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K Y B E R N E T I K A — V O L U M E 7 (1971), N U M B E R 6 

The Kiefer-Wolfowitz Approximation 
Method in Controlled Markov Chains 

PETR MANDL 

A modification of the Kiefer - Wolfowitz stochastic approximation method is employed 
to maximize the mean reward per one step from a Markov chain depending on a regression 
parameter. 

Consider a system S from which income is earned at times 1, 2, 3 , . . . Let S„ denote 
the state of S at time n. S„ is one of the numbers 1, 2, ..., r. The law of motion of S 
is the following: For arbitrary i e{l,2,..., r] —I, whenever S is in state i, the 
probability distribution of the next state is (pn(x), ..., pir(x)) where xe (— oo, oo) 
is a regression parameter. The income associated with a transition from i into / 
equals t?;j(x). Thus, if Xm denotes the value of the regression parameter during the 
period (m, m 4- 1), then the total income earned up to time n = 1, 2, ... equals 

V(n)=ivSm_iSm(Xm_,), V(0) = 0 . 
m = l 

The system is specified by matrices 

p(x) = | M * ) | | . J - i > !M*)fl.,;=i - x e ( - c o , oo) . 

For fixed regression parameter (i.e. X„ = x, n — 0, 1, . . . ) , {S„, n = 0, 1, ...} is 
a homogeneous Markov chain with transition probability matrix P(x). We introduce 
the n-step transition probabilities P(x)n = |p.5)(JC)|i,j-=ii The expectation of V(n) 
for S0 = i is then given by 

-m»)-"z nipW(x)Pjk(x)vjk(x). 
m = 0 j k 

Assumption 1. 

1. |» f/x)| = K < oo, x e ( - o o , oo), i,jel. 



2. There exists a positive integer n0, an l i e / and a number d > 0 such that 

P%°\x) = d, / = 1, . . . , r, X E ( - 0 0 , 0 0 ) . 

Under Assumption 1, the limit 

0(x) - l imn_ 1E^V(n) 
B-.CO 

is independent of i. 0(x) is the mean income per one period corresponding to re­
gression parameter x. It can also be expressed with aid of recurrence times. Denote 
by N(n) the n-th recurrence time into h, i.e. 

JV(0) = inf {m:Sm = h, m = 0} , 

N(n) = inf {m : Sm = h, m > N(n - 1)} , n = 1, 2, . . . 

The pairs 

\_V(N(n + 1)) - V(N(n)), N(n + 1) - N(n)] , n = 0, 1 , . . . , 

are mutually independent, identically distributed as long as x is kept fixed. Using 
the strong law of large numbers it is not difficult to derive that 

(1) 0(x) = E?[V(N(n + 1)) - V(iV(n))]/E?[N(n + 1) - N(n)] . 

We place ourselves in the situation when the dependence of 0 on x is unknown 
to us and we are looking for a procedure to approximate the value x for which 0(x) 
is maximal. (1) implies that we may consider this as a problem of maximizing the 
ratio of mean values by making independent observations on pairs of random 
variables. For the mean value of the ratio, i.e. 

E^{[V(iV(« + 1)) - V(N(n))]j[N(n + 1) - N(n)]} , 

the Kiefer - Wolfowitz stochastic approximation method could be applied directly. 
Slight modification is necessary in the present case (see Theorem 1). We shall be basing 
on [ l ] and make therefore the following assumption: 

Assumption 2. 0(x) is increasing for x < x and decreasing for x > x. The deri­
vative 0'(x) exists and is continuous. For x e (—00, 00) holds 

K0 |x - x| <. 0'(x) = Kt\x ~ x\ where 0 < K0 < Kt < 00 . 

