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K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 5 

The Discrete Riccati Equation of Optimal 
Control 

VLADIMÍR KUČERA 

In a previous paper the author has proved a fundamental theorem on Riccati equation solutions 
in the continuous case. This paper extends the results for the discrete case and summarizes the 
theory of the discrete Riccati algebraic equation. 

1. INTRODUCTION 

Consider the discrete dynamical system described by 

(1) xk+l = Axk + Guk, x0 given 

yk = Hxk 

where xk e R„, uk e Rr and yk e Rp are the state, the input, and the output of the system 
respectively [10]. Here A, G and H are real matrices of appropriate dimensions and 
det A * 0. 

Further consider the discrete linear regulator problem. Given system (1), find 
a control uk such that the cost 

(2) / =» i I y'kQyk + WkRuk 
k = 0 

is minimized for any x0 e R„. 

Both Q and R are assumed to be symmetric positive definite matrices of dimensions 
p x p and r x r respectively. 

Sometimes the cost functional involves the state of the system rather than its 
output. Then a nonnegative definite Q is the proper choice. In our case, however, 
we can consider Q positive definite in complete generality. On the other hand, the 
assumption that R be positive definite is certainly restrictive for the discrete linear 
regulator problem. However, the cost functional with nonnegative definite R can be 



converted into that with positive definite R using the inverse system representation. 431 
This transformation is shown for single-input single-output systems in [5]. 

We invoke the discrete minimum principle [8] to solve the problem. We thus form 
the Hamiltonian given by 

K = ix'kH'QHxk + \u'kRuk + pk+lxk+l , 

where pk, the costate, is coupled with xk via the equations 

dhk 
* * + i = ~ - > 

Spk+l 

8hk 
Pk = ~ • 

dxk 

By minimizing the Hamiltonian with respect to uk we obtain the following two-
point boundary-value problem to be solved [8]: 

(3) xk+l = Axk - G R _ 1 G X + 1 . 

pk = x'kH'QH + pk+lA. 

Guessing a solution of the form 

Pk = x'kP, 

the P matrix must satisfy the equation 

(4) P - A'P(I + GR-'G'P)'1 A - H'QH = 0 . 

The optimal control u* is given by 

u* = -R-lG'A'-\P - H'QH)xk 

and thus the optimal closed-loop system obeys the equation 

xk+l = [A- GR~lG'A'-\P- H'QH)]xk. 

The minimal value / * of (2) is given [8] as 

(5) / * = Wx0 . 

Equation (4) is sometimes referred to as the discrete Riccati algebraic equation. 

To proceed further we find it convenient to set 

GR-lG' = BB', 

H'QH =C'C, 



432 where B and C are matrices of full rank such that 

rankfi = rank GR-XG', 

rankC = rank H'QH . 

The discrete Riccati equation (4) then reads 

(6a) P - A'P(I + BB'P)'1 A - C'C = 0 

or, equivalently, 

(6b) P - A'PA + A'PB(I + B'PB)-1 B'PA - C'C = 0 

by virtue of the matrix identity [8] 

(U - 1 +VZ'iW)-1 = U - UV(Z + WUV)~l WU . 

Also 

(7) xk+i = [A - BB'A'~\P - C'C)-] xk = 

= [A - B'l + B'PB)"1 B'PA] xk . 

Equation (6) is closely related to the 2n x 2n composite matrix 

MjA + BB'A'-yC,-BB'A'-n 
V ' L -A'-'C'C, A"1] 

which couples equations (3) as follows: 

"XH,1 = M N . 
.P'k+i] LPÍ] 

The discrete Riccati algebraic equation can have more than one solution. In the 
sections to follow, conditions will be given for a solution to possess certain special 
properties. 

As the central results, the existence and uniqueness of the nonnegative definite 
solution is established and the lattice structure of all such solutions is discussed. 

2. GENERAL FORM OF SOLUTIONS 

Throughout the paper we assume that the M matrix has a diagonal Jordan cano­
nical form, i.e., it has 2n eigenvectors. This assumption is made for the sake of simpli­
city and is by no means essential. All results are easy to generalize to the nondiagonal 
case. 

Let 
Mat = La,, i = 1,2, ...,2n 



and write 

- K l 
where xi and y-t are elements of C„. 

Then following [7], [6] we can express the solutions of (6) in terms of at as follows. 

