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KYBERNETIKA — VOLUME & (1972), NUMBER 5

Contribution to the Study
of Anthropomorphic Systems

MIOMIR VUKOBRATOVIC

‘This contribution treats definitions, dynamic aspects and stability concepts of anthropomorphic
systems. In addition to general conclusions about the new method of two-legged systems model-
ling, there are given some characteristic schemes of perturbed steady gait regime stabilization.

METHOD OF ARTIFICIAL SYNERGY SYNTHESIS

The basic problem of the artificial locomotion system synthesis consists in the
elaboration of corresponding synergies, enabling to reduce the number of control
coordinates. This problem reduces to the elaboration of control algorithms, which
have to ensure relative movement of the whole locomotion system or of its parts,
according to some prescribed law.

It is known that the legged locomotion systems represent complex space systems
with a great number of degrees of freedom. The attempt to synthetize a locomotion
mechanism, reproducing with great similazity the human locomotion system, would
lead to extremely complex systems, particularly from the control standpoint.

It is sufficient to remind of the fact that the upper extremities of man contain 52
muscle pairs, the lower extremities 62 pairs, back — 112 pairs, chest part — 52 pairs,
pelvic part — 8 pairs. The neck contains 16 pairs and the head itself 25 pairs of
muscles. The whole muscular system is able to control human motions with amazing
complexity, enabling him to perform an almost arbitrary skeletal activity.

It is understandable that at the present level of technical progress it is not possible
to control an artificial system containing about 400 double-acting actuators (800
muscles).

Evidently, there arises the problem how to reduce the total number of degrees of
freedom at the dynamic level of the locomotion — manipulation system. In connection
with this, there exist different attempts to reduce the dimensionality during the syn-
thesis of the system for artificial skeletal activity as compared with the natural system.



One of these [1] reduces the skeletal activity to a very limited number of movements,
using at this electrical stimulation of the natural locomotion system. Another ap-
proach studies the legged locomotion dynamics on a rigid body model with six degrees
of freedom [2, 3], moving under the effect of alternate force impulses. These impulses
arise as the result of alternate leg contact with the supporting surface. The limitation
of this approach evidently lies in the fact, that leg masses have not been taken into
account, although, as it is known, they represent roughly half of the total system mass.

In the proposed method the synergy of some type of gait is been realized as well
as the synthesis of the compensating system, which is necessary to maintain the
prescribed synergy [4, S]A The synergy supposes the synchronization of the system
parts relative movement and it is equivalent to introducing suppleraentary connections
(conslraints) in the locomotion system mechanism. Due to these connections the
total number of degrees of freedom diminishes considerably, and with a prescribed
algorithm the system does not possess “freedom” in the classical sense; it moves
according to a preselected law.

The synergy in question is being realized in different ways for the lower extremities
and the upper part of the body. For the lower extremities a periodic algorithm is
prescribed imitating human gait. The upper body algorithm can be acquired from the
gait repeatability conditions [4].

With the synthesis of artificial synergy, important role is played by the dynamic
links. So we will nominate some differential relations to be satisfied during the gait.
Particularly, they can be in the form of some relations, posed upon reactions on the
support surfaces of the feet.

ZMP

—1 Fig. 1. Zero-moment point (ZMP).

In Fig. I an example of force distribution across the foot is given in the form of
a diagram. As the charge has the same sign all over the surface, it can be reduced
to the resultant force R, the point of attack of which will be in the boundaries of the
foot. Let the point on the surface of the foot. where the resultant R passes, be denoted
as the zero-moment point, or ZMP in short.

In the case of the double support phase, ZMP can find itself outside the support
surface of the feet (dashed zone in Fig. 2). In the boundaries of this zone ZMP can
move according to various laws, which define the gait to a considerable extent. The

405




406

basic idea in the synthesis of synergy lies in prescribing the ZMP movement laws
in advance. For instance, in the single support phase, ZMP is in the center of the sup-
port surface of the foot, while in the double support phase translates itself gradually
or stepwise into the other foot surface center. If we denote with A the point ZMP,
according to D’Alambert’s principle the sum of the external and inertial forces’
moments relative to that point should be zero. Analogously, the law of the friction
forces change can be prescribed, for instance, demanding that the friction forces
moment be zero at point, 4. This renders one more equation of dynamic connec-
tions.

