ ' 
em + „(v/<*) < —-— . 

o 

Then it follows from (3.35) and (4.2) that 

(7) #r(fi* | v) = - - — k + — — . 

On the other hand, 3>f(n*) = Jf(^u i) as follows directly from definition (1.7), 
and Lemma 3.2 implies that (cf. (3.8)) 

jfdxv-1) = J?(H) - ~ jr(n) ^ jr(p) -~k. 
n n 

Combining the latter inequality with (7), we deduce from (3.33) that 

(8) i m £ *ip) -1 k - -5 k -e- k - - i ~ . 
6 n 0 m + n 

Let \x' be defined by (4.7) so that ju' = /I* in the sense of (3.3). Then by making 
use of (3.29) we find according to (3.40) and (3.17) that 

l(vџ*) = l(vџ') = Г lz ávџ'(z) й r 
J R(AB) 

because vfi'{lz _ r} = 1. Since n ^ n 2 we obtain from the latter relations and from 
(8), (1), (2), and (4) that 

r = c»(0, v) = c(є, v) k - X 

for any A > 0 arbitrarily small; this implies the desired result. 



248 Let us remind that the capacity C(v) of a stationary channel v with finite past 
history was defined in Section 2 by the relation 

(4.11) C(v) = lim c(e, v) = c(0 + , v) ; 
E-0 

the limit exists because S„(e, v) is monotonically increasing in e. It was shown in [6] 
that capacity may be defined equivalently by the expression where the lower limit 
is substituted by the upper limit (cf. (2.1)); viz. it holds that 

C(v) = limc(e, v) = c(0 + , v). 
e-0 

Theorem 2. / / v is a stationary channel with finite past history, then its capacity 
C(v) may be expressed in the form: 

C(v) = lim c*(9, v) = lim c*(d, v). 
0-0 9-0 

Proof. Theorem 1 yields the inequality (cf. (4.11)) 

c*(0 + , v) = lim c*(9, v) = lim c(e, v) = C(v). 
0 - 0 E-0 

On the other hand, Lemma 4.5 implies that 

C(v) = lim c(e, v) = c*(6, v) for all 6 > 0 
e-0 

so that 
C(v) ^ lim c*(8, v). 

0 - 0 

The assertion of Theorem 2 is a consequence of the above inequalities and of Lemma 
3.5. 

We may define the concept of dual capacity, denoted by C(v) for v6yT f .pas t , by 

(4.12) C(v) = lim c(e, v) = c ( l - , v) . 
E - l 

It follows from Theorem 1, (3.28), and (3.24) that (cf. (3.22), (3.23)) 

C*(v) = C(v) = <€(v) = C*(v) = C(v) for v £ ^ f . p . s , , 

because Theorem 21.1 in [6] establishes the inequality C(v) ^ <$(v). According 
to the latter inequalities, or according to Theorem 21.3 in [6] (establishing the equality 
C(v) = <g(v) for v e Jf„^ we obtain from (3.25) that, for ergodic channels, 

C,(v) = C(v) = «(v) = C*(v) for v e / t r f , 



and that, under the condition of strong stability moreover, -49 

C*(v) = C(v) = %(v) for v e jr*tt. 

The latter considerations lead to the conjecture that ergodicity implies strong sta­
bility. 

5. SOME PROPERTIES OF DECOMPOSABLE CHANNELS 

Throughout the entire section {va}aejrf is supposed to be a measurable family of 
channels with parameters a in a measurable space (stf, A) such that va e J^f.Past for 
every a e stf; then (cf. (3.36)) 

(5.1) m(v") is a measurable function of parameter a ; 

it is because v*[x] is a continuous function of n e B1 as follows from (3.38), and 
because 

{a : m(v") ^ m} = fl fl n n {« : v"„[x] = v*([x] | unJy)} 
n xeAn yeBm + n jjeD 

where unm is the uniquely determined mapping of Bm + n into B1 such that satisfies 
the relation 

(5-2) un>m(y) e Tm[y] , (utt,n(y))j = b0 , j < -m or j = n, 

y e Bm+n, b0e B fixed, and where D is a countable set dense in the (compact) metric 
space B1 (under the distance function given by (3.37)). 