Theorem 1. Each solution of (6) takes the form 

P = YX~l , 
where 

X = [xu x2, ..., xn] , 

Y = [yuy2,...,yn-\, 

correspond to such a choice of eigenvalues Xu X2, ..., Xnof M that X~l exists. 

Proof. Let P satisfies (6) and set 

K = A - BB'A'~\P - CC), 

the closed-loop system matrix. 

Then (6b) and (7) imply that 

PK = A'-\P - CC) 
and hence 

Let J = X ~ \ O r be the Jordan canonical form of K and set PX = Y. Then (9) yields 

00) -0.0,. 
Since J is diagonal, J = diag (Xu X2, ...,X„), the columns of constitute the 

eigenvectors of M associated with Xu X2,..., X„ and P = YX~J since X~i exists. 
Q.E.D. 

Corollary 1. Let P = YZ"1 , where X = [x l s x2, •••, x„] and 7 = [yu y2, ..., >•„] 
correspond to the choice of eigenvalues Xx, X2, ..., Xn of M. Then the closed-loop 
system matrix K has eigenvalues Xu X2, ..., X„ associated with the eigenvectors 
x l5 x2, ..., x„. 

Proof. The J matrix is the Jordan form of K and X is the respective transforma­
tion matrix. Q.E.D. 



We note that if an n-tuple of eigenvectors generates a solution P to (6), then 

[ xl *~Y^ 

Tof theirs does so since YT(ZT) l = YX l = 
= P. Specifically, the order of the eigenvectors used is immaterial. 

3. THE EIGENVALUE PROPERTIES 

The eigenvalues of M enjoy a very interesting property of symmetry. To begin 

with, let us prove 

Lemma 1. Suppose det A 4= 0. Then there is no zero eigenvalue of M. 

Proof. By contradiction, suppose that 

M [ ; ] -
Ax + BB'A'-^CCx - BB'A'-ly = 0 , 

- A ' - ' C ' C x + A'-'y = 0 . 

Multiplying the latter equation by BB' and adding it to the former one gives us 

Ax = 0, a contradiction. Q.E.D. 

In addition to the (right) eigenvectors at defined by Ma{ = i.tat, we introduce 

the left eigenvectors of M as follows. 

r.M = Xtr,. 

It is well-known that the eigenvectors can be chosen so that 

( i i ) rfij = 0 , r * ; , 

* 0 , i~j. 

Theorem 2. Let Xt be an eigenvalue of M and | ' \ be the associated eigenvector. 

Then Xt

 l is an eigenvalue of M and [-y\, x'i\ is the corresponding left eigenvector. 

Proof. Let 

It is easy to see that 

м - * - Г А~к А'1вв'Л 
LCCA- 1 , A' + C'CA-lBB'\ 



and hence 

[->>;, X 'JM- 1 =;.,.[-.,.;, x;]. 

It follows that 

[->•;, x'i]M = Xj\-y'i,x'^. 

Q.E.D. 

Note that M being a real matrix, its eigenvalues occur in quadruples (Xt, Xf, If1 , 
X*_1). Here and below the asterisk represents the conjugate transpose of a matrix 
vector, or scalar. 

4. REAL SOLUTIONS 

There can be both real and complex solutions P to equation (6). Jn the regulator 
problem, however, only real solutions are of interest. 

Theorem 3. A solution P of (6) is real if either all eigenvectors used to construct 
it are real, or with any complex eigenvector the complex conjugated one is also 
used. 

Proof is trivial and can be found in [6]. 

5. HERMITIAN SOLUTIONS 

In the linear regulator problem, only the symmetric solutions to (6) are of interest 
consistently with (5). We generalize a little here and characterize the Hermitian solu­
tions. 

Theorem 4. Let M = J, where J = diag (Xu ..., X„). Then X* - XJi + 0, 

i,j = 1, 2 , . . . , n implies that X*Y is Hermitian. 

Proof. The idea of the proof follows closely that of a similar proof in [7], [6]. 

By inspection, 

(12) M'T - TM~l = 0 

where 

T = 

Set 
[-ÎҘ-

N = X*Y - Y*X = [X*, У*] Г P П . 



436 Then 

J*N - NJ'1 = J*[X*, y*] T\XI -

- [x*, y*] TP I J -1 = [x*, y*] (M'T - TM~') | x l = o 
by (12). 

