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KYBERNETIKA —VOLUME 11 (1975), NUMBER 6 

Necessary Optimality Conditions 
for Discrete Systems 
with State-Dependent Control Region 

JAROSLAV DOLEZAL 

Necessary optimality conditions in the form of a discrete maximum principle for general 
discrete optimal control problems with state-dependent control region are derived using the 
mathematical programming approach. In a more concrete case of the explicitely given constrain­
ing sets as systems of equalities and inequalities, more meaningful optimality conditions were 
obtained which can be important from a computational point of view. This fact was illustrated 
by a simple example of discrete optimal control problem with state-dependent control region 
which was solved applying the obtained optimality conditions. 

1. INTRODUCTION 

The purpose of this paper is to show that the approach developed in [1; 2], and 
detailly exposed in [3], to deal with constrained minimization problems in finite 
dimensional spaces can be modified in such a way that it also applies to discrete 
optimization problems with state-dependent control region. As far as such optimization 
problems have practical applications, it is reasonable to study this type of discrete 
optimal control problems. 

Similar problems were studied earlier by Leitman et al., e.g. see [4], using a geo­
metrical approach. Also Boltjanskij in his recent book [5] considered this class 
of discrete optimal control problems. Problem posed in [5] is a general one, but some 
assumptions necessary during the proof considerably narrow possible applications. 
Method used in [5] is, in fact, the same as in [3]. Namely, a general nonlinear 
mathematical programming problem is studied and necessary optimality conditions 
for its solution derived. Then a discrete optimal control problem is transcribed to the 
mathematical programming one and the necessary optimality conditions are decom­
posed and interpreted for this special case. 

The same approach we use also in this contribution. In the next section we summe-
rize some basic results from [3] concerning mathematical programming theory. 



424 The central role here plays a concept of the so called "conical approximation" to 
the set QcEn. The origin of this concept can be found already in the first works devoted 
to the extremum problems. Let us recall at least the attainability cone introduced 
byPontrjagin et al. in [6] or the derived cone as used by Hestenes in [7]. Also cone 
of forbidden variations originated from Dubovickij and Miljutin [8] has a similar 
meaning. Finally as an outgrowth of these ideas a very general theory of extremum 
problems was accomplished by Neustadt [9], Gamkrelidze and Charatisvili [10], 
and Gamkrelidze [11]. 

The concept of a conical approximation used in [3] and also here, is nearly the 
same as the concept of a derived cone of Hestenes [7]. By the way, it can be rather 
straightforward obtained as a special case of more general concepts, e.g. see [9], 
interpreted in finite dimensional spaces. Boltajanskij in [5] introduced the so called 
"tent" to the set. His definition is less general than that used in [3], but in finite 
dimensional spaces no difficulties arise. Using the concept of a conical approximation 
it is possible to derive necessary optimality conditions for a general mathematical 
programming problem. We state these conditions without proofs which can be 
found in [3] — see Section 2. 

A general discrete optimal control problem is precisely formulated in Section 3. 
The admissible control region is allowed to be state-dependent. Also state constraints 
may be present. This fundamental formulation does not specify various constraining 
sets. To obtain more familiar and practical formulation some special cases are pointed 
out. Then we state and discuss certain assumptions which are needed to obtain 
necessary optimality conditions for a discrete optimal control problem. 

The most important assumption concernes the so called locally smooth selection 
of a multivalued mapping, which enables us to treat problems with state-dependent 
control region. This assumption is not too much restrictive and it is satisfied in a large 
class of discrete optimal control problems with explicitely given constraints. 

The derivation of necessary optimality conditions is subject of study in Section 4, 
which is partially based on the author's thesis [12]. Applying the concept of a locally 
smooth selection we are able to modify a general scheme from [3] to obtain a set 
of necessary optimality conditions for our formulation of a discrete optimal control 
problem. By an analogy with a continuous case one can also speak about a discrete 
maximum principle. For explicitely given discrete optimal control problems we state 
necessary optimality conditions separately in Section 5. 

In this way we have obtained certain results of Boltjanskij [5] using more simple 
and straightforward construction and, moreover, it was possible to replace the 
convexity assumption in [5] by a weaker assumption of the so called directional con­
vexity. Also the explicite continuity and compactness assumptions on an admissible 
control region were not necessary in our construction. Especially in the case of 
explicitely given constraints the derived necessary optimality conditions have a simple 
form in comparison with those of Boltjanskij in [5]. This fact is important from the 
both practical and computational point of view. 



To illustrate practical importance of the obtained results a simple example with 
state-dependent control region is included which was solved using our necessary 
optimality conditions. 

2. PRELIMINARY RESULTS 

Our main tool in the next section will consist of some results concerning mathe­
matical programming theory in finite dimensional spaces. For convenience, some 
basic concepts and results of this theory are summerized in this section, which is 
based on the monograph of Canon et al. [3], where the interested reader can find 
a more detailed exposition and proofs. Similar questions were also discussed by 
Boltjanskij [5] and the author [12]. 

A general mathematical programming problem can be stated in the following way 
(£" denotes n-dimensional Euclidean space and, if not otherwise stated, all vectors 
are supposed to be column-vectors with except of the gradients of functions). 

Definition 1. Given a real-valued function j : E" —> E1 and a subset Q a E". 
Find a vector z e Q such that j(z) ^ j(z) for all z e Q. This problem is denoted as 
a general mathematical programming problem. 

The constraining set Q can posses a quite general structure. In general, the more 
concrete structure of Q is assumed, the more meaningfull and stronger results can 
be achieved. For the later used construction from [3] it is convenient to treat some 
explicitely given equality constraints separately, although some other possibilities 
also exist — see [5]. Thus we have the next modification of Definition 1. 

Definition 2. Let j : E" -» E1, r : E" -> Em be continuously differentiable in E" and 
let Q c E". The problem of finding a vector z e E" satisfying 

(2.1) z e Q , r(z) = 0 

such that j(z) ^ j(z) for all z e E" satisfying (2.1) we denote as a basic problem. 
Vector 2 is then said to be an optimal solution for the basic problem and vector z 
satisfying (2.1) is said to be a feasible solution for the basic problem. 

If our aim is to derive meaningful necessary optimality conditions for the basic 
problem we must further characterize the set Q. This will be done by the so called 
conical approximation to the set Q at the point z e Q. Some historical aspects of this 
concept were briefly discussed in Introduction. Let us denote by co F the convex hull 
of the set r and by J|. | the usual Euclidean norm in E". As a cone we shall understand 
a cone with vertex in the origin. 



Definition 3. A convex cone C(z, Q) <= E" will be called a conical approximation 
to the set Q <= E" at the point z e Q if for any collection {5zl5 ..., Sz^} of linearly 
independent vectors in C(z, Q) there exist an s > 0, possibly depending on z, 5z l5 ... 
..., 8zjv, and a continuous map £ from co{z, z + e 8z,, ..., z + e 8zN) into (2 such 
that C(z + 5z) = z + 5z + o(5z), where for function o(5z) holds lim ||o(5z)||/ 
/ | 5 z | = 0. I | f e ^ ° 

An important special case of Definition 3 we obtain if the map £ is the identity 
map, i.e. co{z, z + sSzj, ..., z + sSz^} c Q. This special case is then said to be 
a conical approximation of the first kind and is denoted by Cr{z, Q). 

Now we are able to formulate necessary optimality conditions for the basic problem. 
Proof of this fundamental theorem is based on the Brouwer fixed-point theorem and 
can be found in [1; 2; 3]. In the formulation of this theorem we denote by F the 
closure of the set E <= E" in E". 

