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KYBERNETIKA — VOLUME 7 (1971), NUMBER 6§

The GUHA Method and the Three-valued
Logic ’

PeTR HAJEK, KAMILA BENDOVA, ZDENEK RENC

The theory of the GUHA method of automatic hypotheses determination is modified by
generalizing the definition of a model (= experimental material). The generalization consists
in allowing absence of information for some objects and properties. The three-valued logic
is used as a means for treatment of such models. Appropriate modifications of algorithms for
hypotheses determination follow immediately from the developed theory.

This paper is a continuation of [1], [2], [3]. (The reader can use the paper [4],
written in English, instead of [1], [2]: a short summary of patts of [3] used here will
be given below.) As stated in [3], the main principle of the GUHA method is to
obtain automatically all the interesting hypotheses verifiable on the basis of some
exper'mental material. Tt is necessary for every particular realization of this general
task to define mathematically three notions:

(a) experimental material,

(b) hypotheses.

(c) verification.

We present here a generalization of the notion of experimental material. In contra-
distinction to [ 1] — [4], where it was supposed that, for each object and each property,
we know whether or not the object possesses the property, we shall now allow that
for some objects and some properties we have no information. This can happen
in practice for several reasons, e.g. some patients could not be examined, etc. Hence
we have some “‘empty fields” in the experimental material or — better — we have
a sign “unknown” (say, x).*

* The content of this paper was referred in the seminar on applications of mathematical logic
at the Mathematico-physical faculty of the Charles University Prague in October 1969 and Fe-
bruary 1970. We thank Professor H. B. Curry, who told us during his visit at Prague in September
1970 that the system of three-valued logic formulated below appears in [5].

The referee, Professor O. Zich, has pointed out the necessity of a methodological discussion
of the problem of vagueness in connection with (the present version of) the GUHA method.
We agree completely, but we do not include any such discussion into the present paper.
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Models considered in [1]—[4] will now be called two-valued models. We further
define

1. A structure # = (M, Py, ..., P> is a three-valued model if M is a non-empty
finite set and P; (i = 1,..., n) are functions mapping M into the three-element
set {0, 1, x }. Elements of M are called objects, the n-tuple K(a) = {(P,(a), ..., P,(a)>
is called the card of a. The canonical three-valued model of the type n is the model .#
whose objects are all the n-tuples of elements 0, 1, x and such that P; (Cuy, ..., 4,))=

=u;

2. Three-valued truth-functions associated to the logical connectives &, v, ~, 71
are defined by the following tables:

N__®
u \ 0 1 X
& u.v 0 o 0 o
1 0 1 x
X 0 X X
N? o,
u \ 1 X
v u+)v 0 01 X
1 I 1 1
X X I X
N v] 01 X%
v\,
R
- u(=>)v o | 1 1 1
1 0 1 x
X X 1 X
u ‘ 01 X
"‘] pa—
u l 10 x

These tables correspond to the intuitive understanding of logical connectives if 1
is understood as the value “known that the object has the property”, 0 as “known
that the object does not have the property” and x as ““‘unknown whether the object
has the property or not”. For example, one knows that the object satisfies a con-
junction iff one knows that it satisfies both the members of that conjunction, one
knows that the object does not satisfy the conjunction iff one knows that at least
one member is not satisfied, and in other cases one does not know whether or not
the object satisfies the conjunction.



3. Given a model .#, we denote the properties P,, ..., P, by the propositional
variables py, ..., p, and for every formula ®(p,, ..., p,), we define the three-valued
associated function F§ of ® and .# by the obvious definition (see [1] p. 35 or [4]
p. 299~300). Further we define the canonical three-valued associated function
Fg of & as the three-valued function associated to @ and to the canonical three-
valued model.

4. An object a is said to satisfy ® if F§{(a) = 1 and is said to decide @ if either
F#(a) = 1 or F#(a) = 0. (Obviously, a satisfies 1& iff Fa(a) =0 and a does
not decide ¢ iff Fg{(a) = x.)