It is well known that only N = 0 satisfies the equation J*N — NJ~l = 0 whenever 
X* - AJ1 4= 0, i,j = 1, 2, ..., n. Then X*y = Y*X. Q.E.D. 

As a consequence, P = y X _ 1 = X" 1 *(X*y)X _ 1 is Hermitian provided X*y 
is so and X " 1 exists. 

6. NONNEGATIVE DEFINITE SOLUTIONS 

The assumption on Q and R in (2) implies that f* ^ 0 and, therefore, only non-
negative definite solutions P of equation (6) are considered in the regulator problem. 
We draw the reader's attention to the fact that positive definite matrices are thought 
a subset of nonnegative definite matrices. 

For Hermitian or real symmetric matrices, the notation P : Si P 2 means that Pl — 
— P2 is nonnegative definite. 

Theorem 5. Let M P H = \X 1 J, where J = diag (A,, ..., A„). Then |A;| < 1, 

i = 1, 2 , . . . , n implies that X*Yk 0. 

Proof. Like in [7], [6], set Ufc = I Jfc.Then Ufc satisfies the following recurrent 

equation 

Ufc+1=MUfc,
 L r o = [ ^ l -

Defining T = , we get X*Y = UnTUo- Further introduce 

LooJ 
Sk = - U*TUfc + U*TU0 = 

= - X t ! * + i T U i + 1 - U * T U , . = 
i = 0 

k - 1 

= - X U*Af TMU; - U*TU; = 
i = 0 

k - l 

= - X U * ( M ' T M - T)U,. 
i = 0 



The matrix M'TM — T is nonpositive definite since the matrix 

p ' ^ v T M - T ) ! 7 ' ° i=r- c c ' ° 1 
l_0, J J V ICC, i] I 0, -A-'BB'A"1] 

is so; hence Sfc ^ 0 for all /c. 

If J is a stable matrix, lim Uk = 0 and X*Y = lim Sfc ^ 0. Q.E.D. 

Again P = YA'_1 ^ 0 provided X*Y ^ 0 and X - 1 exists. 

7. CONTROLLABILITY, OBSERVABILITY, STABILIZABILITY, 

AND DETECTABILITY 

In this section we discuss some preliminary results. First of all, X is said to be an 

uncontrollable eigenvalue [2] of the pair (A, B) if there exists a row vector w 4= 0 

such that wA = Xw and wB = 0. Similarly, X is an unobservable eigenvalue of the 

pair (C, A) if there exists a vector z 4= 0 such that Az = Xz and Cz = 0. 

The pair (A, B) is said to be stabilizable [9] if a real matrix S exists such that 

A + BS is stable, i.e. \X,\ < 1 for all its eigenvalues. Alternatively, (A, B) is stabilizable 

if and only if the unstable eigenvalues of (A, B) are controllable. 

In a like manner, (C, A) is detectable [9] if a real matrix D exists such that DC + A 

is stable, or, equivalently, if and only if the unstable eigenvalues of (C, A) are observ­

able. 

The concepts defined above play the central role in the subsequent development. 

Lemma 2. 

M И-И 
if and only if X is an uncontrollable eigenvalue of (A, B). 

Proof. 

ч:и~вт-vb-fj 
is equivalent to wA = Xw and wB = 0. Q.E.D. 

Lemma 3. 

M Й = А 

if and only if X is an unobservable eigenvalue of (C, A). 



Proof. 

rzi VAz+ BB'A'-1CCzl J z -

_0j L -A'-1CCz\ L°_ 

is equivalent to Cz = 0 and Az = Xz. Q.E.D. 

Lemma 4. There is an eigenvalue X of M such that \X\ = 1 // and only if there is 
an uncontrolable eigenvalue X of (A, B) andjor unobservable eigenvalue X of(C, A) 
such that \X\ = 1. 

Proof. <= This part is a consequence of Lemma 2 and 3. 

Let M 
x~ 

= X 
X 

-v- J. 
= 1. Then 

(13) Ax + BB'A~1CCx - BB'A'-1)- = Xx 

-A'~1CCx+ A'~1y = Xy. 

Multiplying the latter of equations (13) by BB' and adding it to the former gives us 

Ax - XBB'y = Xx , 

-CCx+ y = XA'y. 