Fig. 2. Admissible region of ZMP position.

For the model considered we shall sct motion laws of the model “legs” (that is,
all coordinates $,(f), see Fig. 3) and from equations of dynamic connections with
respect to the coordinates of the body upper portion (coordinates ¥, 0).* Then, dif-
ferential equations of dynamic connections (more details sec eas. (12), (13)) can be
written in the following symbolic form:

(1 QY+ Q, =0,
Y = (v, 0, 4, 6)

where Y — vecto1 of phase coordinates.

Matrices @ and Q, depend on vector Y and on set synergy f1), as well:

0 =QWhEH,
0 =055

* Dynamic connections represent the equations of moment written for the system connected
to the zero moment point. Under the realistic supposition that a sufficient friction moment exists
at the contact point between the foot and support, the dynamic connections are reduced to two
equations of moment round the axes of coordinates, x and y. Thus the conditions of dynamic
equilibrium of the locomotion system are obtained, that provide a stable gait in the saggittal
and frontal plane

My=0,
0.
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Let Tbe the step period. Let us denote with 407
Y(0) =Y° and Y(T)=Y"

the phase coordinates at the beginning and end of step.
Now the repeatability conditions can be presented by the following functional
relation:

() YT = y(¥%).

Only those solutions of system (2), satisfying conditions (3) are of interest for consi-
deration. The phase coordinate vector at the beginning of step for that case let us
denote with Y°.

Keeping in mind that the boundary conditions are given in the form of the func-
tional relation (2) it is necessary to form an algorithm for automatic solution obtaining
of the coupled system (1, 2), for the case that these solutions are existing.

For this reason let us introduce the performance index of fulfilling conditions (2).

Let ¥(1) be some solution of (1) not satisfying relation (2). As before, let us derote

F0)=7°, ¥(1)=7".
As the performance index, let us introduce the relation:
®) J =7 = u¥O)-
As Y7 and ¥° are correlated by differential equation (2), J is a function of ¥° only
J = J(7°)
It is evident that the rcpeétabi]ity conditions are now equivalent to:

(4) J(Y°) = nfliﬂ JE¥=0.

In order to solve (4), the gradient method can be applied [7]:

(5) =7 —-cvi
where VJ = grad J(Y°), i — number of iteration steps.

In the cases when the phase coordinate vector ¥° is sufficiently near to the nominal
value Y°, the following local method can be introduced [4, 5].

Let the deviation AY? = Y% — ¥° be sufficiently small. This deviation causes
a small deviation AY”T = ¥7 — ¥7 at the end of the step. Now the expression (2)
can be written as:

) Y7 4+ AYT = 47 + AYY).
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The correlation between the deviation at the beginning and end of step can be ex-
pressed as:
oY’

7 AYT = £ ay°
™ e

where the members of the matrix [9Y7/6Y°| are caleulated in the point Y° = ¥°.

By solving systems (6) and (7) the sought value AY® can be found

(®) AT = @(79).

If J is changing strictly monotonously, the method explained can be used also in the
cases, in which the value of the phase coordinate Y° differs considerably from the
nominal value ¥°. The obtaining of the repeatability conditions in such a case is
effected more efficiently by the gradient method (5) The monotonous change of J
can be ascertained by choosing ¢ sufficiently small in the following relation:

) Voo = +e0(f)).

In order to accelerate the process of obtaining the repeatability conditions, it is
advisable to use combined criteria (6) and (10). The transfer from criterion (5) to (9)
should be done when J becomes smaller than J*, where J* is a predetermined value
of the performance index (3).

In compliance with the physical nature of gait, conditions (2) can be written in the
form:

(10) YO = yy?

where the lower index denotes the number of the phase coordinate. In the general
case matrix n has the form:

1 00..0
(11) n=10-10..0
0 .. |

SYNERGY GENERATION

In order to be able to investigate gait stability we are going to form the mathematical
model, describing the locomotion structure dynamics, represented in Fig. 3.