The aim of this paper is to give theoretical foundations of automatical proceeding
of three-valued models in accordance with the main principle of the GUHA method.
The present theory is motivated by the following idea: even if we do not know
whether the object has a property or not, either the object has or does not have the
property. In other words our three-valued model is particular information on a two-
valued model which is possessed by anybody able to decide for all the objects in the
model which properties they have. Let us call the latter model “the heavenly model”;
our purpose is to find most possible hypotheses verified by the “heavenly model”,
using only our “‘earthly model”.

* % %

5. A two-valued card is an n-tuple of zeros and ones; a three-valued card is an
n-tuple of zeros, ones and crosses. A two-valued card <{uy,..., 4,y is said to be
a two-valued completion (2-v.c.) of a three-valued card (vy, ..., v,> if, for each
i=1,..,n v,=1 implies u; =1 and v; = 0 implies u; = 0. Similarly a two-
valued model (M, P,, ..., P,> is said to be a 2-v.c. of a three-valued model
(M, Py,..., Pyif,foreachae Mandeachi = 1, ..., n, P{a) = 1 implies P(a) = 1
and P(a) = 0 implies P(a) = 0.

Since the fact that an object satisfies (decides) @ depends only on its card, we shall
say that a card satisfies (decides) ® instead of saying that an object with this card
does.

6. Lemma. If a card u satisfies a formula @ then every 2-v.c. of u satisfies .

Proof. (By induction.) If <uy, ..., u,) satisfies p; then u; = 1 and consequently
v, = 1 for every 2-v.c. {vy, ..., v,) of {uy, ..., u,>. Similarly, if a card satisfieds 71p;
then every of its 2-v.c.’s. Suppose that the following holds for @,, &,: if a card
satisfies @; then every of its 2-v.c.’s does. Then the same holds for formulas 19;,
(P, & D,). (The negation is obvious. If u satisfies @ & P, then u satisfies &; and
satisfies @,, hence every 2-v.c. of u satisfies ¥, and satisfies ¢,, which means that
it satisfies @; & P,. If u satisfies 71(®P, & P.) then u satisfies 1@, or satisfies 19,
hence every 2-v.c. of u satisfies 71(®; & ®,).) Similarly other connectives.

423
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7. Lemma. For every formula ®, there is a card not decicing ®.

- Proof. One verifizs easily by induction that the card {x, x,..., x> decides
no card.

8. Theorem. @ is a tautology of the (classic, two-valued) propositional calculus
if and only if the three-valued canonical function associated to @ has never value 0.

Proof. If @ is not a tautology then there is a two-valued card satisfying 1.
Conversely, if there is a three-valued card satisfying ~1& then each of its 2-v.c.’s
satisfizs 19 and therefore @ is not a tautology.

9. Remark. Formulas equivalent in classic propositional calculus can have dif-
ferent three-valued canonical functions; e.g. formulas p — g and 1p v (p&q)
are equivalent but the card { x, 1) satisfies p — ¢ and does not decide 71p v (p & ).

10. Formulas & and ¥ are said to be (three—valued») semantically equivalent
if they have the same canonical three-valued associated function. (Denotation:
D <>y V).

11. Lemma.
(1) A(p&q)<=;(Tp v 4),
(2 ‘ e v @y (TP & T9).
3 (P=a)=:(Tp v a)=; (p& Tg),
1) PV pesp,
) p&{q v r)es(p&q) v (p&r),
O] pv(@&n)<es(pv &(pv ).

Proof by truth-tables.
12. Lemma. If &, <>; &, then

(0, & W) =3 (0, & P), (B, v ¥)<>3(®, v W), 1P, <, 16,
Proof. Obvious.

13. (1) A letter is a propositional variable or a negated propositional variable.

(2) A fundamental disjunction of the length n is a disjunction of n distinct letters.

(Every elementary disjunction is a fundamental disjunction, but also e.g.
p Vv Tp v qis a fundamental disjunction.)

14. Theorem. Every formula is semantically equivalent to a conjunction of some
fundamental disjunctions.




Proof. The theorem follows by Lemmas 11 and 12.