Description of the procedure. Let {an, n — 1,2,. . .}, {c„, n = 1, 2, . . .} be sequences 
of positive numbers, {M„, n = 1, 2, . . .} a sequence of positive integers. Let 

(2) C„ -* 0 , YJ a" = °° ' £ °n < °° , E anC„ < °° • 
11=1 11=1 » = 1 



(3) £ l ~ - < a 3 < Z ^ - 2 < * . 
n=l MnC„ „=1 Mnc„ 

Introduce R„ = 2 £ Mm, JR0 = 0- The proceduře begins by choosing an initial 
m = l 

value Xj of the regression parameter. At time N(0) the value is altered to xl + cl 

and at time N(Mi) to xx — cv The subsequent changes occur at times N(Rn), 
N(Rn + M„+ 1), n = 1, 2, ... in the following way: At time N(R„), xn+1 is calculated 
from 

_ v . ían\ [HHK-i + M„)) - V(N(Rn^)) 
*n+l ~ *„ + w N(Rn_1 + M„) - # ( £ „ _ , ) 

V(N(Rn)) - ViNfa-! + M„)) [ « . - ! + MM))1 

n-l + M„) J N(R„) - N(R 

and the regression parameter is made equal x„+í + cn + 1 . At time N(R„ + M„) 
the parameter is altered to x„+ 1 — c„+1. Next theorem implies that x„ converges 
to x in quadratic mean. 

Theorem 1. Let {F(y1, y2 | x)} be a family of bivariate distribution functions 
depending on a reál valued parameter x and such that, for an appropriate K < co, 

II F(áy\ áy2 \ x) = 1 , | jy 2 F{áy\ áy2 \ x) < oo , x e ( - o o , oo). 

Let the function 

m(x) = {{y1 Fidy1, áy2 | x)j í í y 2 F{áy\ áy1 \ x) = m1(x)/m2(x) 

be increasing for x < x and decreasing for x > x. Let m'(x) exist and be continuous, 
Assume that for each x 

a2(x) = N^ - m\x))
2 F(dyl, áy2 | x) g o2 < oo , i = 1,2, 

K0\x - x\ ^ |m'(x)| ú Kr\x - x | , where 0 < K0 < Kt < oo . 

Let [an, n = 1,2, ...}, \cn, n = 1, 2, ...} Z?e sequences of positive numbers, 
{Mn,n — 1,2, ...}'a sequence Of positive integers satisfying (2), (3). Choose x, 
arbitrary and define consecutively 

*.+! = x. + «« Yz" ~ Yz"~í, n - 1 , 2 , . . . , 



where 

Y = T,2n-1 + - - - + ••• + lU, y >/2--i.i + ••• + _•.-!,_, 

»?2n,l + fL.2 + ••• + >?_,_„' «.L.-1.1 + ••• + lfr.-l._r.." 

and for given r\\A, n\A,..., n\n-2Mn,v n2
2n-2Mn_l the vectors (*,L,-i,.> _n-i..)> 

(t?2n,i> lin,.) i = 1> 2 , . . . . M„ are mutually independent with distribution function 
F(y1, y2 I x„ - c„) a«d TGy1, J'2 | x„ + c„), respectively. Then 

lim E(x„ - x)2 = 0 . 

The demonstration is obtained by inserting appropriate estimates in the proof 
of Theorem 1 in [ l ] and will not be given here. Under the assumption m'"(x) g 
<, Q < 00 for x e(— 00, 00), it can also be shown by the methods of [ l ] that for 

an = an~1, cn = cn~1/4, M„ = [dn3/4] + 1 , n = 1,2, . . . , 

where a > \K0, c > 0, d > 0, we get 

E(x„ - x)2 = o(R„_4/7) for n -» 00 . 

n 

Rn = 2 YMm is the number of observations employed. The corresponding estimate 
1 

for the Kiefer - Wolfowitz method is 

E(x„-x)2 = o(n"2/3)= o(R;2/3). 

(Received June 3, 1971.) 
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Kieferova - Wolfowitzova aproximační metoda v řízených 
Markovových řetězcích 

PETR MANDL 

V práci je modifikace Kieferovy - Wolfowitzovy stochastické aproximační metody 
použita k maximalizaci průměrného důchodu na jeden krok Markovova řetězce 
závislého na regresním parametru. 
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