The upper part of the lomocotion structure is regarded in the form of an inverted
pendulum. The lower extremities have feet and each extremity has three degrees of
freedom; the segments are interconnected by simple joints. For leg movement a “real”
gait algorithm is adopted. In Fig. 4 some of the diagrams are given, representing
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Fig. 3. Mechanical biped model.
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Fig. 4. Typical synthetic gait algorithms.
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gait upon level ground, upstairs and downstairs, which have been synthesized based
upon data, acquired from biometrical investigations. The chosen gait types are
characterized by a very “smooth” behaviour of the locomotion system pelvic part.
This supposition is of purely practical nature, because the applicability of these
results to exoskeleton type biped robots is kept in mind.

According to the chosen gait algorithm, the supporting foot transfers from heel
to toes as illustrated in Fig. 5. In this case, three phases can be separated, correspond-
ing to the positions in Fig. 5. Let us designate with t,, the moment of support passing
from heel to the whole foot and with t,. the corresponding moment of support
passing from whole foot to the toes (0 < #,, < t,, < T/2) where T — full step period.

t=0+tqp T tetgprthe tethe - 1.

ZT_\

|

Fig. 5. Supporting point changes.

During the half-period, the zero-moment point “jumps’ three times to a new
position: at the end of the first phase from the heel to the “center” of the foot, and
at the end of the second phase from that position to the toes (Fig. 5). At the end of the
half-period, the zero-moment point passes over under the other foot, which is in
contact with the ground. It should be stressed out, that such a transfer of the point
of support has made the gait smoother to a certain extent. However, an even more
natural gait* can be realized by prescribing the zero-moment point trajectory, coi~
responding to the double-support phase, which is not going to be treated here.

Under the supposition that we dispose with the kinematic algorithm (chosen gait
type) and the zero-moment point trajectory we can proceed to obtain the upper
part dynamic algorithm. Let us write the equations of dynamic connections using
D’Alambert’s principle. These equations are formed according to the general form
(1). For the chosen gait algorithm (Fig. 4) angular displacements of the structure
pelvic part are practically not existing. If we additionally suppose that the friction
moment on the supporting foot is sufficiently great to ensure planar motion of the
lower extremities, we can neglect the third differential equation of system (1), des-
cribing the system dynamic equilibrium round the z-axis. Here x,, y;, z; — coordinates

* In this case, the gait comprises the movement of the lower extremities themselves (kinematic
algorithm), as well as the movement of the locomotion system compensation part (dynamic
algorithm).



of mass center of the i-th segment. Other denotations are evident from Fig.

1
(12) M, = 0[iilrr1i(Viz,- - Rx)] + i&[iilm,«(w,-z,- = Sx) + Jy + Jys +
11 11

+ Jy + Iy + Iy +i; myPz; — Tx;) — gi;m,-x,» +

+ Jy.BZL + ")’;EIL + ‘Iygﬁlﬂ + Jy,oﬁm + Jy“BJR = 0,
13y M. = 0[i§lmi(RiJi —Az) + e F T+ T+ T ]+

1 11 11

+ ipizlmlsiyi + ;‘m;(T;J’i — Ciz;) + giglm.y.« =0,
where

Vi, = —asin@sin f, ,

V, =2V, — bsinfsin f,, ,

Vy =V, — bsinBsin f,

Vo =Vy, Vs=Vs, Vo=V, V,=Vs, Va=V,,

Vo =V; — bsinOsin fq,

Vie = Vi — (2bsin Byg + asin Boy)sin 0,

Viy = V3 — (2bsin Biq + 2asin Byp + hsin fy)sin 65

W, =0, W,=0, W, =0,

W, =ccos§y, Ws=(R-e)cosy,

We = (R — 2e) cos § — scos xsin §,

Wo=Ws, Wg=Ws, Weg=0, W,=0, W,=0;
P, = — a? cos 0 sin . — alf,, sin 0 cos B, + afi,. cos 0 cos By —

— af,. 0sin 0 cos B, — aff,, cos Osin B, ,

P, = 2P, — b§?cos Osin B, — b, sin@cos B, + bf, cosBcos By, —
— bf, fsin 0 cos i, — bpi, cos Osin By,