Theorem 1. If z is an optimal solution to the basic problem and C(z, Q) is a conical 
approximation to Q at z, then there exist a scalar n :g 0 and a row-vector \j/ e Em such 
that the following conditions are satisfied: 

(1) If fx = 0, then \[/ is nonzero. 

(2) For all 5z e C(z, Q) holds the relation 

(,ffi + ^ W o . 
V dz dz J ~ 

It is clear that if we admit C(z, Q) = {0}, then the statement of Theorem 1 becomes 
trivial. Therefore we shall be primarily interested in cases with C(z, Q) + {0}. Later 
we shall study discrete optimal control problems for which the "relaxed" extension of 
Theorem 1 will play a central role. Proof of this extension can be directly obtained 
from Theorem 1. 

Theorem 2. Let Q* <= E" be any set with the property that for every z* e Q* there 
exists z e Q satisfying r{z) = r(z*) and j(z) ^ j(z*). If z is an optimal solution to 
the basic problem, if 2 e Q*, and if C(z, Q*) is a conical approximation to the set Q* 
at z, then there exist a scalar \x = 0 and a row-vector \j/ e Em such that the following 
conditions are satisfied: 

(1) If fi = 0, then t/f is nonzero. 

(2) For all 5z e C(2, Q*) holds the relation 



Condition (2) in the both theorems can be written alternatively using a concept 427 
of the dual cone. 

Definition 4. Let C <= E" be a convex cone. The closed convex cone 

DC[C\ = {z e E" | <c, z> <0,ce C} 

is denoted as a dual cone of the cone C. 

Here by <•, •> we denoted the scalar product. It is easy to see that, e.g. condition 
(2) of Theorem 1 can be equivalently written 

8f(i) , dr(i) 0 

Bz dz 

where ft e DC[C(z, O)], and similarly for Theorem 2. 

Finally let us discuss two important cases of the constraining set Q. In the both 
cases the corresponding conical approximation is of the first kind, which fact is 
useful in our later construction. First, let us study a more special case of the basic 
problem. Namely, we shall assume that the set Q is given explicitely as a system 
of inequalities, i.e. 

(2.2) Q = {zeE"\ g(z) < 0 } , 

where function g : E" —> Es is continuously differentiable and g(z) :g 0 <=> g'(z) <, 0, 
i = 1 , . . . , s. This notation will be used for vectors throughout the paper. If we want 
to find conical approximation to the set Q given by (2.2), we divide the components 
of a, i.e. functions gl, i = 1 , . . . , s, into two sets as indicated in the following defini­
tion. 

Definition 5. Let Q be given by (2.2). For any $ e Q the active index set /[fl(z)] of 
the function g at the point i is defined by 

l[g(i)-] = {i\g\i) = 0,ie{l,...,s}}. 

The complement of 7[fl(z)] in { 1 , . . . , 5} we shall denote by Jc[o(z)]-

Definition 6. Let Q be given as in (2.2). For any z e Q the internal cone to Q at z, 
denoted by IC(i, Q), is defined by 

IC(i, Q) = hz G E" I M ^ 5z < 0, i e /[a(z)] 1 u {0} . 

For this special case of Q we have the following three propositions — see [3]. 



428 Proposition 1. Let Q be given as in (2.2). Then the internal cone IC(z, Q) is a coni­
cal approximation of the first kind. Further, if IC(z, Q) is not the origin, then 

IC(z, Q) = j s z e E" | ^ ! l 5z = 0, i e l[g(2j]\ 

and 

DC[lC(z, Q)] = j j , 6 £« | y = J>. M & , «, = 0, I E Z[a(z)]J . 

Proposition 2. A sufficient condition for IC(z, Q) not to be only the origin is that 
the vectors <3g'(z)/<3z, i e / [ a ( z ) ] are linearly independent. On the other hand, if 
IC(z, Q) = {0}, then there exists a nonzero row-vector v e £ s such that 

v = o , v ^ = 0 , vg(z) = 0 . 

Proposition 3. If z is an optimal solution to the basic problem with Q given by (2.2), 
then there exist a scalar /. = 0 and row-vectors i/e e F", v e Es such that the following 
conditions are satisfied: 

(l) If n = 0, then not the both *// and v are zero. 

(2)/^ + ^ ) + v M ! ) = 0 . 
3z 5z dz 

(3) v = 0 , vfl(z) = 0 . 

The last statement in Proposition 1 is, in fact, the well-known Farkas' lemma, 
which is very often used in [3]. From the practical point of view only such necessary 
optimality conditions are meaningful, where ji # 0, i.e. without any loss of generality 
we may assume /. = — 1. Examining carefully the last proposition we obtain 

Proposition 4. If in Proposition 3 the vectors 

SrHS) , dgHz) . jr ,..., 
— - ^ , i = l , . . . , m , JLL1, jel[g(z)] 

dz dz 

are additionally linearly independent, then we may put fi = — 1. 

Second important case arises when the constraining set Q is convex. 



Definition 7. Suppose that Q is a convex subset of E". The support cone to Q at 
z e Q, denoted by SC(2, Q), is a convex cone generated by the set Q — {z}, i.e. 

SC(z, Q) = {5z e E" | Sz = A(z - £), z e Q, X ^ 0} . 

Proposition 5. The support cone SC(z, Q) to the convex set Q at the point z e Q 
is a conical approximation of the first kind. 

The proof of this proposition follows immediately from the definition of a support 
cone SC(z, Q). Let us also note that the concept of a support cone coincides with the 
concept of a radial cone to the convex set used in [3]. 

3. DISCRETE OPTIMAL CONTROL PROBLEM 

Now we shall formulate the so called discrete optimal control problem with 
prescribed number of stages which will be studied from the point of view of necessary 
optimality conditions. The standard notation of [3] will be mainly used. First, let us 
consider a general case. 

Suppose that the dynamical behaviour of our system can be fully described by 
a vector difference equation 

(3A) xk+1=fk(xk,uk), k = 0,l,...,K-l, 

where a positive integer K is given number of stages, xk e E" denotes state of the 
system at the stage k, uk e E" is control at the stage k and fk:E"xEm-> E". As 
usual, xk and uk are assumed to be column-vectors. 

Our aim is to choose a control sequence u = (u0, uu ..., uK-1) and a corresponding 
trajectory x = (x0, xt, ..., xK), determined by (3.1), which minimize the sum (cost 
functional) 

(3-2) J =- £ hk(xk, uk) , 
fe = 0 

where hk : E" x E'" —> E , k = 0, 1, ..., K — 1. This minimization is subject to the 
following system of constraints. 

(a) The control constraints are assumed to be state-dependent, namely, 

(3.3) ukeUk(xk), k = 0, 1, ...,K - 1 , 

where Uk is a multivalued mapping from E" into the set of the all nonempty subsets 
of Em, which is sometimes denoted by 3P(Em), i.e. Uk : E" -»• ̂ (£m) , k = 0, 1, ..., 
...,K - 1. 

(b) State constraints are simply given as nonempty admissible sets in E", i.e. 

(3.4) xkeAk, k = 0,l,...,K. 



430 The pair of sequence (x, u) is then denoted as an optimal process in the system (3.1) to 
(3.4) and the pair (x, u) satisfying constraints (3.1), (3.3) and (3.4) is called an ad­
missible process in the given system. The question of the existence of optimal 
processes in general discrete systems was studied in the previous paper of the author 
[13] and is, therefore, omitted here. 