Premultiplying the first equation by X*y* and the second one by x* yields 

' X*y*Ax = X*Xy*BB'y + X*Xy*x = 

= -x*C 'Cx - y*x . 

Thus 

-X*Xy*BB'y - x*CCx = (X*X - \) y*x = 0 

since X*X = \X\2 = 1. 

It follows that 

(14) y'B = 0 , 

Cx = 0 . 

Simple algebraic manipulations based on (13) and (14) show that 

(i) Cx = 0 implies y'A = X_1y' which together with y'B = 0 qualifies X~y as an 
uncontrollable eigenvalue of (A, B) , \X_i\ = 1; 

(ii) y'B = 0 implies Ax = Xx, which together with Cx = 0 qualifies X as an un­
observable eigenvalue of (C, A) , \k\ = 1. Q.E.D. 



8. THE FUNDAMENTAL THEOREM 

To develop the fundamental theorem for the discrete Riccati algebraic equation 
we proceed along the lines of [3]. 

A solution P _ 0 of equation (6) is said to be an optimizing solution if it yields 
the optimal closed-loop system; a solution P ^ 0 is said to be a stabilizing solution 
if it yields a stable closed-loop system. 

Theorem 6. There exists a stabilizing solution P to equation (6) // and only if 
(A, B) is stabilizable and \X\ + I for all eigenvalues X of M. 

Proof. => Suppose there exists a stabilizing solution P to (6). Then n stable 
eigenvalues X of M must exist and hence, by Theorem 2, \X\ # 1 for all eigenvalues X 
of M. 

In addition, the matrix S = -B'A'~l(P - C'C) stabilizes A + BS, the closed-
loop system matrix, i.e. the pair (A, B) is stabilizable. 

<= Suppose (A, B) is stabilizable, \X\ 4= 1 for all eigenvalues X of M, and that the 
converse of the statement is true — there is no stabilizing solution of (6). It can be 
due only to the two facts below: 

(i) There exist less then n stable eigenvalues of M, a contradiction. 

(ii) The X matrix in (10) is singular. If this is the case, write z for any nonzero 
vector of Jf(X), the null space of X. By (8), 

(15) AX + BB'A'~lC'CX - BB'A'~lY = XJ , 

-A'~XC'CX + A'~lY = YJ . 

On premultiplying the last equation by BB' and summing up equations (15) we obtain 

(16) AX - BB'YJ = XJ . 

Now postmultiply the above equation by z and premultiply it by Z*J*Y* to get 

-z*J*Y*BB'YJz = z*J*Y*XJz . 

The right hand side of this equation is nonnegative since Y*X is so by Theorems 4 
and 5, while the left hand side is nonpositive. It follows that either is zero and hence 

(17) B'YJz = 0 . 

Multiplying (16) by z and substituting from (17) gives us XJz = 0. 

It means that J~(X) is a ./-invariant subspace of R„. Hence there exists at least 
one nonzero vector z e Jf(X) such that Jz = [iz where n coincides with one of the 
stable eigenvalues of M, that is, 

(18) H < 1 . 



The second equation (15) postmultiplied by z yields 

(19) z 'Y 'A - 1 = iiz'Y'. 

Collecting (17), (18) and (19) we conclude that 

z'Y'A = u-
lz'Y', \n~l\ > 1 , 

z'Y'B = 0 , 

i.e., (A, B) is not stabilizable, again a contradiction. Q.E.D. 

It has been a well-established fact [9] that (A, B) stabilizable and (C, A) detectable 
is a sufficient condition for a stabilizing solution to exist. In the light of Lemma 4 
it is evident why this condition is unnecessary unlike that of Theorem 6: there is no 
need for observability of the unstable eigenvalues of A save those with \X\ = 1. 

We also point out that equation (6) can have at most one stabilizing solution due 
to Theorem 2. 

Theorem 7. The stabilizing solution is the only nonnegative definite solution of 
(6) if and only if(C, A) is detectable. 

Proof. <- Assuming (C, A) detectable we shall demonstrate that any solution P 
of (6) yields a stable closed-loop system matrix K. 

Suppose to the contrary that a X exists such that Kz = Xz, \X\ ^ 1. Then (9) can 
be rewritten as 

A + BB'A'-'C'C - BB'A'-'P = K , 

-A'-lC'C + A'~lP = PK . 

We sum up the first equation and the second one multiplied by BB' to obtain 

K = A - BB'PK , 

A'PK = - C ' C + P . 