P, =P, — 0*bcos Osin B, — 0B,y bsinfcos B, + b, cos8cos By —
— b, 0sin 0 cos B, — bpi cosOsin By,

P, =P, — c?siny, P5=P3—(R—e]¢zsin$,
P :Ps—(R—2e)¢zsin$—s¢zcoszcos$,

P, =P,
Py = P, — b#? cos Osin B,p — 2b0f, x sin 0 cos Bx + bf g cos O cos fix —

Pg = Pg,

— bfigcos Osin g,

Py = Py + (2bf g cos ayq — zlbﬁfk sin Byg + afag cos fog — afirsin Bag) cos 0

~ 20(2bf g cos Big + afiyg cOS Pop)sin 6 —
— 0%(2b sin Byg + asin f,g) cos 9,
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Py =Py + (2bﬂu{c°5 Bir — 2bB§R sin 1 + 2af 55 c0s fog — 2aﬁ§k sin fyp +

T,

+ hfisr cos Byg — hP3g sin Bag) cos 0 — 20(2bf 5 cos Brg + 2aP;g cOS fag
+ hBsg cos Bag)sin O — 6%(2b sin B, + 2asin By + hsin Byz) cos 0 ;

Ay = acos figcos 0,

A, 24, + bcos By cos @,

A; = A, + bcos By cosf,

Ay = A3, As =43, A¢=A;, A;=A;, Ag=4;,

Ay = A3 — bcos figcos B,

Ao = A3 — (2bcos By + acos fyg)cos O,

Ay = Ay — (2acos Bog + 2bcos By + hcos Bag)cos 6 ;

= — afl,,sin By sin 0 — aPly cos By sin 0 — af, 0sin B, cos O —
— abf,, sin B,y cos 0 — ab” cos By, sin 0,
= 2C, — bf,, sin B, sin 8 — bP?, cos B,, sin @ — 2bf,;fsin B, cos§ —
~ b0 cos B, sin @,
= C, — bf,_sin B, sin @ — bfi, cos B, sin & — 2bf, 0 sin B, cos 6 —
— b?cos B, sin @,
=C;, Cs=0C3, Ce=0C3, C7=0C3, Cg=0Cs,
= C; + bf g sin Bigsin 0 4+ bz cos B,gsin @ + 2bf,, Osin B, cos & +
+ b0? cos Bygsin @,
= C; + (2bB,g sin B, + 2bP3 cos By + aPag sin fog +
+ afi3g cos Byg) sin 0 + 20(2bB g sin By + aByg sin fog) cos O +
+ 0%(2b cos By + acos fg)sin @,
= C; + (2af g sin Byg + 2aP3g cos Bag + 2bf g sin By +
+ 2bf3%; cos Bir + hBsgsin Bip + hfZp cos Bag)sin 8 +
+ 20(2aB,g sin Bog + 2bP g sin Big + hBsg sin fag) cos B +
+ 6%(2a cos By + 2b cos By + hcos Byg)sin 6 ;
R, = —acosf, sinf,
R, = —(2acos By + bcos B )sinb,
Ry =R, — bcos f sinf,
Ry, =R;, Rs=R;, Rg=R;, R;,=R;, Ryg=Rs,
Ry =Ry + bcosfgsinf, Ry = Ry + (bcos B g + acos frg)sinf,
R,y = Ry + acos f,gsin 0 ;
S, =S,=S,=0, S, = —csini,
Ss=~(R—e)sinfy, Sg= —[(R - 2e)sinyy + scosacosy],
S;=8s, Sg=235s, So=S10=25,,=0;
— a[f,0 sin By cos 0 + B3y cos Py cos @ — 2,0 sin By sin 6 +