Our formulation of a discrete optimal control problem is fairly general and to 
obtain meaningful necessary optimality conditions we have to impose certain assump­
tions on the above defined problem. Let us also note that, in principle, it would be 
possible to suppose some structural properties of constraining sets in (3.3) and (3.4) 
as suggested by Boltjanskij in [5], but the all discussion and notation is then more 
complicated with only a little substantial gain. Moreover, the results of a practical 
interest can be obtained without this modification in the problem statement. 

Before we proceed further let us give a more concrete formulation, the so called 
explicitely given case, of the constraints (3.3) and (3.4) supposing that the each 
constraining set can be given explicitely by a system of equalities and inequalities. 
So we assume 

(3.5) Uk(x) = {u e Em | Qk(x, u) = 0, qk(x, u) ^ 0} , k = 0, 1,..., K - 1, 

(3.6) Ak = {x e E" | Sk(x) = 0 , sk(x) ^ 0} , fc = 0, 1, ...,K. 

Here Qk : E" x Em -> E7k, qk : E" x Em -> EXk, Sk : E
n -> Eek and sk : E" -> En", i.e. 

these mappings are finite dimensional. The inequality sign for vectors has the same 
meaning as in previous section — see (2.2). Let us also remark that to our formulation 
of a discrete optimal control problem a large class of discrete optimization problems 
can be brought in an obvious way, e.g. problems with terminal cost functional, 
problems with delays, periodic problems etc. 

Assumption 1. The all functions appearing in the relations (3.1) and (3.2), and 
in the case of explicitely given constraints also in (3.5) and (3.6), are continuously 
differentiable in their domains of definition. 

This assumption is a quite natural one if we use mathematical programming 
approach. In a special case of a constant admissible control region Uk(x) = Uk c Em, 
k — 0, 1,..., K — 1, we can Assumption 1 somewhat release as far as the continuity 
of fk and hk with respect to u is concerned. This will be more clear from our later 
construction. 

The next assumption concerns the so called "directional convexity" of a discrete 
optimal control problem. This concept is due to Holtzman — see [14; 15; 16]. It is 
the author's opinion that this assumption is a natural one if the summation type of 
the cost functional (3.2) is considered. In the Halkin's paper [17], which can be 
viewed as a principal one in the field of discrete optimal control theory, the terminal 
cost functional was assumed and the convexity of a discrete optimal control problem 



required. Otherwise the obtained results were not valid. Halkin himself speaks about 431 
the directional convexity to be a generalization of his results — for details see [14 to 
17]. 

However, this "generalization" must be carefully interpreted. In fact, if we trans­
form our cost functional (3.2) to the terminal one using the additional state variable, 
we must due to [17] assume the convexity of this problem with a very special cost 
functional given by (n + l)-th component of the terminal state. Especially to this 
type of discrete optimal control problems the relaxed assumption of the directional 
convexity applies and the use of the convexity assumption would be to much restric­
tive, e.g. also simple linear discrete optimal control problems with summation 
quadratic cost functional violate the convexity assumption. On the other hand, for 
problems with a general nonlinear terminal cost functional the former convexity 
assumption is necessary. 

These ideas are also confirmed by results of Propoj summerized in his book [18]. 
Thus we can conclude that a certain convexity assumption is always necessary to 
obtain a discrete maximum principle. This situation is then very similar to the 
existence theory for continuous system, where the convexity of the so called epigraph 
is assumed, e.g. see Olech [19]. The analogical parallelism exists also between the 
maximum principle for continuous systems and the existence theory for discrete 
systems, where no convexity assumptions are needed — see [6; 13]. 

By the all above discussion we have tried to explain in a certain sense some state­
ments in the literature which overestimate the role of directional convexity. As we 
showed, the main difference lies in various problem formulations. 

Definition 8. Let e be any vector in E". A set Q cz E" is said to be e-directionally 
convex if for every vector z* in the convex hull of Q there exists a vector zeQ such 
that 

z = z* + Xe, X^O. 

Now define functions Fk : E" x Em ~> E"+1, fe = 0, 1 , . . . , K - 1, by the relation 

(3.7) Fk(X,u) = (hfUA, k = 0,l,...,K-l. 

Further consider in E"+1 sets 

(3.8) Vk(x) = Fk(x, Uk(xj) = {veE"+l\v = Fk(x, u), u e Uk(x)} , 

k = 0,1,...,K - 1 , 

and a vector e0 = (-1, 0, 0, ..., 0), e0eEn+1 . 



432 Assumption 2. For k = 0, 1, ..., K — 1 and every x e E" the sets Vk(x) are 
e0-directionally convex. 

More detailly, Assumption 2 says that for every v' = Fk(x, u'), v" = Fk(x, u") 
in Vk(x), i.e. u , u" e Uk(x), and every a, 0 2S a ^ 1, there exists a u(a) in Vt(x), i.e. 
u(a) e Uk(x), v(a) = Et(x, «(a)), such that 

(3.9) h^x' "(a)) - a , I"(X ' " ' ) + (X - a ) M* . " ' ) ' fc = o, 1, ., K - 1 . 
fk(x, u(a)) = afk(x, u) + (1 - a)A(x, u") , 

Up to now the sets Ak, k = 0 , 1 , . . . , K in (3.4) were not further specified. For the 
later construction we shall need the following property of these sets. 

Assumption 3. For k = 0,1, ..., K there exists a conical approximation of the 
first kind Ci(xfc, Ak) to the set Ak at every point xk e Ak. 

This assumption is clearly satisfied (see Section 2) if, either Ak, k = 0 , 1 , . . . , K are 
convex (the support cone is then a conical approximation of the first kind) or if the 
conical approximations of inequality constraints in (3.6) are given by internal cones. 

Finally, the last assumption arises in the connection with a state-dependent control 
region. As we know, Uk(x), k = 0, 1, ...,K — 1, are multivalued mappings on E", 
and we shall need a concept of the so called selection of a multivalued mapping. 

Definition 9. Let U : E" -+ 0>(Em) be a multivalued mapping. A function co : E" -• 
-+ Em such that a>(x) e U(x) for all x e E" is said to be a selection of the multivalued 
mapping U. 

Assumption 4. For k = 0,1, ..., K — I and every xeE", u e Em such that 
u e Uk(x) there exists a selection ct>* fi : E" -* Em such that 

(a) there exists a neighbourhood Os of the point x on which a>SB is continuously 

differentiable function; 

(b) 4>s(x) = u ; 
(c) c4ifl(x) e Uk(x) for all x e Os. 

From the evident reasons this assumption is also denoted as a "locally smooth 
selection" one and is, in fact, a discrete analogy of a "program" introduced by 
Hestenes [7, p. 305] for continuous time control systems with explicitely given ad­
missible control region of the type (3.5). It has shown that this concept is also useful 
to deal with discrete systems and, moreover, not only for the constraining sets given 
by (3.5). We also preferred the denotation as a "selection" which is more appropriate 
in a general case and coincides with a terminology used in the theory of multivalued 
mappings. Let us note that the so called "local section" assumption used by Bolt-
janskij in [5; 20] is evidently the same as a "program" assumption of Hestenes intro­
duced earlier. 



Assumption 4 gives an implicite description of feasible types of an admissible 
control region. We are, therefore, interested in which cases this assumption will be 
fulfilled. Two most important cases are given by Propositions 6 and 7. 

Proposition 6. Let Uk(x) = Uk c Em, k = 0, 1, . . . , K — 1, i.e. a constant 
region of admissible controls. Then Assumption 4 is satisfied. 