Easy algebraic manipulations with the last equations result in 

X*z*PAz = X*Xz*PBB'Pz + X*Xz*Pz , 

Xz*A'Pz = -z*C'Cz + z*Pz . 

It follows that 

-X*Xz*PBB'Pz - z*C'Cz = (X*X - 1) z*Pz . 

Since X*X = \X\2 >. 1, the right hand side of the above equation is nonnegative, while 
the left hand side is nonpositive. Therefore both are zero and hence 

B'Pz = 0 , 

Cz = 0 . 



As a result, Xz = Kz = Az — XBB'Pz implies 

Az = Az , |A| ^ 1 , 

Cz = 0 . 

Thus (C, A) is not detectable, contradicting our hypothesis. Hence K is stable. 

But there is only one way how to choose the stable eigenvalues of M and hence P, 

the stabilizing solution of (6), is unique. 

=> We proceed by contradiction, see [6], Suppose there is an undetectable eigen­

value Xi of (C, A). We are going to show that at least two different nonnegative 

solutions exist to equation (6). One of them is the stabilizing solution P by hypothesis. 

It is expressed as P = YX"1 in terms of 

X = [ x , , x 2 , . . . , x „ ] , Y=[yuy2,...,yn-} 

and assume that ' i s associated with X~l. 

LKJ 
To form another solution Pl = ^ X ^ 1 we substitute the eigenvector ' ol M Й-

corresponding to A, for the eigenvector l with X\ l . We thus have 

bJ 
X, = [ z „ x 2 , . . . , x „ ] , Yx =[0,y2,...,y„-] 

and set 

X = [ x 2 , . . . , x „ ] , Y=[y2,...,yn]. 

Theorem 2 together with equation (11) implies that 

[z t ,0]V^ l=0, i-2,3 «. 

Hence 

z*Y = 0 

and 

K ' Lo **?J Lo x*f] 

because X*Y ^ 0. 

To prove that X^ 1 indeed exists, suppose to the contrary that X, is singular. Then 

a vector v 4= 0 exists such that z, = Xv and, consequently, 

0 = z*f «- v*X*f, 



i.e., detv?*Y = 0. Observe that detX*Y is a principal minor of X*Y 2: 0 and hence 

[xlt X]* fv = X*(fv) = 0, 

a contradiction since X is nonsingular and fv 4= 0. 

Thus P , does exist and is different from P because it corresponds to a different 
n-tuple of eigenvalues of M. Q.E.D. 

Now the fundamental theorem can easily be deduced. 

Theorem 8. Stabilizability of (A, B) and detectability of (C, A) is necessary and 
sufficient for equation (6) to have a unique nonnegative definite solution which 
stabilizes the closed-loop system. 

Proof. => This part is now a classical result [9]. 

<= The existence of a stabilizing solution implies stabilizability of (A, B) by Theo­
rem 6. The uniqueness of the solution implies detectability of (C, A) by Theorem 7. 

9. THE LATTICE OF NONNEGATIVE SOLUTIONS 

This section summarizes some latest results regarding equation (6). The method 
of attack mimics that in [4]. We note that Theorem 5 supplies just a sufficient condi­
tion for a solution of (6) to be nonnegative definite. We are going to fully characterize 
the nonnegative solutions of (6) below. 

Let there be Q = 0 undetectable eigenvalues of (C, A), say At, A2, ..., Xe, and let 

Az; = A,z,., i = 1, 2 , . . . , Q. 

Czf = 0 , 

Then, by Lemma 3, I *' I is the eigenvector of M associated with A,-, i = 1,2,..., Q, and 5, ' is the ei 

LoJ no other eigenvector of this form exists with the unstable eigenvalues of M. 

Define 
^ = {A„A2,...,AB} 

and write Sfa, a = 1, 2, ... for the subsets of Sf. 

Similarly, define 

® = {xi\xi \..., A;1} 

and relate a subset 0la of ^ to any subset Sfx of Sf consistently with the definition of 01 
and Sf. 

Note that all eigenvalues in ^ must be used to form the stabilizing solution since 
lAf1! < 1, i = 1,2, ...,Q. 



Finally write Pa for the solution of (6) which is generated from the stabilizing 443 

solution by replacing the elements of 0)a by those of Sfa. 

