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On the Coding Theorem for Decomposable
Discrete Information Channels 11

KAREL WINKELBAUER

In this Part IT all the theorems are proved that were stated in Part I of this paper (cf. the
preceding issue of this journal), and that were used in the proof of the main theorem on e-capacity
as established in Part I. A special paper is to follow in the next issue of this journal on the regul-
arity condition for decomposable channels where some other facts used sometimes in Part 1
without explicit proofs, will be established.

3. PROOF OF THE FIRST INEQUALITY

We have seen in Section 2 that the proof of the sufficiency of the regularity condition
for the validity of the assertion given in the main theorem is based on two fundamental
inequalities, viz. the first inequality as stated in Theorem 1, and the second inequality
as stated in Theorem 3. The final purpose of this section is to establish the validity
of the first inequality given in Theorem 1; however, another purpose of this section
is to prepare some of the auxiliary tools that are needed in the proofs of the sub-
sequent sections.

Let us assume first that we are given a finite non-empty set M; the following
convention may be sometimes uscful for the concepts defined in the space M':
if necessary, we shall write the subscript M in parentheses, i.e.

(3.1) K(M), F(M), T(M), 4(M), #*M), R(M)
instead of the subscripted, forms (cf. (1.2), (1.3), (1.9)).

We shall make use of the following terminology: a probability measure u defined
on the g-algebra F(M) will be said to be n-invariant (n'= 1,2, ...)if u (T"E) = u(E)
for every E € F(M), where T = T(M); p is said to be n-ergodic (cf. the nomenclature
employed in [12]) if it is n-invariant and not non-trivially decomposable into n-
invariant measures; hence,

(32) Ay

It

M(M) = {u: pa l-invariant measure on Fy} ,
MHM) = {p: pe #(M), p1-ergodic} ;

I



especially, the concept of 1-ergodicity coincides with that of indecomposability 231
(i.e. ergodicity with respect to Ty).

Lemma 3.1. If ¢t is an n-invariant measure, then the measure ﬁ defined by
n—1
(33) A(E) = (1/n) Y. W(T'E) forevery EeFy(T= Ty)
i=0

is 1-invariant, i.e. i€ M\ if p is n-ergodic, then fi is 1-ergodic, i.e. i€ My
The facts stated in the preceding lemma are proved in [6] (cf. Theorem 5.2, and
Theorem 7.1; cf. also [12]).
In what follows we shall say that a probability measure p defined on the class Fy,
is n-independent if
w(T[z] A [2]) = w(T*[z]) u[z'] for every z,z'e M*,
and

k
Hku{(zn v Zk)} = E#u{zi} = F(Tk"[(zx, cees Zk)])
for every (zy,..,z)eM"(z;eM", i=1,..,k), k=12,... (T=Ty);

cf. the definitions (1.4), (1.5). The class of all n-independent measures in the space M!
will be denoted by .#,(M), n =1,2,... It is easy to see that an n-independent
measure is n-invariant; a standard reasoning yields the fact that any n-independent
measure is, at the same time, n-ergodic (cf. [11], Chapter 1). Applying Lemma 3.1,
we obtain that, for any p € 4,(M), the measure 1 defined by (3.3) is ergodic. We shall
set

(3.4) M) = (i pe A (M)} < A*M),
M, (M) = {u :  an n-independent measure} .

In words, J?,,(M) consists of all those (ergodic) measures p’ such that p' = g for
some n-independent measure 4, where f is defined by (3.3).

In the next section we shall make use of the following notation: if x is a mapping
of the set M" into the set M™*" (cf. (1.4)), then the symbol <[] will designate the
(measurable) transformation of the space M’ into itself defined by the relation

(3-5) {(7["] Z)—m+k(m+n)+i}ogi<m+n = "({zﬁmﬁ}o;jq) , kel

for every z'in M' (n > 0, m 2 0). It is shown in [6] (cf. Theorem 7.2) that, for any
probability measure defined on Fy, '

(3.6) if u is n-ergodic, then pt~' is (m + n)-ergodic for v = t[x], o

where
ut YE) = p(t7'E) forevery EeFy.
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Let us remind the fact stated in Section 1 that the set R, of all regular points
in the space M! satisfies the relation

(3.7) u(Ry) =1 forany pe.#, ; moreover,
My = ze Ry,
Ry =R(M) = {z:ze M', z regular} ;

of. (1.9), (3.1), (3.2). Let us mention in addition that the results of ergodic theory
that we shall make use of in the sequel, are collected in [9], Sec. 2 (references included).

As to the entropy rate, let us point out that # maps the class .#}; of indecom-
posable measures (cf. (3.2)) onto the entire closed interval [0, log n(M)]; in more
detail,
(3.8) ) 0 < #(u) < logn(M) for pe.dy,

n(M) = the number of clements in M, log = log, ;

foranyt, 0<t<logn(M), thereis pe.#(M) suchthat #(u) =t

(i.e. p is 1-independent; cf. (3.4)); the proof may be found, for instance, in [6],

Sec. 6, Lemma 7. Let us emphasize that the notion of entropy rate as defined by (1.7)
makes sense for any n-invariant measure y; it is shown in [6] (cf. Theorem 6.7) that

(3.9) H(f) = H(u), p n-invariant, i defined by (3.3) for p.

The following lemma was proved in [6] as a part of Theorem 6.8.

Lemma 3.2. If u is an n-invariant measure, and if » is a one-to-one mapping
of M" into M™*" (m, n non-negative integers, n > 0), then (cf. (3.5))

(m +n) #(ur™") = nt(y) for t=1fx].