15. (1) A formula is said to be in fundamental form if it is a conjunction of some
fundamental disjunctions. (A fundamental disjuniction is considered as a one-clement
conjunction of fundamental disjunction.)

k
(2) Let @ = A D, be a formula in fundamental form and let u be a card. @ is sa‘'d
i=1

to be singular w.r.t. u if there is an i such that D; a non-elementary disjunction
(i.e. some propositional variable has two occurrences in D;) and u does not satisfy D;.
Otherwise @ is regular w.r.t. u.

16. Theorem. Let & be a formula in fundamental form and let u be a card.

(1) If @ is singular w.r.t. u then u does not satisfy ®, whether each 2*v.c. of u
satisfies @ or not.
(2) If @ is regular w.r.t. u then u satisfies ® iff each 2-v.c. satisfies P.

Proof. (1) Since u does not satisfy D, u does not satisfy @. At the same time,
if uis (x,0) and @ is (p v 71p v g) then each 2-v.c. satisfies &, but if &
is(pv 7Ipv q)&(p v q) then {0, 0) is a 2-v.c. of u and does not satisfy @.

(2) The implication = follows by Lemma 6. Conversely suppose that u does

not satisfy @ = A D;. Then there is a D; such that u does not satisfy D;. Since @
i k

i=1 o
is regular, D; must be an elementary disjunction. Let D; b2 V g, p;, (i; < ... < i,
k=1

g, =0o0r1). Putv; =u; ifu; =0or 1, v, = &, if u, = x and finally v; = 1
for i distinct from all i; and such that u; = x. Then v is a 2-v.c. of u and v satisfies
T1D;. Consequently, v satisfies 1@, which completes the proof.

17. Corollary. If @ is in fundamental form, then ® is regular w.r.t. all the
cards iff ® is in normal (conjunctive-disjunctive) form, i.e. iff it is a conjunction
of elementary disjunctions. For such a formula and for an arbitrary card u we
have: u satisfies @ if and only if each 2-v.c. of u satisfies .

* ¥ k

18. In this section, let .# be a fixed three-valued model. A formula @ is said
to be true in # if the function associated to @ and .# equals identically 1. (Note that
no formula is true in the canonical model.)

19. An elementary disjunction D (bui]t up from some of the variables p,, ..., p,)
is a prime disjunction of A if
(1) D is true in . and ﬁ)

(2) no elementary disjunction obtained by omitting some components in D is
true in .

425
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20. The two-valued model corresponding to # is the submodel of the two-valued
canonical model whose field consists of all two-valued cards which are 2-v.c.’s
of some cards of objects in /.

21, Lemma. Let D be an elementary disjunction. The following are equivalent:

(1) Dis truein A,
(2) D is true in every 2-v.c. of M,
(3) D is true in the two-valued model corresponding to M.

Proof. (1) implies (2) by Lemma 6. (2) implies (3) since every card in the two-valued
model corresponding to .# occurs in some 2-v.c. of .. (3) implies (1) by Corollary 17.

22. Corollary. Let D be an elementary disjunction. The following are equivalent:

(1) D is a prime disjunction of 4,
(2) D is a prime disjunction of the two-valued model corresponding to M#.

23. Theorem. (1) Every conjunction of some prime disjunctions of a three-valued
model M is true in M.

(2) If a formula @ is true in M then it is logically equivalent to a conjunction
of some prime disjunctions of M.

Proof. (1) Is obvious by the definition.

(2) If @ is true in # then & is true in the two-valued model Z corresponding
to . and, by [1], @ is logically equivalent to a conjunction of some prime disjunc-
tions of .#. The theorem follows by Corollary 22.

24. Theorem. A formula ® is true in every 2-v.c. of a three-valued model #
iff it is a logical consequence of the prime disjunctions of M.

Proof. If @ is true in every 2-v.c. of .# then it is true in the two-valued model
corresponding to .# and therefore it is a logical consequence of the prime disjunctions
of # by Theorem 13. Conversely, if @ is a consequence of the prime disjunctions
of 4 then @ is true in the two-valued model corresponding to .# and hence in every
2-v.c. of A.