Proof . It is trivial to see that for each xe E", u 6 Uk, k — 0, 1, ...,K — 1, a func­
tion ca\ g(x) = u is the desired selection, constant in the whole E", i.e. a globally 
smooth selection. • 

Proposition 7. Let Uk(x), k = 0, 1, . . . , K — 1, be given by (3.5) and Qk and 
qk, k = 0, 1, ..., K — 1 continuously differentiable on E" x Em. Suppose that for 
k = 0, 1, ..., K — 1 and every x e E" u e Uk(x) the vectors 

— QJ(>> ")> i - -»• • •> Vk . — <Ji((x, " ) . J 6 /[flft(x, u)] 
OM Oil 

are linearly independent. Then the Assumption 4 is satisfied. 

Proof . We can prove this proposition either applying the result of Hestenes [7] 
or we can prove it directly using the implicite function theorem. Let us choose the 
first possibility which is a shorter one. Fix k e {0, 1, ..., K — 1} and define a new 
variable v e EXk. Consider the following set of equations 

Ql
k(x,u) = 0, i = l,...,yk, 

(3.10) q{(x,u) + (vJy =0, jml,..„xk. 

It is easy to see that for each k = 0 , 1 , . . . . K — X a point (x, u) e E" x Em satisfies 
the constraints (3.5), iff we can find v such that (x, u, v) satisfy equation (3.10). Denote 
by 3tk <=. E" x Em x EXk a set of the all points (x, u, v) satisfying (3.10). Then there 
exist functions — see [7, p. 206] 

ak:E" x Em x E"k - • Em , 

pk:E" x Em x EXk -> Em , 

continuously differentiable in some open set &* which contains 0lk, such that if 
(x, u, v) c M*, we have 

Qk(x, ak(x, u, vj) = 0 , j = 1 yk, 

qJ
k(x, <xk(x, u, v)) + (pk(x, u, v))2 = 0 , j = l,...,xk. 



434 Further, if (x, u, v) a mk, then 

ak(x, u, v) = u , fik(x, u, v) = v . 

Now consider (x, u) such that u e Uk(x) and define 

Vj = [-qi(x,u)Y'2, j = l,...,xk, 

i.e. (x, u, v) c 0lk. Clearly we can choose a neighbourhood Os of x in E" such that 
xe Os implies (x, u, v) e £i$*. Then it is easy to verify that the function 

ak(x) = ? a^X' "' ^ f ° r X £ °* ' 
\ any M 6 Uk(x) otherwise, 

defines a locally smooth selection with respect to (x, u), i.e. co* a(x) = ak(x), and this 
is clearly possible for the all fe = 0 , 1 , . . . , K — 1. • 

In [5] the additional assumption of continuity and compactness of admissible 
control regions Uk(x), k = 0, 1, ...,K — 1 was used. For the definition of the 
continuous multivalued mapping see e.g. [5; 21; 22]. This assumption was in [5] the 
principal one to construct a conical approximation to the discrete optimal control 
problem. In our construction described in the next section is this assumption not 
necessary. Also the mentioned compactness assumption in [5] seems not to be 
appropriate when dealing with necessary optimality conditions. However, the com­
pactness assumption plays a crutial role if existence conditions for a discrete optimal 
control problem should be obtained — see [13]. 

4. MAXIMUM PRINCIPLE FOR GENERAL CONTROL PROBLEMS 

In this section we obtain necessary optimality conditions for a general discrete 
optimal control problem (3.1) —(3.4). First, let us perform some preliminary steps, 
which will considerably simplify the final proof. In our construction we follow, to 
a great extent, the technique of [3], which we update and modify to deal with discrete 
optimal control problems with state-dependent control region. In this sense this 
section can be considered as a generalization of the corresponding parts of [3]. 

Problem transcription. The aim is to bring a discrete optimal control problem to 
the form of a mathematical programming one, as given in Section 2. For this purpose 
let us introduce the following substitutions. For k = 0 , 1 , . . . , K — 1 let vk = (ak, wk) e 
e E"+1, where ake E1, wke E". Equation (3.1) is then equivalent to 

(4.1) xk+1 = wk, k = 0,l,...,K-l 



with wkefk(xk, Uk(xk)), k = 0, 1 , , . . , K — 1. Further define z = (x0, xu ... 435 
..., xK, v0, vt,.... %_!) to be a point of [(K + l) n + K(n + l)]-dimensional space 
E. Then we can define functions / and r from Section 2 and the constraining set Q as 
follows. 

K-l K - l 

(4-2) / (z ) = V>«(K+1)+*(„+!)+! = X X , 

(4.3) r(z) = 

- X j + w0 \ 
-x2 + w. 

K-XK + WK-J 

(4.4) Q = {zeE\xkeAk,k = 0,1,...,K, vk eVk(xk), k = 0, 1, ..., K - 1} . 

For the definition of Vk(x) see (3.8). It is easy to see that the original discrete optimal 
control problem (3.1) —(3.4) is equivalent to the mathematical programming problem 
(4A) —(4.4) as far as the values of functional (3.2) and (4.2) are concerned. 

In general, we are not able to handle the set Q given by (4.4) directly, because we 
do not know how to construct a suitable conical approximation to this set. However, 
it is possible to use Theorem 2, where the set Q* is defined by the following relation. 

(4.5) Q* = {zeE\xkeAk, k = 0,1, ...,K, vkecoVk(xk), k = 0, 1 K - 1} . 

To the set Q* we shall be able to construct a conical approximation C(z, Q*) at the 
optimal point z. 

Now let us show that the sets Q and Q* satisfy the conditions of Theorem 2. Let 
z* e Q*, z* = (x0, x*. ..., xK, vt, v*, ..., » K - I ) - S i n c e t h e s e t s Vk(xt) a r e e0-direc-
tionally convex, there exist points vk = (ak, wk) e Vk(xk), k = 0,1, ..., K — 1 such that 
ak S a* Wfc = w*, k = 0, 1, ...,K — 1. Hence, for the point z = (x0, x*, ... 
..., x*;, v0, vlt..., %_ t) , which evidently lies in Q, we have 

r(z) = r(z*), f(z)%f(z*). 

Thus the set Q* given by (4.5) satisfies the hypothesis of Theorem 2 with respect to 
the set Q given by (4.4). 

Conical approximation to the set Q*. As before, we denote by z = (x0, x1 ; . . . 
..., xK, v0, 6t,..., %_x) an optimal solution of the transcribed problem (4.l)-(4.4) 
corresponding to (x, u). Clearly then z e Q*. For each k = 0, 1, ...,K — 1 choose 
any locally smooth selection d)k(x) corresponding to xk and uk, uk e Uk(xk). The 
existence of such selection is guaranteed by Assumption 4. Let Fk(x) = Fk(x, <bk(x)), 
k = 0, 1, . . . , K — 1, where Fk is given by (3.7). Since 6>k(xk) = uk, we may write 

d^8xk=(±Fk(xk,uk) + ^Fk(xk,uk)
d^)8xk, k -0,1,...,K-

ox \ox ou ox 



Now consider in E a set 

(4.6) C(z, _.*) = {8z = (8x0, 8x1; ..., 8xK, 5_>0, 5vL, ..., 8vK_L) | 

8xk € CL(xk, Ak) , k = 0, 1, . . . ,__, 

Uvk - ^ ^ 5x„) e SC(-„, co F„(x„)), fc = 0 , 1 , . . . , K - 1} , 

where CL(xk, Ak) is the assumed conical approximation of the first kind to Ak at 
x„ and SC(vk, co Vk(xk)) is a support cone to co Vk(xk) at _t. We claim that the set 
(4.6) is a conical approximation to the set Q* at _. The stated form of C(z, Q*) can 
be in a certain sense guessed, if we realize that in (4.6) only such 8vk are considered, 
which eliminate the "first order" changes of SC(vk, co Vk(xk)) due to the admissible 
5x_, k = 0,1,...,K - 1. 