Theorem 9. Suppose there exists the stabilizing solution of equation (6). Then 

the solutions Pa generated respectively by all subsets Sf a of S? form the class of all 

nonnegative definite solutions of (6). 

Proof. The existence of all Pa can be proved in an identical manner as the existence 

of P1 in the necessity part of the proof of Theorem 7. 

It remains to prove that no other nonnegative solution exists: if an eigenvalue Xt 

were substituted for XJX, Xt + Xj, it would give us 

._• = [.. . , _ , . . . , * , . . . ] , Ў =[...,v,...,y,...-] 

where 

But 

M 
u~ 

= X; 
u 

, M 
X = x ; 1 X~ 

_v _v_ Ľ_ Ь'J 

[«*, i,*] r ^i 4= o 

by (11) and Theorem 2. It follows that u*y 4= x*v and hence 

X*Ÿ = 
u*v ... u*y 

x*v ... x*y 

Фř*Jř 

We conclude that P = YJ? ', if it exists at all, cannot be nonnegative definite. Q.E.D. 
Before proceeding any further, we define an eigenvalue A of A to be cyclic if any 

two eigenvectors of A associated with X are linearly dependent. 

Corollary 2. Suppose equation (6) has the stabilizing solution. Further suppose 
there exist Q undetectable eigenvalues Xt, X2, ..., Xe of (C, A), Q __ 0. Then 

(i) ifXi, i = 1,2, ..., Q are cyclic, there are exactly 2Q nonnegative definite solutions 
of (6); and 

(ii) if some of the A/s are not cyclic, the set of all nonnegative definite solutions of 
(6) is infinite (nondenumerable). 

Proof, (i) follows immediately from Theorem 9 since there are 2" subsets of 
a set consisting of Q elements. 



(ii) Some of the A:s not being cyclic, there are infinitely (nondenumerably) many 
ways of choosing the independent eigenvectors and for each particular choice the 
case (i) applies. Q.E.D. 

The above result (i) is limited to a diagonalizable matrix M. A more refined ana-
Q 

lysis in [4] shows that, in general, there exist FJ (qt + 1) nonnegative solutions, where 
> = i 

Czi+J = 0 , j = 0, 1, ..., q, - 1 , 

* 0 , j = qt 

and 

Azi+J = kzi+j + zi+j_l , j = 1,2, . . . , a; - 1 , 

= Azi, j = 0 . 

Now a very interesting property of all nonnegative solutions will be presented [4]. 

Theorem 10. Let the class of the nonnegative definite solutions of (6) contains the 
stabilizing solution. Then 

(i) if the set is finite, it constitutes a distributive lattice with respect to the 
partial ordering ^ . Moreover, the stabilizing and the optimizing solutions 
are respectively the identity and the zero elements of the lattice. 

(ii) If the set is nondenumerable, it generates nondenumerable many distributive 
lattices. The lattices are isomorphic to one another and have the identity and 
the zero elements in common. 

Proof, (i) First we note that the family of subsets of S" constitutes a distributive 
lattice with respect to the partial ordering by inclusion [1]. 

We shall prove the theorem by establishing an isomorphism between the set of all 
solutions P ;> 0 of (6) and the underlying lattice of the subsets of Sf. 

By definition, there is one-to-one correspondence between Sf a and Pa. In particular, 
the stabilizing solution corresponds to the empty set <S> and the optimizing solution to 
Sf itself. Since Sf a S y „ implies Px ^ P„ by (20), the isomorphism is established. 

It follows that the stabilizing (optimizing) solution is the identity (zero) element 
of the lattice of solutions since <P (Sf) is the zero (identity) element of the underlying 
lattice of the subsets of Sf. 

Finally, distributivity follows directly from distributivity of the underlying lattice. 

(ii) In view of corollary 2, (ii), and the above proof, there exist nondenumerable 
many distributive lattices. However, the same ordering is always preserved, i.e., the 
lattices are isomorphic to one another. The uniqueness of the identity and the zero 
elements corresponds to that of the stable and the optimal closed-loop systems. Q.E.D 



In case Q = 0, that is, (C, A) is detectable, the if set is empty and the lattice col­
lapses to a single element — the optimizing as well as stabilizing solution. See Theo­
rem 7. 

However, not all nonnegative solutions of (6) are, in general, real. The real non-
negative solutions constitute a sublattice of the lattice in Theorem 10. 