+ bB? cos B, cos 0],



T, = — (2afl,, sin By + 2af3; cos B, + bB, sin By + bPiLcos By;) cos 0 +
+ 20(2aP,y sin By + bPyy sin Byp)sin 0 — 6%(2a cos By + b cos By, )cos B,
Ty = T, — bf,ysin B, cos § — bf2, cos B, cos O + 2bBB, sin By, sin O —
— 62 cos By, cos 6,
T, =T~ rcosy,
T, =T, — PR - )cos .
Te =Ty — P(R — 2¢)cos § — scosasin /],
T, =Ts, Tea=Ts
Ty = Ty + bfiigsin B cos 6 + bfig cos Bg cos 0 — 2b0f g sin B sin 0 +
+ bf? cos Bgcos 8,
Tyo = To — 20(bBy sin Bix + aPg sin frg)sin 8 +
+ (bByx sin Byg + bfix cos Big — aPyg sin Bag — afir cos Bag)cos 6 +
+ 6%(b cos By + acos Byp) cos 6,

Ty, = Tyo + afyx sin Byr cos 0 + aPiy cos Brp cos B — 2a0f,g sin Bop sin 0 +
+ af? cos By cos 0 .

These equations have been written for a support point when ZMP corresponds to the
contact with “whole” foot. As ZMP displaces itself according to the already men-
tioned law, Fig. 5, the translation of the coordinate system should be taken care of.

b

Fig. 6. Schematic presenta-
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It has to be noted, as well, that the egs. (12), (13) for the model in Fig. 3 are pre-
sented for the purpose of illustrating the method of set synergy. At the same time,
such a model can also satisfy completely the practical objectives in locomotion
studying. In order to obtain the mathematical model systematically, let us suppose
that cquations (12) and (13) describe the first supporting phase (heel strike). So when
passing to the sccond phase, all x-coordinates should be reduced by the value I,
(Fig. 6). When passing to the third phase the same coordinates should be once more
reduced, but this time by the value I,. Finally, when the support passes to the other
foor, the x-coordinates should be reduced by the value d and the y-coordinates change
their value abruptly by d, (Fig. 6). The segment abc on the graph Fig. 6 corresponds
to full step (period T), whilst segment ab corresponds to half step.
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414 Due to system symmetry only half of the step can be considered. The repeatibility
conditions in that case will be:

-10 00
YO = 01 00fYT
00 -10
—-00 01
where

a9
Y=y

9

¥

In this case the performance index J and the expressions for J has the form.
(15)  J(Y°) = [(Y? + YI)* + (Y3 = Y3)* + (¥ + Y5 + (Y2 - Y)*]'2,
VJ = {V\J,V,J, V3, V, 0},

AY7
AY?

AYY
AY?

AY?
)— (V3 = v {72 + (13 + YD)
1

(16) v,J = [(Y‘,’ + Y’;)(l +

AYY
— (Y3 -v¥ 4/J,
(4 4)AY1/

o~ AYT AY? o AYY
Vod = (Y] + YD) =2 + (Y3 - YD) (1 - =2} + (Y] + Y2
. [<1 D) ATE (g - 7D (1= STH) 4 (13 4+ v 2L

2 2 2

AYTY |
— (Y — ¢T 4 /J,
% 4)AYO]/

2

AYT AYY AY}
Vol = | (YO +¥yD) =t (v — YD 222 4 (V) + YD (1 + =22 -
=l e - - vp g 0s e v (14 40

AYT

— (Y - Y} £ 0,
% 4)“2]/

AYT AYS L AYY
Vo =| (Y + YD) - (¥ - )2 +(¥I+Y 2 4
o= { Doy * 03+ 7D 0

on-n(-23])

Starting from these expressions, the function @ from the relation (8) becomes:

®=[4]"4q
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where
(17) q=[-Y -¥LYS - Y], -Y] —v§, ¥l - Yi}
and
M AYT 1 AY]  AYT  AYT
AY? AYS  AYY  AYS
Av; AY] | AY; Ay
(19) Y AY‘{T AY‘Z; TAY‘3’ AYﬁT
AYD AYD AYD LAY
AY?  AYS  AYS AY?
AYD AYD AYR AYD
| AY? AYS AYS AYS |

By simultaneously solving systems (12), (13), (14) and the sensitivity equations (8),
using expressions (17) and (18), the locomotion system upper body algorithm can be
obtained, satisfying the repeatability conditions.