As another useful fact, of which we shall make use in this section, we state that

(3.10) lim J‘ [(1/r) log p[Zos 215 - s Zamr] + H# ()| d(z) = O for any pe .,
R(M)

n

[20s 215 -+ Zam1] = [(20> 215 -+ 2a=1)] for ze M (cf.(1.4));

the proof may be found in [9], Sec. 2, Theorem 2 (cf. also [4]); in words, the sequence
—(1/n) log ¢ 2o, 21, -, 24, ] converges in the mean (with respect to ) to the entropy
rate of the ergodic component g, (cf. (1.9), (3.7)). It was shown by Pathasarathy
in [13] that

(3.11) #(w) = #(p) du(z) forevery pe My .
RO




If we define the quantity L,(e, ) as the minimum (1.6), then it is known (cf. {1,
Part I, and [7], Theorem 9.2, for the general case) that, for 0 < ¢ < 1,

(3.12) lim log L(e, ) = #(y) for pe.y (cf. (32),
w R
i.e. the limit exists for any indecomposable measure p independently of ¢ and equals
precisely the entropy rate; the latter fact will be used several times in the sequel.
Given the alphabets A4, B, let us add some remarks as to the information rate
associated with measures in .#(A4B). It is well-known that

(3.13) 0 £ I(w) = #(w?) + #(0®) — #(w) < log n(B)

for any w e #(AB), where #(w?), #(w”) are the entropy rates of the marginal
measures associated with w; cf. (1.11), (1.12), and (3.8). The equality in (3.13) shows
that the notion of information rate makes sense for any n-invariant measure w
(n =1,2,...). Putting

(3.14) A (w) = Hfo") + H(0®) - H(w), n=12,...,
(cf. (1.8)), we obtain the relation
(.15) Iw) = lim L 2,(w)

m=o M

for any n-invariant measure w on F(AB).
Let us mention that in Section 2 we have made use of the following shorthand
notation

(3.16) I, =Iw,) for zeRy,

where w, is the ergodic measure associated with the regular point z according to (1.9).
As an easy consequence of (3.11) and (3.13) we find that

(3.17) I(w) = J' I(w,)de{z) for any ewe .#(AB);
R(AB)

it is because x € R(A), y € R(B), (w,)* = p,, and (w,,)® = p, for any xy € R(4B)
(cf. (1.10)) as immediately follows from the definition of the set R(AB); cf. (3.7), (1.9).
Let us remind that the measurability of I, is an immediate consequence of the measur-
ability of w, and of the definition (1.12) or relation (3.15); moreover, 1, is an invariant
function (with respect to T = T(AB)), i.e. Iy, = I, since o, = w, for z € R(4B).

To simplify our notations, we shall define two auxiliary quantities I*(w) and I,(w)
as the essential extrema

(3.18) I*(w) = ess.sup {I, : ze Ryfw]},
I (w) = ess.inf {I,:ze Ry[o]} for weut, y.

233
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Let us denote by ¢*(6, w) and c,(6, w) the upper and lower 6-quantile of the random
variable I, taken with respect to a probability measure w on F(4B), i.c.

(3.19) b, w)y=sup{r:w{i,zr}z1-~0} for 050<1,
c(f, w) = inf {r:o{l, < r} 2 6} for 0<0<1.

We have

(3.20) I{w) = 0, 0), I(w)=cl,w) for we#,p.

Lemma 3.3. If w is a probability measure defined on F(AB), then

(1) both c*(0, w), c4(0, ) are monotonically increasing as functions of 0, and
cx(8, ) £ c*0, w) for 0 <0 <1, c*8,,0) = cyff;,0) for 0560, <0, £1;

(2) cu(8, w) is continuous from the left at every positive § < 1, ¢*(8, w) is conti-
nuous from the right at every non-negative 0 < 1, and

0 — 0, ) = cu(0, ), cx(0 + 0, 0) = c*(, w);
especially,

lim ¢, (6, w) = lim c*(0, ) = I*(w), lim c (8, ») = lim c*(0, ) = L () ;
81 01 0-0 6 '

(3) the equality c4(6, w) = ¢*(8, w) holds if and only if 0 is not a discontinuity
point of ¢*(0, w), or equivalently, if and only if 8 is not a discontinuity point of
cx(6, w).

Proof. Denoting by F the probability distribution function of the random variable
I, e.g. F(t) = oI, £ t}, t real, we may rewrite the definitions (3.19) in the form

c*(0, w) = sup {r: F(r) £ 6} = inf {r: F(r) > 6},
cx(0, w) = sup {r: F(r) < 6} =inf {r : F(r) 2 6} .
The latter equalities immediately imply the first assertion of the lemma. Since

U{r:F(r)> 6 + 27"} = {r: F(r) > 6}, L"){r:F(r)<9—2"'}={r:F(r)<0},

we easily obtain from the same equalities that ¢*(0 + 0, w) = ¢*(, w)for0 < 6 < I,
and c,(0 — 0, ) = c,(0, w) for 0 > 6 < 1. This together with the first part of the
lemma implies the assertion of the second part. The third part is a direct consequence
of the validity of the assertions stated in the first two parts of the lemma.

To be more in accordance with the notations employed in [8], we shall use the
symbol A", as an alternative notation for the class #(4 I B) of all stationary channels.
Similarly, we shall denote the class of all stationary inputs by .#,,, and that of all
ergodic inputs by .#.; summarized in symbols:

(3.21) My = MB), Moy= MB), Nu=H(4]B), ic.



N = {v:va stationary channel, 4 its output alphabet, B its input alphabet};
cf. (3.1), (3.2).

Lemma 3.4. If ve /'y, p€ M, GeF(4B), and TG = G for T = T(AB), ie. G
is Tyg-invariant, then (cf. (1.15))

vr(Gry) = v(G,) for T= Ty, u{y:yeRy v(G,)=vuG} =1,

ie. v(G,) is Ty-invariant, and v(G,) = v p(G) a.s. [u].

Proof. Since (Tx) (Tpy) = Tys(x), it follows from the stationarity of v that

v({x : x(Tpy) € G} | Tgy) = v({x : Tys(xy) € G} | y)

Then the T g-invariance of G guarantees the Tyinvariance of v,(G,). The second
part of the lemma follows from (1.15) because of the almost sure constancy of an
invariant function relatively to an ergodic measure; cf. also (3.7).