It is easy to see that the set C(£, __*) is a convex cone. Now let us assume any 
finite collection 8z l5 ..., 8zN of independent vectors in C(z, Q*), i.e. 5zf = 
= (5x0i, 8x1,, ..., 5xKi, 5f0i, 5_ 1 ; , . . . , 5i;(K_1)(, i = 1, ...,N. By (4.6) we have that 

8xkieCL(xk,Ak), k = 0, 1, ...,__ , f = 1, . . . , /V, 

5 t ; . . = _ _ _ ^ _ ) S x . . + (t,.i _{ ) . ) , /c = 0 , l , . . . , K - l , f = l , . . . , i V , 
3x 

where (p,, - vk) eSC(vk, co F_(^„)). 

Since by Proposition 5 a support cone is a conical approximation of the first kind, 
and since the same is true for the cones CL(xk, Ak), k = 0, 1, ..., K, we can find an 

JV 

e > 0 such that for any scalars /_-,..., fiN satisfying fit = 0, i = 1, ...,N, and J_ /". = 

= 1, we have , = 1 

(x_ + EV> i 8x_ i )eA_, fe = 0, 1 , . . . ,__, 
i = i 

(ti„ + £ X ^ - vk)) e co V„(x_) , k = 0 , 1 , . . . , __ - 1 . 
;= I 

Denote by zl = co (z, £ + 8z-, ..., 2 + 8zN}. Then for any z e _ w e may write 

(4.7) Sz = z - z = £ X /-«(z) 5z ; , /i;(z) ^ 0 , £ M z ) = 1 • 
; = i i = i 

For any z e A the vector j-(z) = (nL(z), ..., [iN(z))r is uniquely determined by the 
expression /.(z) = YSz, where Y is a matrix, whose rows yh i = 1, ..., N satisfy 
<,>,-, £-zy> = <50-, the Kronecker delta, for i,j = 1, ..., N. 



Since (vk + e(vkt - £))eco Vk(xk) for fc = 0 ,1 , ,..,K - 1, i - 1,...,N, there 437 
exists a finite set of controls (not necessarily unique) W*, G U^x*), a = 1, . . . , p H such 
that 

Pki 

(4.8) t\ + e ( % - f ) , ) = £ ^ E f c ( x k , 0 > fc = 0 , l , . . . , K - l , i = l , . . . , N , 
et= 1 

Pki 

where X*ki S: 0 and £ A£; = 1. Thus, for any 5z = (5x0, 5xi, ..., 5x t, 5u0, 8vu ... 
0 1 = 1 

..., Stf^-i) with z + 5z = z e A, we obtain from (4.6)-(4.8) 

(4.9) 5x t = e ][>*(.?) 8xfti, fc -» 0, 1, ...,K, 
i = l 

and 

(4.10) 5,, = 8 1 ^(z) T ^ ^ 5xki + ( % - l\)~j = 

= ^ ^ 8xk + £ n{z) (f l'ki Fk(xk, u*ki) - 0k) , 
dx ; = i <x=l 

The last two expressions give the desired representation for vectors in A in the terms 

of vectors in Ak and Vk(xk). 

Define the map £ : A -* Q* as follows. Consider 5z = z - z with z e A. Then 

£( z) = (<Po(z), <Pi(z), • • • , (PK(Z), ^ O ( Z ) , <?I(Z) , • • • , < ^ K - I ( Z ) ) • 

where 

(4.11) <pk(z) = xk, k = 0,l,...,K 

and 

(4.12) ak(z) = Fk(xk) + £ /..(z) [ £ ^ F t(x4, « x f t ) ) - E*(x*)] , 
i = l C ( = l 

fc = 0 , 1 , . . . , K - 1 . 

Here ofki is a locally smooth selection corresponding xk and uki, i.e. ujj, = eoj^xj, 
fc, i, a range as indicated in (4.12). These selections exist, again, due to Assumption 4. 
Values of fit(z) are uniquely given by (4.7). By our construction, for every z e A 
the corresponding xkeAk, k = 0, 1, ..., K, which shows that <pk(z) is also in Ak. 
Further, since u"ki e Uk(xk), from (4.7) we immediately obtain that also ak(z) e 
e co Vk(xk). Thus our map £ is, indeed, from A into £2*. 



438 It remains to show that this map can be written in the form £(z + 5z) = z + 5z + 
+ o(5z) as required in Definition 3. The all locally smooth selections needed in 
(4.12) pertain to the same point xk. Hence, for each k = 0,1, ...,K — 1 there exists 
a neighbourhood o^fc of the point xk such that Fk is continuously differentiable there. 
Then, reducing e, if necessary, we see that Fk, k = 0,1, ..., K — 1, is continuously 
differentiable in A. 

From the previous considerations we know that /i(z) = Y(z — z) = Y5z for any 
z e A. Denote by Zk(z) a matrix whose i-th column is (i = 1, ..., N, k = 0, 1,..., 
...,K-l) 

Pki 

£ %t Fk(*k, (»Uxk)) - Fk(xk) . 
<z= 1 

From (4.12) we have that 

ak(z + 5z) = Fk(xk + 5xft) + Zk(z + 5z) Y5z , k = 0, 1, ..., K - 1 . 

Further, from previous discussion we may write 

H*H + §**) = Fk(xk + 5xk, <bk(xk + 5x,)) = Fk(xk) +
 d ^ - 8xk + o(8xk) = 

dx 

= Fx(xk, uk) + \~ Fk(xk, uk) + t Fk(xk, uk)] 5x, + o(5x) , 
\_dx du J 

k = 0,\,...,K- 1 

and 

Zk(z + 5z) Y5z = Zk(t) Yhz + o(5z), 

where function o(5z) is obviously continuous and satisfies ||o(5z)[|/j|5z| -> 0 as 
||5z|| -> 0. 
Thus we have obtained the expansion of (4.12) about 2, namely, 

(4.13) ak(z + Sz) = Fk(xk) + ^M 8xk + J N(z) . 
OX 1=1 

Pki 

• [ I Ki Fk(xk, a>*ki(xk)) - Fk(xk)] + o(5z) , k = 0, 1, ..., K - I , 
a = l 

where o(5z) is continuous and ||o(5z)|/||5z|| ^ 0 as |Sz| -> 0. If we compare (4.13) 
with (4.10) and also take into the account (4.11) we conclude that for any z = 2 + 
+ 5z e A, t,(z + 5z) = £ + 5z + o(5z), where o(5z) is continuous and |o(8z)||/||8z| -> 0 
as |5z| -> 0. Hence, the set C(z, Q*) given by (4.6) is, indeed, a conical approxima­
tion to the set Q* at z. 



Remark 1. If Uk, k ~ 0 , 1 , ...,K — 1 do not depend on x, then by Proposition 6 439 
d)k(x) = uk, ofki(x) = ua

kh a. = I, ...,pki, i = 1 , . . . , JV, k = 0,1, ...,K — 1, and we 
obtain the same result as in [3]. 

Remark 2. As follows from the just described construction of C(z, Q*), it is, in 
general, not necessary that the sets co Vk(xk), k — 0, 1 , . . . , K — 1, have a full dimen­
sion in E" + 1, i.e. have an interior point in En + 1. However, this fact was needed 
in the construction described in [5]. 