On the basis of the described method, repeatability conditions can be obtained,
representing in fact the calculated synergy of the rest of the system (dynamic algo-
rithm), based upon the prescribed synergy of one part of the system (kinematic

T= 2sec. S=1

_ 02 0 0 08 010 —ew—T0i [

Fig. 7. Nominal gait trajectory for biped model with fixed upper extremities.

algorithm). One of the characteristic diagrams in the phase plane of two compen-
sating coordinates i and 0 in the form of a closed curve, represents in fact the satis-
fied repeatability conditions (Fig. 7). The curve has been obtained for characteristic
parameters of the locomotion system S = 1, T = 2sec, where S — coefficient of
kinematic algorithm amplitude scaling (parameter of step length), and T — step
period (parameter of gait speed).
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In the preceeding text it was shown in short how the synergy of the complete
system is being formed. As it was shown, for one part the synergy was prescribed and
for the other part it was calculated using the dynamic analysis. Consequently, as
a result, we possess the relative coordinates (p,»(t), i.e. the complete synergy ensuring
periodic gait. This synergy has been defined for “ideal” conditions, under the sup-
position that no perturbations are acting on the locomotion system in consideration.

Under ideal conditions there exist periodic change laws f(t), corresponding to the
@4(1) laws, where B(r) as compared with ¢ (1) define the positions of the locomotion
system elements in relation to a fixed absolute coordinate system. For this reason,
let us introduce the concept of internal synergy for ¢f) and external synergy for
B

In the case of perturbation, even with very strict fulfilling of the internal syunergy
@(1), the external synergy can be perturbed. For instance, the whole system can
rotate round the supporting foot, which causes the angles ﬂ,»(t) to change.

Fig. 8. Front view of the locomotion system.

For illustration purposes, the side view of the locomotion system is shown in Fig. 8.
Due to some external perturbation the model can pass to some position, in which
support is on the edge of the foot. Let us denote the angle between the foot and
support with & If in the case of absence of perturbations the external synergy B({)
was defined by the internal synergy ¢ (1) only, for instance for the model upper part:

T

ﬂ:?*G" )

in the presence of perturbations, B{t) becomes
1T
f=—-9-¢.
2
If due to any reason the internal synergy q:i(t) is not being realized, this state reflects

itself in the external synergy ﬂi(t). On the other hand, external synergy (and not
internal) defines a repeatable gait in the relation to an absolute coordinate system.



Consequently, under stable gait we will understand such a gait, in which external
synergy tends to the “ideal” synergy, which has been defined in the absence of per-
turbations.

Let us now formalize this concept and make it more precisc. We introduce the
following designations. With the upper index “0” denote the coordinate change
laws, obtained from ideal conditions. We will call them “ideal” coordinates. Con-
sequently, ¢® and $° represent the ideal internal synergy, whilst ¢ and 0 correspond
to the real synergy.

Let us suppose that for some reason the internal synergy of the system has been
perturbed and that ¢ differs from ¢°. In that case two cases can be distinguished.
In the first one, the model can possess a stability margin [8, 9] due to its geometrical
properties, i.e. it will be tending to the ideal external synergy in the case of small
perturbations.

The second case is characterized by the fact, that the stability margin is insufficient
(or even non-existent) so for dynamic equilibrium maintaining special compensating
movements of the system arc needed.

This paper has not treated the problems of synthetizing the compensating system
for maintaining a stable gait in the presence of perturbations that surpass the capa-
bility of the auto-stability of the anthropomorphic system, that is, its stability margin.
They are dealt with detail in [9].

(Received December 13, 1971.)
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VYTAH

Prispévek ke studiu antropomorfnich systému

MIOMIR VUKOBRATOVIC

V &lanku se probiraji definice, dynamické aspekty a koncepce stability antro-
pomorfnich systémi. Kromé& obecnych zavéri o nové metodé modelovani dvouno-
hych systémit jsou probrana néktera charakteristicka schémata stabilizace ustaleného
reZimu chlze za pfitomnosti poruch.

Miomir Vukobratovié, Ph.Dr., Institute for Automation and Telecommunications ,,Mihailo
Pupin'“, P. O. Box 906, 11001 Beograd, Yugoslavia.
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