We shall see in what follows that we cannot restrict ourselves in our analysis
to channels with finite duration of past history: we must make use of such quantities

in our considerations that make sense for any stationary channel; so is another
pair of auxiliary quantities, viz.

(3.22) C*(v) = sup {I*(vp) s pre Moy}, Culv) = sup {I(vp) : pe Moy} for ve s,

Let us remark that the extremality properties of I*, I, (cf. (3.20)) enable us to assert
that

(3.23) Cx(v) S C*(v) £ log n(B),
C*(v) = sup {I*(vu) s e My}, Cu(v) = sup {I(vp) 1 e M} .

The inequalites foHow directly from the definitions (3.22) and (3.18), and from the
inequality I, < log n(B) valid for any z e R (cf. (3.13), (3.16)); the equalities are
simple consequences of the relations

IA

vp{l, £ r} = j v, {I, < r} du(y),
R(B)

vu{l, 2 r} = j w {I, 2 r}du(y), rreal, pe.,
R(B)
which follow from (1.15) and from the second part of Lemma 4 * stated in Sec. 2

* The evident misprint concerning the formula standing in the second part of Lemma 4 given
in [9]is to be corrected as follows: the formula is to state that

o [
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of [9]. It is because the latter relations imply that
I*(vp) £ C*(v), I«(vu) S Cy(v) forany ped,,

which gives the desired result.
Applying formula (3.17) to the information rate I(vu), we obtain that

Lvw) £ I(vp) £ I*(v) forany pedy;

hence the inequalities

(3.29) Cul) = 40) £ C0), ves,

hold for the transmission-rate capacity %(v); ¢f. (1.22). If v is an ergodic channel, then
Lvp) = I*(vp) = I(vy) forany pe. ., ;

it is because then the measure vu is érgodic so that vu{I, < r} equals 0 or 1 according

to I(ve) > r or I(vu) < r (cf. Lemma 3 in [9]). Consequently,

(3.25) Cy(v) = C*(y) = €(v) forany veN ., ;

cf. (1.21).
In our analysis an important role plays the following pair of auxiliary quantities

(based on the concepts of §-quantiles as defined by (3.19)) given by
(3.26) c*(0,v) = sup {c*(6, vu) i € Mo} for 0L0<1,
c*(0,v) = sup {cq(0, vp) e Moy} for 0>0=1, vedy,;
the first definition, of course, coincides with that given in (2.2); cf. (3.1), (3.21).
We have (cf. (3.20))
(3.27) Ci(v) = c*(0,v), C*() = c,(1,v) forany ve.,.

Lemma 3.5. If ve A, then

(1) both c*(8, v), cu(6, v) are monotonically increasing functions of 6, and

cx(0,v) S c*(0,v) for 0 < 0 < 1, c*B,,v) S (8, v) for 050, <6, <1

(2) c«(0,v) is continuous from the left at any point 0 such that 0 < 6 < 1, and

c*(0 — 0,v) = cu(6, v); especially,
lim ¢,(8, v) = lim ¢*(6, v) = C*(v) ;
01 0-1
(3) 6 + 0 is a discontinuity point of c*(0,v) if and only if 8 is a discontinuity
point of ¢,(8, v); if 0 is not a discontinuity point of ¢*(6,v) (or ¢,(0, v)) then

cx(0,v) = c*(6,v).



Remark. In general, ¢*(0 4+ 0, v) = ¢*(0, v), especially,
(3.28) C(v) £ lim ¢*(6, v) = lim c.(6, v)
00 00
(cf. (3.27); it is because

¢*(0 + 0, v) = inf,, o sup, ¢*(6 + &, vp) 2

v

sup, inf,5 o c*(0 + &, vu) = c*(0, v)
as follows from the second part of Lemma 3.3,

Proof. The first and the second part of the Jemma immediately follow from the
corresponding parts of Lemma 3.3. As to the third part, assumming, for instance,

that 8 (0 < 6 < 1) is not a discontinuity point of ¢*(0, v), and applying the relations
stated in the preceding parts of the lemma, we get that
(0 = 0,v) = ci(0,v) £ c*(0,v) £

0+ 0,v) = (0 + 0, v) = c*(0 — 0,v) = ¢, (0 — 0,v)

A

which shows that ¢, is continuous at 8, and that c,(6, v) = ¢*(6,v), Q.E.D.

If v is a stationary channel, then the information rate I(vu), called here also the
transmission rate (of the source yu relatively to v), as defined for the measure w = vu
by (1.12), makes sense for any n-invariant measure y defined on the class Fy (n =
=1,2,...); it is because the measure vu as defined by (1.15) is n-invariant on F,p
for u n-invariant on Fy, v e A, arbitrary: more generally,

(vu) T = WuTs) forany ve s,

 an arbitrary measure on Fy (i €I). Making use of the latter relation, and applying
the equality (3.9)to measures p, vy, and (v)*, we obtain the equality

(3.29) I(vd) = I(vu), p n-invariant, i defined by (3.3) (ve A#,),
as follows from (3.13) since, written symbolically,

~ —~

=i, (o)) = (i)

Given ve 4, and p an n-invariant measure, we shall denote by #(u I v) the
equivocation of u with respect to v, i.e.