Necessary optimality conditions. We have shown that the all assumption of Theo­
rem 2 are satisfied with Q and Q* given by (4.4) and (4.5), respectively, a n d / a n d r 
given by (4.2) and (4.3), respectively. Finally, the set (4.6) defines a conical approxima­
tion C(z, Q*) to the set Q* at z. From Theorem 2 it follows that there exist a scalar 
f i ^ O and a row-vector % = (^i. • • •> 2-K) with Xk e E", k — 1, ..., K such that 

(1) if n — 0, then / is nonzero; 

(2) for all 5z e C(z, Q*) holds the relation 

„M!) + /_Ki)Ws„. 
dz dz J 

If we substitute for / and r from (4.2) and (4.3), respectively, into condition 
(2), we get that 

(4.14) ^ H + E Vi(-5**+ 1 + 8 0 ^ ° 
fc=0 k=0 

for all 5z e C(2, O). 

This result can be converted to a more familiar form as stated in the next theorem. 
For this purpose we introduce the Hamiltonian 

(4.15) Hk+1(x, u) = iihk(x, u) + Xk+1fk(x, u), k = 0,\,...,K-l, 

Hk+1(x) = Hk + 1(x, cbk(x)), k = 0,\,...,K-l, 

with fi and lk+1 introduced above and &>k, k = 0, 1, ..., K — 1 is again, a locally 
smooth selection corresponding to xk, uk. For the sake of the notational simplicity 
only variables x and u in (4.15) with respect to which the Hamiltonian will be later 
differentiated, are written explicitely. Let us also note that from (4.15) we formally 
have 

xk+i = ~ Hk+1(xk,uk), k = 0, 1, ...,K - 1 . 
dAk+1 



440 Now we are able to prove a general theorem which will give us a set of necessary 
optimality conditions for the discrete optimal control problem (31) —(3.4). Sometimes 
is such theorem denoted also as a discrete maximum principle. In fact, necessary 
optimality conditions for the mathematical programming problem (4.1) —(4.6) will 
be decomposed with respect to the number of stages. 

Theorem 3. Consider discrete optimal control problem (3.1)-(3.4) and suppose 
that the Assumptions 1—4 are satisfied. If (x, u) is an optimal control process, then 
there exist a scalar n = 0, adjoint (costate) row-vectors XkeE", k = 1, ...,K and 
vectors pk, k = 0 , 1 , . . . , K, 0k e DC[Cx(^ t, Ak)~\, the dual cone to the convex cone 
C^x^ Ak) in E", such that the following conditions (a) —(c) are satisfied: 

(a) If fi = 0, then at least one of the row-vectors Xk, k = 1, ..., K is nonzero. 

(b) The row-vectors Xk, k = 1,..., K satisfy the adjoint equation 

Xk = -^Hk+1(xk)-pk, k = 0,\,...,K, 
dx 

where we define X0 = 0, Hk+1 = 0. 

(c) The maximum condition 

Hk+1(xk,uk)= maxHk+1(xk,u), k = 0,1,...,K - 1 , 
ueUk(£k) 

is satisfied along the optimal process (x, u). 

Proof . Condition (a) is, in fact, the condition (2) established earlier. Now let 
5z = (0 , . . . , 0, bxk, 0, ..., 0, 5»k, 0, ..., 0) be in C(z, Q*), k e { 0 , 1 , . . . , K - 1} with 
5vk = (dFk(xk)jdx) bxk. From (4.14) we get 

L - i hk(xk, cbk(xk)) + Xk+1 ~fk(xk, &k(xk)) - ; J 8 x , ^ 0 , fe - 0,1 K - 1 , 
ex ox 

for all 8xkeC1(xk, Ak). Taking into the account (415) and Definition 4 we may 
write 

Xk = icMk+1(^- h' h e DCtCi(*" AM ' k = °*ls • • •'K' 
if we formally define X0 = 0 and Hk+1 = 0. This proves condition (b). 

Finally, suppose 5z = (0, ..., 0, Svk, 0, ..., 0), k e {0,1 K - 1}, is in C(z, Q*). 
From (4.14) 

fi5ak + Xk+l8wk ^ 0 



for all 5vk e SC(vk, co Vk(xk)), k = 0, 1, ..., K - 1. However, Vk(xk) c co Vk(xk) c 441 
<= SC(Ofc, co Vt(x*)), and, thus, we obtain that the function \iak + Xk+1wk considered 
on the set Vk(xk) attains its maximum at i)k, i.e. 

jidk + Xk+1wk = max (jj.a + Xk+1w), k = 0, 1, ..., K — 1 , 
(a,w)eVk(Ak) 

which is nothing else than the condition (c). • 

The obtained form of a discrete maximum principle is a general one, but this 
generality was paid by the less practical importance of these necessary optimality 
conditions. Therefore, it seems to the author that further generalizations in this 
direction, i.e. assuming more complicated structure of constraining sets, are interest­
ing only from the theoretical point of view. Such attempts were made in [5] using 
rather complicated constructions. From these reasons we shall study an explicitely 
given discrete optimal control problem in the next section, for which fairly deep 
results can be obtained. 

Sometimes it is also important to know if the scalar multiplier n =f= 0 in Theorem 3. 
Then we may put /» = —1 without any loss of generality. Only such problems are, 
in fact, interesting from an engineering or economic point of view. In classical calculus 
of variations such problems (with n = — 1) are denoted as normal ones, see [7] . 
In our case we easily obtain the next result. 

Corollary 1. Suppose that the state constraints (3.4) except possibly of a given 
initial point x0, are absent. Then the discrete optimal control problem (3.1) — (3.3) is 
normal, i.e. \i = — 1. 

Proof . If there are no state constraints, i.e. Ak = E", k = 0 , 1 , . . . , K, then Cx(xk, 
£") = E" and DC[E"~\ = 0. Hence, ft = 0, k = 0, 1, ..., K. Assuming now n = 0, 
we obtain from condition (b) of Theorem 3 that Xk = 0, k = 1, ...,K, which is a con­
tradiction with condition (a) of the same theorem. Now if the initial point x0 is given, 
the same reasoning shows that ft = 0, k = 1 , . . . , K and ft = X0 = 0 by definition, 
i.e. ft e DC tC i^o , *0)] = E". • 

Remark 3. Suppose now Uk(x) = Uk, k — 0 ,1 K — 1 constant. In this special 
case we see that it is sufficient to assume hk and fk to be continuously differentiable 
in x for every u eUk, k = 0,1, ..., K — 1, — cf. Assumption 1. 

5. MAXIMUM PRINCIPLE FOR EXPLIC1TE CONTROL PROBLEMS 

In this section we shall consider the explicitely given discrete optimal control 
problem from Section 3, i.e. we shall assume that the constraints are given by (3.5) 
and (3.6). This concretization will result in more detailed necessary optimality 



conditions, which are of a practical interest. As mentioned in Section 2, the equality 
constraints are treated separately in this approach. In the explicite case it means that 

the state equality constraints Sk(x) — 0, k — 0,1 K — 1 in (3.6) are added to 
the equations (4.3). This leads to the following expression for r(z). 

(5.1) r(z) = 

-xt + w0 

~x2 + w. 

~XK + W _ ! 

SoЫ 
Si(*i) 

Sк(xк) 

Denote A'k = {x e E" | sk(x) ^ 0}, k = 0, 1, ..., K. From Proposition 1 we know 
that as far as function sk is continuously differentiable in E", the corresponding 
internal cone IC(xk, A'k) will be a conical approximation of the first kind to the set 
A'k at xk,k = 0,l,..., K. Thus Assumption 3 is a priori satisfied. 