The physical interpretation of different real nonnegative solutions is as follows. 
Each nonnegative solution is a conditionally optimizing solution of (6), the condition 
being a certain degree of stability. Specifically, Pa stabilizes the undetectable eigen­
values of (C, A) included in Sfa and no others. The discrete Riccati algebraic equation 
(6) thus contains the optimal solutions for all degrees of stability [6]. The idea that 
the more undetectable eigenvalues is stabilized the higher is the cost (2) is made 
rigorous via the concept of lattice. 

Another important consequence of Theorem 10 is that if more than one nonnegative 
solution of equation (6) exists, then the stabilizing solution is never the optimizing 
one and vice versa. 

10. EXAMPLE 

The following simple example is intended to illustrate some fine points involved in the exposi­
tion. Consider 

- И - - П - <-

M = 

2 0 -0.5 -0 .5 

0 2 0 0 

0 0 0.5 0 

0 0 0 0.5 

and its eigenvalues are 

A, = 2 , A3 = 0.5 , 

X2 = 2 , A4 = 0.5 . 

Observe that M is not cyclic. Therefore its eigenvectors are, in general, 

a c d '-b 

b d — c a 

0 , a2 = 0 . «з = Ъd , o 4 = -Ъb 
0 0 - 3 C j 

Ъa 

where a, b, c, and d are reals such that ad — be =)= 0. 



All general solutions of the discrete Riccati algebraic equation (6) are given by Theorem 1: 

P»-O, p l 3 __L_p4-« 
ac + bd\ —be, ac 

Pы = 

R,4 = 

a2 + b2 

3 

ac + bd 

Vb2, -abl 3 Vd\ -cdl 

l-ab, a2}' " c2 + d2l-cd, c2]' 

Vbd, -bel p = T3 01 

\_-ad, ac}' 34 L° 3 J 

Note that all solutions are real and that Pl3 and P 2 4 are not symmetric. The pair (A, B) is 
stabilizable and |A,| 4= 1, / = 1, 2, 3, 4. Hence there exists a stabilizing solution and it is not the 
only nonnegative solution since the pair (C, A) is not detectable. 

Theorem 9 yields all nonnegative solutions: P12, P ] 4 , P23 and P34 are their representatives. 
They generate nondenumerably many lattices, which are isomorphic to one another. The lattices 
can be visualized as follows [4] 

I>34 

/°N 

P14(fl, b) o )) P 2 3 ( c , d) 

\ , / 
rl2 

where / ^ j is the optimizing solution, P34 is the stabilizing solution, and the coupling represents 
the partial ordering 

P 3 4 = P 1 4 ^ P 1 2 , 

P 3 4 ^ P 2 3 ^ P 1 2 . 

Note that Pl4 ~ P23 is indefinite, indeed. 

11. CONCLUSIONS 

The discrete Riccati algebraic equation has been studied. The underlying discrete 

linear regulator problem has been posed and referred to throughout. 

The paper contains a comprehensive theory of the equation studied. Theorems 

regarding the general form of solutions as well as their special properties have been 

proved or reproved. The main and highly original result is the fundamental theorem 

in Section 8 and the lattice theorem in Section 9. 

A simple example has been appended to illustrate certain fine points of the theory. 

(Received February 4, 1972) 
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Diskrétní Riccatiho rovnice optimálního řízení 

VLADIMÍR KUČERA 

V článku je podána teorie diskrétní Riccatiho algebraické rovnice, o jejíž řešení 
se opírá syntéza optimálního řízení dle kvadratických kriterií či syntéza optimálních 
lineárních filtrů. 

Článek vychází z předchozích prací autora o spojité Riccatiho rovnici. Je dokázána 
věta o obecném tvaru řešení, o reálných, hermitovských a nezáporně definitních 
řešeních. Nejdůležitější přínos práce je obsažen ve větě o existenci a unicitě nezápor­
ného řešení a ve větě o svazových vlastnostech třídy všech nezáporných řešení. 

Článek lze chápat jako matematický základ k praktickému řešení diskrétních 
optimalizačních problémů. 

Ing. Vladimír Kučera, CSc; Ústav teorie informace a automatizace ČSA V (Institute of Informa­
tion Theory and Automation — Czechoslovak Academy of Sciences), Vyšehradská 49, Praha 2. 
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