(3.30) EA | v) = o (vp) — #H((vi)?) .
Putting

(3.31) Hp|v) = Hfw) — H{(v)"), n=12,...,



238

(cf. (1.8)), we obtain the relation
(3:32) a#(u| v) = lim 1 H,{u|v)
m m

(cf. (1.7), (3.8)); on the other hand, we have

(333 Kvp) = #(p) = #(u|v),
Rvp) = Hp) — Hon|v)

(cf. (3.13), (3.14)). The inequality

(3.34) ' He(pu|v) £ k Hy(p |v), u n-invariant,

which follows from the well-known properties of conditional entropies (cf. [11],
Chapter 2, Sec. 6, or [6] Sec. 2, esp. Theorem 3, and Theorem 4), together with
(3.32) yields the relation

(3.35) Hp|v) s L Hfu|v), pn-invariant (ve ).
n

Lemma 3.6. If p is an n-independent measure, ie. pe . #,(B) (n is a natural
number; cf. (3.4)), and if v is a stationary channel, i.c. ve & (cf. (3.21)), then

k Zfvp) £ Bp(vn) for k=1,2,...
Proof. The n-independence of measure u implies the validity of the relation
Ho() = kHp), k=12, ..

Making use (3.33) and (3.34), we casily deduce from the latter equality the desired
inequality, Q.E.D.

Let us recall that if v is a stationary channel with finite past history, then m(v)
means its duration, i.e.

(3.36) m(v) = min {m : v satisfies (1.16) for m}, v& N e

(cf. (1.21)). It is well-known that the space B’ is a compact metric space relatively to,
for example, the distance function

(3.37) max {(1 + |;|)" cy e}y, vy eBy %),

and that Fy coincides with the class of all Borel sets in the metric space B'. As an
immediate consequence of the finite-past-history condition (1.16) we obtain that

(3.38) v(E), EeKg, asa function of y is continuous



on the metric space B! with respect to the distance function (3.37); i.e. the assertion 239
(3.38) is valid for any finite-dimensional cylinder E lying in the space B' provided
that v e At pase-

Given a non-negative real number r, we shall associate with any channel v e A7 a4
a pair of channels ¥, ¥ (in general, both with infinite duration of past history) by
definitions

(3.39) F(E) = (1 -~ 3,) ' vw(ENnG,) for G, <1,
V(E) = v(E) for g,=1,
g, =1-v(G), G={z:zeRyp I, 2r};
(3.40) V(E) = q,' v(En G,) for ¢,>0,
V(E) = v(E) for q,=0,
q,=v(G,), G, ={z:zeRyI.<r}; EcF,, yeB
(cf. (1.13)); we assert that
(3.41) Se

o and e, .

We shall show that, for instance, ¥ is stationary. Owing to Lemma 3.4 we have that
qry = q, for T = Tp; on the other hand,

WTE N {x : x(Tyy) e G} ' Tpy) = W(E 0 {x : Ty5(xy) € G} | y)

since v is stationary so that the stationarity od ¥ follows from the T, z-invariance of G.

Now we are able to proceed and prepare some lemmas which are needed in the
proof of Theorem 1. Let us define the following auxiliary quantity I,,_,,,(z; w) for any
ze(A x B), we M 45 n, m non-negative integers (n > 0), by

(3.42) Iy wlxy; o) =

=1 log ofx'y : {Xosicn = {XJogicm Wi -msicn = Vi) -msica)
n U)A{x, : {x;}0§i<n = {Xi}0§i<n} @By’ : {y,i}~m§i<n = {Yi}~m§i<n}

for xed', yeB! (log:logz,g=0>.

Lemma 3.7. For any integer m = 0, and for any w € M 4,

limf
n R(AB)

Proof. Since x € Ry, y € Ry (cf. (3.7), (1.9)), and

I, .(z; ©) — I(o,)| do(z) = 0.

[(w,) = H(u) + ”(#y) — #(w,) for xyeR,
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so that
o m(xy; @) = Ly} S | =(1/n) log 0[xo, .-y Xy-1] — # ()| +

im+n/ -1 ” !
+ (mv) 108 WYLy - yaes]) ~ H()
n m-+ n

4

+ [(1/n)log {x'y" : %" € [X0 .+s Xuo 1], V' € TV oo Yamr ]} — #(@0s)] 5

it easy to deduce from the latter inequality the desired result by applying (3.10)
to w?, w?, w because of the inequalities

CU(TTB[(X_.,., y—m), ey (xn—la Yn—l)]) =
S o}y X e[xo o Xuoi ] YV € THY gy o Yuor B}

= w[(xo, ,Vo)’ BRSNS (xn—ls yn—l)] .

A

In the proof of Theorem 1 we shall make use of another group of auxiliary quanti-
ties, viz (cf. (1.4), (1.5), (1.3), (3.8), (1.1))

(3.43) O, (%, V) = 0fx'y 1 x' e[x], y e TH[y]},

O X | ¥) = 0, (%, |oni{¥}; xed", yeB™ (g = 0) ;

Ol W) = sy Onin(%s V) s Ol E | ) = Vst @pml* | )5
We 4" x B"*", Ec A", yeB™™";
(3.44) S, W6 0) =n{y:yeB"* " 0, (" ¥} |y >1—¢},
S, e, @) = max {S,(¥; &, @) 1 Y € (B"*")*"} ;
Y:A">B"", 0<e<1;

(3.45) I (%, y; ©) = 1 log m ; xeA", yeB"*";

PR TR
n, m non-negative integers, n > 0, w € # 45; cf. also (1.18), (1.19).

Lemma 3.8. If we # 45, 0 < ¢ < 1, t positive, and
Oy (%, ¥) Ly X 3 0) > 1} > 1 — 42

then S, (s, ®) > (3¢) 2™
Proof. Let us set

E(y) = {x : I, .(x, y;0) > t}, yeB"*".




Let us construct a finite sequence y*, y2, ..., y5 of points in Bm+# guch that 241
Qo | V) > 1 — e, A =E()~UEY): j=1,..5;
i=1

s
0. (E(y) = U E(Y)|») <1 -¢ forevery yeprtn;
ji=1
the possibility of the construction performed by induction follows from the inequality

YyeamrnOmenl¥} 0nwlEQ) ] ¥) > 1 — (gf2)

which coincides with that given in the assumptions of the lemma, and which shows
that o, .(E(y)| y) > 1 — ¢ holds for at least one y. According to (3.45)

@ (% I y) > 2"wi{x} for xeE(y), wi{x}>0.