Through the construction presented in the last section the Assumption 4 was 
necessary. Taking into the account Proposition 7 we see that this assumption will be 
also satisfied, provided that the hypothesis of Proposition 7 is fulfilled. 

If we now look through the construction of C(z, Q*) in Section 4 we can conclude 
the following. There exist a scalar p. 5= 0 and a row-vector % = (A_,.... XK, \j)0, I/'J, . . . 
..., \j/K) with kk e E", k = 1, ..., K, \]/k e Ee", k = 0,1, ...,K such that 

(1) if n — 0, then % is nonzero; 

(2) the relation 

(5.2) ćj(-) M_)Wo 
дz J 

holds for all 5z e C(_, Q*). Here C(z, Q*) is again given by (4.6) with the only change 
that Ct(xk, Ak) = IC(xk, A'k), k = 0, 1,..., K, as discussed above. Substituting f o r / 
and r from (4.2) and (5.1), respectively, into (5.2) we get 

(5.3) 
к ~ i к-\ 

мZSafc + £4+i(- •8xt+1 + 8wt) + ; E ^ - ^ 8 ; í „ _ _ 0 
fc = 0 Í / X 

for all 8z e C(z, Q*). Now we can state an analogy of Theorem 3 to the explicitly 
given discrete optimal control problem. Again, the Hamiltonian notation (4.15) will 
be used. 



Theorem 4. Consider the explicite discrete optimal control problem (3.1), (3.2), 443 
(3.5) and (3.6), and suppose that the Assumptions 1 and 2 are satisfied. Further 
assume that for k = 0, 1,..., K — 1 and every xeE", u e Uk(x) the vectors 

(5.4) — Q{(x, u), i=\,...,yk, — q{(x, u), j e I[qk(x, «)] , 
ou cu 

where l\_qk(x, «)] is the active index set of the inequality constraints in (3.6), are 
linearly independent. 

If (x, u) is an optimal process, then there exist a scalar /.i = 0, adjoint row-vectors 
XkeE", k = \,...,K, row-vector multipliers \l/keEak, vkeE*k, k = 0, 1, ...,K and 
matrices Wk, k = 0,1, ...,K — 1 of dimension (m x n) such that the following 
conditions (a) —(f) are satisfied: 

(a) If fi = 0, then at least one of the row-vectors Xk, k = 1,...,K, ij/k, vk, k = 
= 0,l,...,K is nonzero. 

(b) The row-vectors Xk,k = \, ...,K satisfy the adjoint equation 

h *> -f Hk + 1(xk, uk) + (~ Hk+1(xk, uk)) Wk + 
dx \du ) 

+ ^JM + Vk
djM , k = 0,l,...,K. 

dx dx 

where we define X0 = 0 and HK+1 = 0. 
(c) The maximum condition 

Hk+1(xk, uk) = max Hk+1(xk,u), k = 0, 1, ..., K — 1 
ueVk(Xk) 

is satisfied along the optimal process (x, u). 

(d) vk S 0 , v ^ ^ ) = 0 , fe = 0, 1,..., K . 

(e) -f Qft^„ ",) + f ̂  e,(^„ fl4)W4 = 0 , fe - 0 ,1 , . . . , K - 1 . 
dx \du ) 

(f) ± ql(xk, uk) + ( A ^ ( ^ fi,)) ^4 = 0 , ; e /[g,(x„ «,)] , 

fe = 0, 1.....X - 1. 

Proof. Evidently the all assumptions of Theorem 3 are satisfied. Condition (b) 
of Theorem 3 yields 

Xk = ~ Hk + 1(xk, iik) + (~ Hk+1(xk, uk)) Wk-Pk, k = 0,l,...,K, 
ox \ou ) 



444 where X0 = 0, H^+1 = 0, fike DC[IC(xk, A'k)~] and we denoted by Wk a matrix 
with elements wk

J = dd>k(xk)jdx}, i = 1,..., m, j = 1, ..., n. The existence of 6>k, 
k = 0, 1, ...,K — 1 follows from Proposition 7. Suppose that 7C(^, A*), k = 
= 0, 1, ..., K is not only the origin. From Proposition 1 we obtain that /?t = 
= — vk(dsk(xk)jdx) with vt ^ 0, vl

k = 0, ie/c[sfc(jct)]. Then also a stronger version 
of condition (a) holds, namely, we can delete vk, k = 0, 1,...,K in the statement 
of condition (a), which is thus a direct analogy of the corresponding condition in 
Theorem 3. If we admit also the case IC(xk, A'k) = {0}, we see from Propositions 2 
that the all conditions of Theorem 4 are trivially fulfilled. This proves conditions (a), 
(b) and (d). 

By definition, <bk(x) e Uk(x) for x e E", k = 0,1,..., K - 1. So we can write that 
Qk(x, cbk(xj) = 0, fe = 0,1, ...,K — 1 for xeE". Differentiating this expression 
with respect to x at the point xk gives condition (e). Similarly, as <2>k(x) e Uk(x) we 
have that qk(x, ti>k(x)) = 0 for x e E", k = 0 ,1 , . . . , K - 1. Moreover, 

flK**, <*>*(**)) = A > "») = 0, j e /[cjt(*t, w,)] , fc = 0, 1,..., K - 1 , 

which shows that functions q{(x, <£>k(x)) attain maximum at the point xk. Hence, 
condition (f) is then only a necessary condition for this fact. Q 

Similar conditions were obtained also by Boltjanskij in [5], but he assumed that 
the discrete optimal control problem in question is convex, which is more restrictive. 
Further, conditions stated in Theorem 4 cannot be easily applied, because a number 
of introduced unknown coefficients, in general, does not coincide with a number 
of equations, which can be used to determine them — see conditions (e) and (f) 
of Theorem 4. Therefore, we are interested, whether it would be possible to bring 
these two conditions to some more convenient form. 

For this purpose let us state the maximum condition (c) in a more detailed way. 
Namely, condition (c) together with (3.6) and (5.4) give — see Proposition 3. 

(5.5) - f Hk+1(xk, iik) + Ck ~ Qk(xk, uk) + Zk~ qk(xk, uk) = 0 , 
ou ou ou 

where row-vectors t,k e Eyk, £,k e E"", and 

(5.6) < ^ 0 , Zkqk(xk,uk) = 0, fe = 0, 1 , . . . , K - 1 . 

From (5.5) and conditions (e) and (f) of Theorem 4 we obtain that 

(~ Hk+1(xk, uk)\ Wk = U~ &(**, uk) + & 4- **(*-• **) ' fc = 0, 1, • •., K - 1 . 
\au j ox ox 

(5.7) 



Using (5.5) —(5.7), the following alternative formulation of Theorem 4 can be 445 
stated, where it is also guaranteed that IC(xk, A'k) 4= {0}, k = 0, 1,...,K, and that 
this theorem cannot be trivially satisfied due to state constaints (3.6). 

Theorem 5. Consider again the explicitely given discrete optimal control problem 
as in Theorem 4 and let the all assumptions of Theorem 4 be satisfied. Additionally, 
for k = 0, 1,..., K let each of the following two systems of vectors 

f S'k(xk) , i = l,...,Qk; f sJ

k(xk), j e I[sk(xk)] 
ox ox 

be linearly independent. If (xk, iik) is an optimal process, then there exist a scalar 
li = 0, adjoint row-vectors Xk e E", k = 1,..., K, and row-vector multipliers \j/ke 
eEek, vkeE*k, k = 0,\,...,K, ^ e F 1 , ^keEXk, k = 0, 1, .... K - 1, such that 
the following conditions (a) —(e) are satisfied: 

(a) If n = 0, then at least one the row-vectors Xk,k = 1, ..., K, \j/k, k = 0, 1, ..., K, 
is nonzero. 