Let us assume that m(v") 5J m for all a e srf and for some integer m; then 

(5.3) v",(£) is a measurable function of (a, y) 

on the space (s4 x, B1, A x FB) for every E e FA. The measurability of v'[x] follows 
from the relation (for x e A", n natural) 

{(a, t]) : vy\x] < t, m(v") g m} = 

= U,6B-.-({« : <(x | y) < t} x T"[.y]) 

since the measurability of v"„(x | y) in a is guaranteed by assumption: viz. (cf. (5.2)) 
v"n(x | y) = v"([x] | u„m(y)). The latter fact together with stationarity of v* and 
measurabiHty of TB imply the assertion (5.3). 

We shall assume in the whole section that we are given a channel distribution £ 
of the family {v1}^^, i.e. a probability measure on the space (s/, A). Throughout 
this section the symbol v is reserved for the mixture of channels v" with respect to ^, 
i.e. 

(5.4) v = fv" ОД 



(cf. (1.27)); in other words, v is the decomposable channel with components va and 
channel distribution £. 

Remark. In case the assumption m(v") g m i s replaced by the assumption m(v") _: m a.s. [£], 
v"(E) is (a.v)-measurable almost surely so that in the following considerations the space s& is to 
be substituted by its (measurable) subspace (cf. (5.1)) {a : m(va) g m} which is of probability 
one with respect to £. 

Owing to (5.3) we may apply Fubini's theorem to the iterated integral 

v,x(G) = flVy(Gy) d£(a) dfi(y) 

which yields the formula 

(5.5) vn(G)= fv^(G)d£(a), 

v"fi(G) is a-measurable for G e FAB . 

Making use of (5.5) and (4.5) (cf. (4.4), (4.3)), we get that 

(5.6) e„(n, v, t) = L(a, v", T) d£(a) 

for t measurable, n a probability measure on FB. 
Now we shall add the assumption that v e J/~*rg (cf. (1.21)) for every a e i . Then 

the measurability of S„(iA; e, v) (cf. (1.18)) follows from the relation (cf. (5.1)) 

{a : m(v*) = m, S„(i/r; e, vx) = k} = 

- U{ fl {« : v ^ " 1 ^ } | y ) _ l - £ } : F c Bm+", n(Bm+" - F) = k} . 
yeF 

The latter fact guarantees measurability of <&* (cf. (2.6)) according to (1.19) and (1.23). 
Let us remark that for the lower and upper 0-quantiles c(0, v), and c'(9, v) of the 

random variable <g™ as defined by (1.28) and (2.5), the same assertions are valid 
as for the 0-quantiles cj(9, co), c*(9, co) as established in Lemma 3.3; summarized: 

(5.7) c is continuous from the left at 9 = I (9 > 0), 

c' is continuous from the right at 9 = 0 (9 < 1), 

c(9, v) = c'(9, v) if and only if c is continuous at 9, or equivalently, 
if and only if c' is continuous at 9. 

Let us remark that (3.23) together with (3.25) implies that 

8(1, v) = ess. sup { f : a e £?[£]} ^ log n(B). 



According to (5.5), l(v*n) is a random variable which has the same probability 251 
distribution (with respect to £) as the random variable Iz taken with respect to vfi 
as seen from the equality 

(5.8) v n{lz S r } = £{l(v*n) ^ r} (r real) 

established in Section 2. 

Theorem 3. / / v is a decomposable channel with strongly stable ergodic com­
ponents, then 

0 < e < 0 <; 1 implies c(s, v) ^ c(0, v). 

Proof. Assume the contrary that c(e, v) > c(9, v) for some e, 9 such that 0 < e < 
< 0 g 1. By (3.8) there is p. e Jt,,n such that 

(1) c(9, v) < Jf(n) < c(e, v). 

Let us set 

(2) r = c(9, v), A = {a : < (̂va) < J?(n)} . 

From Lemma 4.4 we conclude that 

a e A implies lim e„(,u, v") = 1 

so that 

(3) {a : Urn e„(^, vx) = 1} => A => {a : •«* £ r} 

let us mention that measurability of e„(^, va) is guaranteed by (5.5) according to (4.10), 
Since £{<$* ^ r} S 0 as follows from (2), we obtain from (3) that 

(4) £{a : lim e„(n, v*) = 1} > 0 . 

Choose e' > 0 such that 

(5) e + 3e' < 0 . 

Then we deduce from (4) that there is a subscript n0 such that 

£{a : e„(/i, vx) ^ I - e'} ^ 0 - e' for all n ^ n0 . 

By using the inequality (5.6) we find that 

e„(n, v, -cM ^ J e„(/i, v*, T[J<]) d£(a) £ (l - e') (0 - s1) 
J{«:e„((i.v»)gl-e-} 



252 for every % : B" -* Bm+n so that 

(6) en(n, v)> 9 - 2e' for all n = n0 . 