The rest of the proof is based upon the latter inequality and follows the lines of the
proof of Feinstein’s lemma given in [1] (cf. also the proof of Theorem 12.1 in [6]).
By the method just mentioned we deduce the inequality S > (g/2) 2™. If  is a mapping
of A" into B™*" such that yx = y/ for x € A;, then (cf. (3.44))

Syt @) Z S, Wl 8, ) 2 S > (3e) 2

which is the desired result.

Lemma 3.9. If r is a given non-negative real number, if v is the channel associated
with a given v e N'¢ o, by definition (3.39), and if pe M, then

g<e<1 implies S,(e,v) = S, (e —q. ), n=12..,
where g = vu{l, < r}, and m = m(v).

Proof. Making use of Lemma 3.4 and putting g = 1 — vu(G), where G is defined
in (3.39), we obtain that u{y : g, = q} = 1 so that, owing to (1.15), we find that

Gy =(1 - q)_‘j.v),(Gy AG)du(y) = (1 — q) ' vu(G), GeFyfg <1).
From here and from (1.17) and (3.43) we deduce that

v(E|y) = Bl Dixe Bl (o 5]y
#m+n{y}

for E < A" ye B™*", where we have set @ = #u (hence w? = p); consequently,

w0, (E|y)>1—¢ implies v(E|y)>1—(q+¢)
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for 0 < ¢ < 1 —q (g < 1). Now we easily deduce from the Jatter implication by
making use of definitions (1.18) and (3.44) that

S(¥sq +ev)Z S, (Ve w), Y:A"->B"", g+e<1

which together with (1.19) yields the desired result.
Before stating Theorem 1 we recall that c(g, v) is defined as the lower limit in (2.1)
for any v € A pasi, and that ¢*(6, v) is defined by (3.26) or (2.2), respectively.

Theorem 1. If v is a stationary channel with finite past history, then
0<0<e< 1 implies c*8,v) = cfe,v).

Proof. Let us assume that we are given 6, esuch that 0 < 8 < ¢ < 1, ¢*(6, v) > 0;
the case c*(6, v) = 0 follows from the inequality (¢, v) 2 0 universally valid. It is
sufficient to prove that, for any positive r < ¢*(6, v), thé inequality c(e,v) = r
holds.

In the remainder of the proof we shall assume that we are given a positive real
number r such that r < ¢*(6, v). Let u € #,, be such that r < ¢*(0, vu); the existence
of such p follows from definition (3.26). Let  be the channel that corresponds to the
given channel v and the given r according to definition (3.39). Let us set

1) o=, 1—qg=vwG), m=mp);

cf. (3.39), (3.36). Then o € #(AB) as follows from (3.41). Since the sequence I, ,,(z; @)
converges in the mean (with respect to w) to the information rate I, of the ergodic
component w, according to Lemma 3.7, it converges to the same limit in probability.
Let us choose A such that 0 < 4 < r. Then there is ny = no(¢') with the property
that
) o{zizeRup I, (z;0) > — 1} >1 -4

for n2ny, &given(0<e¢ <1).
It follows from the definition of ¥ that ¥ u(G) = w{I, = r} = 1; then we can deduce
from (2) that

3) Co{zil,ze)> 1> 1 -3 for n

v

no

where we have set ¢ = r — 1 (hence ¢ > 0). Rewriting (3) with the aid of (3.43)
and (3.45) (cf. (3.42)), we obtain that

Opind(%,Y) thym%, y30) > 1} > 1 = 3¢ for n2ng.

Since the latter relation shows that the assumptions of Lemma 3.8 are satisfied for
n Z ngy, we shall find that

) Symle, w) > 4g . 2" for n z nele).




On the other hand the assumption that r < ¢*(6, vu) implies that (cf. (3.19) and (1))
q < 0,ie. g < ¢so that Lemma 3.9 may be applied: we obtain that

S(e,v) 2 S, (¢, w) for € =e—q (n=1,2,..).

The latter inequality together with the inequality (4) imply that
S | . .,
ofe,v) = liminf—log S,(e,V) 2 t=r — 4

non

for any 4, 0 < A < r because A was chosen arbitrarily; hence it follows the desired
result that ¢(e, v) = r which proves the validity of the theorem.

4. FORMULA FOR- CAPACITY

This section will be devoted to the proof of Theorem 2. Here we have to work
with a group of other auxiliary quantities which are connected with the concept
of the probability of error. First we define

4.1 e(w) =1 — ¥, 4n max, g 0[xy]

for any probability measure w on Fyp (n = 1,2,...). Then we may assert that (cf.
(3.31)), for any ve A, u n-invariant,

(4.2) H(u|v) € ne(v)logn(B) + 1 (log = log,) ;

the latter inequality corresponds to a well-known lemma of Feinstein (cf. [1], Part II,
Sec. 2, Lemma 2.3, or [6], Theorem 3.1).
In accordance with [8] let us set

(43) e ) = 1 = T Mk J[ ve[x] du(?)

for v € A", and for any probability measure y on Fy; 7 is a measurable mapping of B!
into itself. The following lemma will be used in the proof of Theorem 2.

Lemma 4.1. If ve A, u a probability measure on Fy, n, m integers (n > 0,
m = O), and if % is a one-to-one mapping of B" into B"*" then

e (MU TR) £ ey v, %) for © = 1]
(cf. (3.5)).
Proof. Let § be a mapping of A" into B" such that

(4.4) j ve[x] du() = mang,,,.J‘ Ve[ x] du(g)’ xe A",
[6x]

23
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then the probability of error (4.3) may be expressed in the form
*3) el v, 1) = 1= Yooy | W([87{z}] [ ) du(0)
[€2]
where we have set (cf. (2.4) and (2.5) in [8])
[E]=U{[x]:x€E}, Ec A".