(b) The row-vectors Xk, k = 1, ..., K, satisfy the adjoint equation 

K = — Hk+l(xk, uk) + U — Q&t, uk) + & — qk(Xk, fh) + 

+ *t j~Sk(xk) + vk f sk(xk), k - 0,1 K - 1, 
ox ox 

where X0 = 0 and 

Ъ-Фк-Sкíxj + Vк-Фк). 

(c) f Hk+1(xk, uk) + Hk f Qk(xk, uk) + & f qk(xk, uk) = 0 , 
du ou ou 

k = 0, \,...,K - 1 . 

(d)v t = 0, vks,(^) = 0, /c = 0,l,.. .,K. 

( e ) ^ = 0, ^ ( * f c , t . * ) = 0, k = 0,l,...,K-l. 

This form of a discrete maximum principle enables us to compute an optimal 
control process using the conditions (a) — (e). From the same reasons like in Section 4 
we cannot simply put fi = —1, as it is desirable from practical and computational 
aspects. However, if the state constraints (3.5) are not present, the Corollary 1 applies 



also to this explicite case and we can then assume fi = — 1, i.e. the normality of 
a discrete optimal control problem. 

Such version of the discrete maximum principle without state constraints was 
also used by the author to derive necessary optimality conditions for various solutions 
of the so called multistage games — see [23; 24]. 

6. EXAMPLE 

The practical importance of Theorem 5, together with Corollary 1, is demonstrated 
by the following well-known example of Bellman [25] which can be converted to 
a discrete optimal control problem with state-dependent control region. 

Find numbers <xu ...,<xK such that 

(1) £ ak = a , a > 0 ; 
k = l 

(2) <xk = 0 , k = 1,...,K; 

K 

(3) n«* = m a x -
fc=i 

It is not very hard to see that this maximization problem is equivalent to the follow­
ing discrete optimal control problem. Minimize the cost functional 

T - - Y ( 2 ) 11 

J — xK^luK_1 

subject to 

(a) 4\\ = x[1} + uk, k = 0,l,...,K-l, 
Y (2) _ Y ( 2 ) , . 
xk+l — xk uk> 

(b)x<1> = o , 4 2 > = i , 
(c) 0 = uk = a - xk

i} o uk(uk + xiiy - o) = 0 , fc = 0,1,.. ' . , K - 1. 

In this very simple case the all assumption of Theorem 5 are evidently satisfied, 
provided that x^1' =t= a, k = 0,1, ...,K — 1. From Corollary 1 we have ft = — 1. 
Then the Hamiltonian (4.15) is written as 

Hk+i = 4Vi(41) + %) + tiSixi^k , k = 0, 1,..., K - 2 , 

HK = X ^ K K - I + # W . + flx-i) + ^2%2)-A-i • 



Conditions (b), (c) and (f) of Theorem 5 yield 

(b') A'1 '= 4Vi + 4 4 , k = l,...,K-l, 

A J P - O , 

A[2) = 42
+

)i%, fc=l,...,K-2, 

ASc22i=(A(2> + l ) _ x _ i , 

A<?> = 0, 

(C) 4Vi + 4+)i*i2) + 4(24 + *i l ) - «) - o, fc - 0, 1,..., K - 2 , 

A<_> + (W + 1) *<. >. + .K_1(2t5,_1 + # > . - a) = 0, 

(f) 4 = 0, 4 4 ( 4 + *<J) - a) = 0 , fc = 0, 1, ...,K - 1 . 

It is clear that J < 0 for all admissible processes (x, «). The case 4 = 0 for some, 
at least one, fc = 0, 1,...,K — 1 is not interesting, because then necessarily J = 0 
and such processes cannot be optimal (minimizing) ones. Thus we, without any loss 
of generality, further assume uk > 0, fc = 0, 1, ..., K — 1. If now uko = a — x[0> 
for certain fc0 = 0,1 , . . . , K — 2, i.e. x̂ o>+, = a, we see that 4 = 0 , fc > fe0 and the 
above discussion applies. So we also suppose uk < a — <lk

l), fc = 0, 1, ...,K — 2, 
and this means that constraints (c) are not active for fc = 0 ,1 , . . . , K — 2, i.e. £t = 0, 
fc = 0, l,...,K - 2. 

Let also fx_, = 0. Then (b') and (c') determine 422i = 0. Then J = 0, and this 
is a contradiction with 4 > 0, fc = 0 ,1 , . . . ,K — 1. Hence, f^.j < 0 and constraint 
(c) is active at the stage K — 1, which, in turn, means that 

(6.1) *<£_ - - - < _ - _ , i.e. # > - . _ . 

From (b') we obtain 

4 ° - 4 ? - _ = «*- i -_-1 . fc-l....,---l. A ^ - O , 

4 3 ' - " * n _ , , fc = 1, . . . ,K- 1, A(
K

2>-0. 
i = fc 

From (c') it follows that 

(6.2) „*-_-„-_ + *_-_ W - i - 0 . fc-0,1, . . . , „ - 2 , 
i = fc+l 

(6.3) „£-_ + . K - A - i = 0. 

Multiplying (6.2) by 4 > 0, fc = 0, 1, ...,iv - 2, (6.3) by 4__x > 0 and realizing 
system equations (a), we have that 

._- i4_-i4 = ^K-I ("„-I ) 2 , 



448 and because of f x - A - i + 0, we get 

(6.4) wfc = w K - i , k = 0, 1, ...,K - 2. 

If we combine (6.1) and (6.4), we finally obtain 

4 = 0 

which implies 

(6.5) wfc = — , k = 0, 1, ...,K - 1 . 

Thus, using derived necessary optimality conditions we have found a unique 
„candidate" of optimality, which is given by (6.5). From the author's paper [13] 
we know that an optimal solution in this example exists. This proves that the process 
(x, u) resulting from (6.5) is necessarily the unique optimal one. 

The just solved illustrative example was chosen for its computational simplicity. 
However, let us at least recall some areas, where discrete optimal control problems 
with state-dependent control region can arise. Primarily such problems are met 
when optimizing the flight of airplanes or missiles, because various dynamical 
constraints depend on the position, velocity, etc. of the system, i.e. on the state 
variables — e.g. see the book of Leitmann [26]. 

More transparent application of the developed theory is the so called multiproduct 
inventory problem, see Drew [27]. In this case the limits on total production or total 
inventory can be directly expressed by (3.5). For other possible approach to discrete 
optimal control problems with various constraints the reader should consult papers 
of Ritch [28; 29], where also some computational aspects are given and which are 
illustrated by an interesting example from the sugar industry [29]. 

7. CONCLUSIONS 

Necessary optimality conditions a discrete maximum principle for general dis­
crete optimal control problems with state-dependent control region were obtained 
using mathematical programming approach. In fact, the construction presented 
in [3] was generalized to include also problems with state-dependent control region. 
This generalization was possible due to the concept of a locally smooth selection. 

Similar results were recently obtained also by Boltjanskij in [5]. However, the 
approach described here is a simpler one and only weaker assumptions than those 
in [5] were imposed on a discrete optimal control problem. This primarily concerns 
the convexity of these problems, and the continuity and the full dimensionality of an 
admissible control region. 



Moreover, in the so called explicite case we were able to bring general necessary 
optimality conditions to a form attractive from computational point of view. This 
fact was illustrated by a simple example with state-dependent control region, which 
was solved in the detail. Also an application of sufficient existence conditions was 
discussed in this connection. 

(Received April 29, 1975.) 
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