On the other hand, it follows from (l) according to (3.12) and definition of c(e, v) 
that 

Ln(e', ji) < S„(E, V) for some n = n0 . 

From here and from Lemma 4.3 we deduce that the inequality (cf. (4.8), (4.9)) 
en(fi, v) < e + e' is valid for some n = n0. We have by (6) and (5) for the n: 

e„(fi, v) < s + e' < 6 — 2e' < en(fi, v) 

which gives the desired contradiction. 

In the proof of Theorem 4 we shall make use of the following auxiliary quantities: 

(5.9) V*(v«) = lim sup (I sup„^n ( B ) ^Mn(v^)\ , a e i , 

where Jtn(B) represents the class of all n-independent measures; cf. (3.4), (3.14). 
In what follows we shall put 

(5.10) Jtt(B) = {n:ii e Jtn(B), nn{y} is rational for all y e B"} . 

Then it is easy to see that 

(5.11) sup {^„(v» : H e Jt*(B)} = sup {@n(v*n) : H e Jtn(B)} . 

The latter relation shows that ^(v") is a measurable function of parameter a. It fol­
lows from definition (5.9) that 

(5.12) #*(va) ^ #(va) , a e i . 

Lemma: C*(v) = ess.sup {<£*(v") : a e d\£\}. 

Proof. From the definition of C* = C*(v) it follows that 

£{a : l(v«n) < C*} = 1 for every fi e Jten . 

Putting (cf. (3.4)) 

Jtt = {p.: ne Jt*(B)} c Jtn(B) , Jt* = U Jt*n , ' 
n= 1 

A = ()lieji.{a:l(v*ji)<C*}, 

we obtain from the preceding relation that (Jt* countable) 

(1) tfA) = 1 • 
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yield the relations 

1 ^„(v» =g -i ajfp) < i(v"fi) + x^c* + x 

n kn 

for some k. Hence we deduce according to (5.11) that 

tf*(v") S C * + 1 for every X > 0 , a e A , 

i.e. <g*(V) 5S C* for every a e A which together with (l) gives the desired result. 

Theorem 4.7/v is a decomposable channel with strongly stable ergodic components, 
then 

lim c*(e, v) = lim cjfi, v) = lim c(e, v) = lim c(e, v) = C*(v) = C(v) = 
e ^ i 9-»i £ - i e->i 

= ess.sup {^(v*) : a e st[Q} . 

Proof. Using the preceding lemma and inequality (5.12) we obtain the relation 

C*(v) S; ess.sup # " . 

On the other hand, Lemma 2A, Lemma 3.5, and (5.7) yield the relations 

C*(v) = lim c*(6, v) ^ lim c(6, v) = c(l, v) = ess.sup V . 
e->i e->i 

The two inequalities just derived together with Theorem 1 and Theorem 3 imply 
the assertion of the theorem. 

Theorem 5. Any channel decomposable into components with additive ergodic 
noise is regular. 

Proof. Assume that the noise distribution of channel v* is (f e Jicir Then we 
deduce according to (1.32) that the composed channel given by (5.4) has additive 
noise with noise distribution p. expressed by, written symbolically, 

fl = L' d£(a) . 

Theorem 3.1 stated in [4] yields the inequalities 

log n(A) - h*(e) £ c(e, v) g c(e, v) ^ log n(A) - h*(e), 
where 

h*(6) = sup {r : fi{Jt(fiz) £ r} ^ 1 - 0} , 

hj6) = inf {r : ji{Mr(iit) ^ r} ^ 6} . 
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<Hf) = log n(A) - j f ( p - ) , 

fiW(liz) < r} = £{« : * V ) ^ r} 

which imply the relat ions 

c(6, v) = log 7t(A) - h*(8), c'(6, v) = log n(A) - h*(0) . 

T h e lat ter relat ions together with the preceding ones show that c(e, v) = c(e, v) = 

= c(e, v) except a coun tab le set of e's. O u r cons idera t ions are valid wi thout any change 

for every channel v M as defined by (1.29). F r o m here and from the ma in t heo rem 

establ ished on the basis of Theo rems 1 to 4 we conclude tha t the channe l v, i.e. the 

channe l d is t r ibut ion £ mus t be regular , Q . E . D . 

(Received December 28, 1970.) 
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Tato druhá část článku je zcela věnována důkazům teorémů, jež byly použity 
v první části při důkazu hlavní věty o existenci e-kapacity (srovn. první část článku 
v minulém čísle časopisu). 
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