It follows from the assumption of the lemma that [x~'y] = v~* Tj[y] for y € B***
since T = t[x] as defined by (3.5) so that from (4.5) we obtain that, because of x
being one-to-one,

(4.6) L= e 1) = zﬂmj W[5 (e )] | <0) dut) =

[x=1y]

T — [ W[5~ ™93] | ) dps= ().
Te™y]

Let us define ¢ : 4™*" — B™*" by
Yx = "(5(xm+1; e xm+n)) , xe 4™,
Then it follows from the stationarity of v (cf. (1.14)) and from (4.6) that
L= efund) = zyej WV Y] | ) due™ T
[»1

Then latter relation together with the formula

e en(MHT T = 1 = Toomen maxys,,m..J‘ v, [x] dpe= 1 T50n)

[£2]
imply the desired inequality.
Lemma 4.2. If ve &, m = m(v), n a positive integer, x a one-to-one mapping

of B* into B**", v = 1[x] (cf. (3.5)), and if ¥ is the channel associated with v by
definition (3.40) for r = c4(0, v) [cf. (3.22)], then

Oe,(n, ¥, 7) < e(u, v, 1) for any p n-ergodic (0 < 6 <1).

Proof. If  : A" — B" possesses property (4.4), then it follows from (4.6) and from
definitions (3.40) that

(g0 337 7' ] + (L= @) due™() -

Tg™lyl

1= e, v, 7) £ Yyepmen J-



Let us define the measure i’ by 245
mt+n—1

@7 wo=(om ) §op T

Since by assumption g is m-ergodic, ur~! is (m + n)-ergodic according to (3.6)

so that Lemma 3.1 applied to gt~ ! yields that ji’ is l-ergodic,i.e. ' € M ooy Making
use of the relation

mtn—1

= (U 1) T () T,

i=

and putting g = v(uz ') (G), we obtain from the T,z-invariance of G (cf. (3.40))
that v 4'(G) = q. Applying Lemma 3.4 we get y'{n : q, = q} = 1, where q, = v,(G,)
by definition (3.40); since g, is Ty-invariant so that the set {r : ¢, = q} is Tg-invariant
as well, it follows from (4.7) that
wi g, =at =pin:q,=q} =1.
From here we obtain the inequality
L—efuv1)Sq Zygxmu.[ T[0T ey} due ™ () + (L - q)
Ts™y]
according to (4.6) we have
e v, 7) 2 qen, ¥,7).

On the other hand, it follows from the assumption that r = c,(6, v), the inequality
r = cx(0, vi') so that g = vu'{I, < r} 2 6 which implies the desired result.

In what follows we shall set in accordance with [8] (cf. (1.5), (1.17))
(439) il ¥, 8) = L= Toagn (6~ (2} | 2) ()
for veN g past, HEM (cf. (3.21), (L21)),
x:B" > B""" (m=m@), 6:4">B" (n=12..).
It is easy to see that (cf. (3.5))
(4.9) ety v, T[]) = et v, %, 8) forany e (B);
see [8], formula (2.9). Repeating word by word the proof of Lemma 2.1 from [7]

in our notations, we immediately obtain the following

Lemma 4.3. If ve N ¢ paser €My, 0 < e < 1,0 <& < 1, then the inequality

(ct. (1.6), (1.19))

L,,(e’, p) < S(e, v)
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implies that there are a one-to-one mapping x: B" — B"*" (m = m(v)), and a
mapping 6 : A" — B" such that

e v, %, 8) <e+e .

In the next lemma which will be used in the subsequent section, we have set (cf.

(35)
(4.10) e,(u, v) = min {e,(u, v, 1[x]) : x € (B"*")*"} .

Lemma 4.4. If ve /&, ne My, and €(v) < # (i) then

liminfe,(u, v) = lime,(u, v) = 1.

The proof of the lemma is the same as that of Lemma 10.1 stated in [7] if use
is made of (3.12) and the strong-stability condition (1.23).

Now we are prepared to derive a basic lemma which constitutes the main tool
in proving Theorem 2.

Lemma 4.5. If v is a stationary channel with finite past history, then the ine-
qualities 0 < ¢ < 0 < 1 imply the inequality (cf. (3.26), (2.1))

cl8,v) + {;— log n(B) = c(e, v) .

Proof. Let us assume that we are given ¢, 6 such that 0 < ¢ < 6 £ 1. Excluding
trivial cases we may assume that c(e, v) > 0, and k = log n(B) > 0.
Choose 4 such that 0 < A < 1. Owing to (3.8), there is p e #,(B), i.e. u 1-inde-
. A3
pendent, having the property that

(1) (e, v) — 2 = #(p) < e, v).
Choosing ¢’ > 0 such that
04
2 g <,
@ T4k

and making use of (3.12) and the definition of (e, v) (cf. (2.1)), we may conclude
from (1) that there is n, with the property that
3) Lf¢, 1) < S(e,v) forall nzn,.

.

Putting m = m(v), and

4) ny, =4m+ 1) kA *,




and taking a natural number n = max (n,, n,) fixed, we deduce from (3) and Lemma 247
4.3 that there are a one-to-one mapping x : B" > B"*", and a mapping 6 : 4" » B"
such that

(5) et v, %, 8) < e+ ¢ .
Let us set (cf. (3.5))
(6) t=1lx], p*=ptT'Ty, r=c,6,v).

Let ¥ be the channel associated with v by definition (3.40) for r defined in (6). Since
is 1-independent, it is n-independent; hence u is n-ergodic, ut~* is (m + n)-ergodic
by (3.6) so that p* is (m + n)-ergodic as at once follows from the definition of p*.
Consequently, I(¥u*) as given by (3.33) makes sense.

Making use of Lemma 4.1 and Lemma 4.2, and of (4.9) and (5) yields the inequality
(cf. (4.1), (4.3)

e+ ¢

Cpral TH¥) <
Then it follows from (3.35) and (4.2) that

e+ ¢ 1
7 H(* | v) £ ——k + — .
@) G l)‘ 0 m+n

On the other hand, #(u*) = #(ur™") as follows directly from definition (1.7),
and Lemma 3.2 implies that (cf. (3.8))

H(u™) = A () = "A@)= HE) — Tk

Combining the latter inequality with (7), we deduce from (3.33) that

€ m & 1
8 1Guy 2 #(m) — Sk =P —C k- .
® (u7) 2 A(w) 0 n 0 m+n

Let u' be defined by (4.7) so that &/ = jg* in the sense of (3.3). Then by making
use of (3.29) we find according to (3.40) and (3.17) that
Ip*) = 1) = j Ldy(z)sr
R(AB)

because v'{I, £ r} = 1. Since n = n, we obtain from the latter relations and from
(8), (1), (2), and (4) that

r:c*((),\f)gc(e,v)—sk—l

for any A > O arbitrarily small; this implies the desired result.
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Let us remind that the capacity C(v) of a stationary channel v with finite past
history was defined in Section 2 by the relation

(4.11) C(v) = lim cfe, v) = c(0+, v) ;

=0

the limit exists because S,(e, v) is monotonically increasing in e. It was shown in [6]
that capacity may be defined equivalently by the expression where the lower limit
is substituted by the upper limit (cf. (2.1)); viz. it holds that

C(v) = 31:{)1 e, v) = &0+, v).

Theorem 2. If v is a stationary channel with finite past history, then its capacity
C(v) may be expressed in the form:

C(v) = lim c*(0, v) = lim c,(6, v) .
90 9-0

Proof. Theorem 1 yields the inequality (cf. (4.11))

c*(0+, v) = lim ¢*(0, v) £ lim c(e, v) = C(v) .
8-0 =0

On the other hand, Lemma 4.5 implies that
C(v) = lim ¢(z, v) < ¢,(6,v) forall 6> 0
=0
so that

C(v) £ lim (6, v) -
-0

The assertion of Theorem 2 is a consequence of the above inequalities and of Lemma
3.5.
We may define the concept of dual capacity, denoted by C(v) for v € A¢ g, bY

(4.12) C(v) = ilir: &e, v) = &1—,v).

It follows from Theorem 1, (3.28), and (3.24) that (cf. (3.22), (3.23))
Cy(v) £ C(v) £ 6(v) £ C*(v) £ C(v) for ve Nt pus

because Theorem 21.1 in [6] establishes the inequality C(v) £ %(v). According
to the latter inequalities, or according to Theorem 21.3 in [6] (establishing the equality
C(v) = %(v) for v € A',;) we obtain from (3.25) that, for ergodic channels,

Cy(v) = C(v) = €(v) = C*(v) for veN .,




and that, under the condition of strong stability moreover,
CHv) = C(v) = 6(v) for ved,.
The latter considerations lead to the conjecture that ergodicity implies strong sta-
bility.
5. SOME PROPERTIES OF DECOMPOSABLE CHANNELS

Throughout the entire section {V*},. is supposed to be a measurable family of
channels with parameters « in a measurable space (<, A) such that v* € A¢ pase fOr
every a € o then (cf. (3.36))

(.1 m{v?) is a measurable function of parameter « ;

it is because v2[x] is a continuous function of € B as follows from (3.38), and
because
{am()ysm}=n N N N{aix]=v(x] ' u, W(¥)}
# xeAn yeBm+n peD

where u,,, is the uniquely determined mapping of B™*" into B such that satisfies
the relation

(5.2) u, (v)eTE[v], (Uam(¥));=bo, j< —-morjzn,

ye B"‘f", b, € B fixed, and where D is a countable set dense in the (compact) metric
space B' (under the distance function given by (3.37)).
Let us assume that m(v*) £ m for all x € s and for some integer m; then

(5.3) v}(E) is a measurable function of («, y)

on the space (& x.B', A x Fy) for every E € F,. The measurability of v:[x] follows
from the relation (for x € 4", n natural)

{(zn) :vi[x] < t, m(v) £ m} =
= Ugepmenl{{o 1 vi(x | ¥) < 1} x TF[¥])

since the measurability of v(x | y) in « is guaranteed by assumption: viz. (cf. (5.2))
vi(x | y) = v([x] | 4, m(¥)). The latter fact together with stationarity of v* and
measurability of T imply the assertion (5.3).

We shall assume in the whole section that we are given a channel distribution &
of the family {v*},..s, i.6. @ probability measure on the space («, A). Throughout
this section the symbol v is reserved for the mixture of channels v* with respect to¢,
ie.

G4 v = J' v dé()

249
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(cf. (1.27)); in other words, v is the decomposable channel with components v* and
channel distribution &.

Remark. In case the assumption m(v*) = m is replaced by the assumption m(v*) =< m a.s. [&],
Vi(E) is (,y)-measurable almost surely so that in the following considerations the space « is to
be substituted by its (measurable) subspace (cf. (5.1)) {u cm() = m} which is of probability
one with respect to &.

Owing to (5.3) we may apply Fubini’s theorem to the iterated integral

(G) = ﬁv:(c» 4E(x) du(y)

which yields the formula
() w(G) = j vu(G) de(e)

v'u(G) is a-measurable for Ge Fyp.

Making use of (5.5) and (4.5) (cf. (4.4), (4.3)), we get that
(5.6) eu, v, 7) 2 .[e"(p, v®, 7) dé(e)

for T measurable, u a probability measure on Fpg.
Now we shall add the assumption that ve 4%, (cf. (1.21)) for every a € o7. Then
the measurability of S,(¥/; €, v} (cf. (1.18)) follows from the relation (cf. (5.1))
{a:m(v) =m, S(;e,v) < k} =

=U{N{e i@ 03]y St - Fe B o(B"" — F) S k}.

The latter fact guarantees measurability of €~ (cf. (2.6)) according to (1.19) and (1.23).
Let us remark that for the lower and upper f-quantiles (6, v), and &(6, v) of the

random variable * as defined by (1.28) and (2.5), the same assertions are valid
as for the f-quantiles c,(6, ), c*(6, w) as established in Lemma 3.3; summarized:
(5.7 & is continuous from the left at 8 < 1 (0 > 0),
. & is continuous from the right at § = 0 (0 < 1),

&0, v) = &(0, v) if and only if € is continuous at , or equivalently,

if and only if & is continuous at 6.

Let us remark that (3.23) together with (3.25) implies that

&(1,v) = ess.sup {#* :ae A[E]} < log n(B).



According to (5.5), I(v*) is a random variable which has the same probability
distribution (with respect to ¢) as the random variable I, taken with respect to vu
as seen from the equality

(5.8) vull, £ r} = E{I(viu) £ v} (r real)
established in Section 2.

Theorem 3. If v is a decomposable channel with strongly stable ergodic com-
ponents, then
0<e< <1 implies &(ev) < &0,v).

Proof. Assume the contrary that &g, v) > &0, v) for some &, 6 such that 0 < ¢ <
< 8 = 1. By (3.8) there is y € .4, such that

(1) &0, v) < H(u) < &(e, v).
Let us set
) r=¢06,v), 4=/{x:%0")< #(u)}.

From Lemma 4.4 we conclude that
ae A implies lime,(p, v*) = 1
so that

(3) {a: lj"m e, v)=1}oA>{a: 4" <r}

let us mention that measurability of ¢,(u, v*) is guaranteed by (5.5) according to (4.10),
Since &{%* < r} 2 0 as follows from (2), we obtain from (3) that
) Eolimeuv) =1} = 9.
Choose ¢ > 0 such that
(5) e+ 3¢ <90.
Then we deduce from (4) that there is a subscript n, such that
Elate(mv)z 1l —e}20—¢ forall n=ng.

By using the inequality (5.6) we find that

N e v, ) (@) 2 (1 — ) (0 = #)

{men(p,v*) 21 -2’}
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for every » : B" - B""" so that
(6) efu,v) >0 —2¢ for all nZn,.

On the other hand, it follows from (1) according to (3.12) and definition of &(e, v)
that

L(g, 1) < S,(e,v) forsome n=n,.

From here and from Lemma 4.3 we deduce that the inequality (cf. (4.8), (4.9))
e,(n, v) < ¢ + ¢ is valid for some n = n,. We have by (6) and (5) for the n:

e v)<e+ & <0 —2 <efpv)
which gives the desired contradiction.

In the proof of Theorem 4 we shall make use of the following auxiliary quantities:
. 1
(5.9) @*(v%) = lim sup (; SUP ye (B %,,(v’,u)) , e,

where .#,(B) represents the class of all n-independent measures; cf. (3.4), (3.14).
In what follows we shall put

(5.10) My(B) = {1 pe MB), p,{y} is rational for all y e B"} .
Then it is easy to see that )
(5.11) sup {R,(v'u) : pe MY(B)} = sup {R,(vVy) : pe A(B)} .

The latter relation shows that $*(v*) is a measurable function of parameter o. Tt fol-
lows from definition (5.9) that

(5.12) () 2 6(v), wes.
Lemma: C*(v) = ess.sup {€*(v°) : & [¢]}.
Proof. From the definition of C* = C*(v) it follows that

o I(vp) < C*)

i

1 forevery pe#

erg *

Putting (cf. (3.4))

M= (i pe MEB)  MUB), M*=U.HF,
n=1
A = Megelo  1070) < €4,
T
we obtain from the preceding relation that (.#* countable)

4] : gA)=1.



Choose 4 > 0 arbitrarily. Given o € A, p e #(B), n natural, Lemma 3.6 and (3.15)
yield the relations

1
l.@,,(v“u) < o Ro(vVp) < I(Vp) + A S C* + 1
n n

for some k. Hence we deduce according to (5.11) that
G*(v) < C*+ A forevery A>0, aed,
i.e. *(v) £ C* for every « € A which together with (1) gives the desired result.
Theoremd.If v is a decomposable channel with strongly stable ergodic components,
then

lim c*(, v) = lim ¢,(0, v) = lim (¢, v} = lim &, v) = C*(v) = C(v) =

o1 81 =1 g1
= ess.sup {6(v*) r v e L[¢]} .
Proof. Using the preceding lemma and inequality (5.12) we obtain the relation
C*(v) = ess.sup 6~
On the other hand, Lemma 2.1, Lemma 3.5, and (5.7) yield the relations
C*(v) = 'lmll c*(0,v) £ ‘l’mll &0, v) = &1, v) = ess.sup ¢°.

The two inequalities just derived together with Theorem ! and Theorem 3 imply
the assertion of the theorem. :

Theorem 5. Any channel decomposable into components with additive ergodic
noise is regular.

Proof. Assume that the noise distribution of channel v* is u* € #.,,. Then we
deduce according to (1.32) that the composed channel given by (5.4) has additive
" noise with noise distribution 7 expressed by, written symbolically,

= fﬂ“ d&(a) .
Theorem 3.1 stated in [4] yields the inequalities
log n(A) — h*(e) £ c(e, v) S &(e, v) < log n(4) — hy(e),
where
" W(E) = sup {r () 2 1} 2 1 - 6},
ha(6) = inf {r:@{#(u) < r} 2 6}.
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1t is easy to derive the equalities
G(v*) = log n(4) — # (1),
A () < v = o A ()

which imply the relations

IIA
L

80, v) = log n(4) — h*(6), (0, %) = log n(4) — hy(0).

The latter relations together with the preceding ones show that c(e, v) = E(c, v) =
=, v) except a countable set of &’s. Our considerations are valid without any change
for every channel v'! as defined by (1.29). From here and from the main theorem
established on the basis of Theorems 1 to 4 we conclude that the channel v, i.e.the
channel distribution £ must be regular, Q.E.D.

(Received December 28, 1970.)
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