25. Remark. This theorem enables us to “determine on the basis of the earthly
model most possible hypotheses (of the form “d is true™") verified by the heavently
model” since the ‘“‘heavenly model” is one of the 2-v.c.’s of the *‘earthly model”.

26. We shall now consider three-valued models from another point of view.
Let us introduce a new unary propositional connective !; the formula !¢ is to be
read “known that ¢”. Formulas containing the connective ! are called generalized
formulas, formulas not containing ! are called Boolean formulas. The truth function



for ! is defined by the following table: 427

The function associated to ¢ and .# is defined for generalized formulas in the same
way as for Boolean formulas with the following supplement

Fig(a) = '(F3(a)) -

The definition of the semantical equivalence and Lemmas 11, 12 generalize for
generalized formulas.

27. & is a two-valued formula if the canonical function associated to & has never
the value x . (Note that no Boolean formula is two-valued.)

28. Lemma.
(1) (P & W), (10 & 1)
) (D v P)es (10 v IP).
€] If @ is two-valued then @ <>, & .

Proof. Obvious.

29. Theorem. Every generalized formula is semantically equivalent to a formula
built up from the formulas p,, !p;, !(71p;) using connectives &, v, 1.

This can be proved by induction on formulas. Since the theorem will not be used
in this paper, the proof is left to the reader.

30. Theorem. & is true in # if and only if & is true in M.
Proof. Obvious.

31. Corollary. Let D be an elementary disjunction \e;p;. D is true in 4 ¥#f ' \(e,p.)
i i

is true in M. In other words D is true in M iff it is true in the 2-v.c. of M which
results from M by changing the function associated with p, and #

(1) to the function associated with !p; if ¢; = 1 and
(2) to the function associated with 71}(71p,) if &; = 0.

(Crosses in columns corresponding to variables not occurring in D may be
completed arbitrarily.) Evidently, this 2-v.c. is the most unfavorable one w.r.t.
the validity of D.
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32. Remarks. A programmer of a computer programme determining to a given
three-valued model (input) all its prime disjunctions (beginning from one-element
ones) will have to decide how to code three-valued models in the computer’s memory.
One has at least three possibilities: ’

(1) To code every card in one cell, two bits being reserved for each of symbols
0,1, x. In this way we restrict the number of properties in the model to one half
of the number of bits in one cell.

(2) To code every card in two cells similarly as elementary disjunction are coded.
In this way we restrict the number of objects in model.

(3) When models with few crosses are proceeded one could construct from .#
the two-valued model corresponding to .#. The resulting model can be proceeded
by an old programme described in [1].

Programmes using possibilities (1), (2) above should respect some facts economizing
the computer’s work analogous to the facts described in [1]. Furthermore, the com-
puter should respect the following fact: if an object occurs whose card consists
solely of crosses then the model has no prime disjunctions. If a property occurs
whose associated function consists solely of crosses then the model has no prime
disjunction containing this property.

* * ok

33. Now we generalize the theory described in [2] for the three-valued logic.
It is possible to define the notion of an almost true (Boolean) formula in the three-
valued model in a similar way as in [2]. Let a member p be given, 0 < p < 1.

34. @ is p-true (almost true) in .4, if at least 100p percent objects satisfy .

35. An elementary disjunction D is called an almost prime disjunction of 4 if
(1) D is almost true in .# and (2) no elementary disjunction obtained by omitting
some letters in D is almost true in .

36. Theorem. If @ is almost true in # then it is logically implied by a conjunction
of some prime and almost prime disjunctions of M.

Proof. Fully analogous to the proof of Theorem 1 in [2].

37. Further we want to define the notion of a relatively almost true implication
in a three-valued model .#. '

38. Let K — D be an implication such that K is an elementary conjunction,
D is an elementary disjunction and no variable occurs both in K and in D. Let m,;,,
My, Mg, Myi1; Myx, My, Mgy, Mo x, Moo be defined as follows: m, is the number
of cards in .# ‘satisfying K and D, m, , is the number of cards satisfying K and not
deciding D, my, is the number of cards satisfying K and 1D etc. An implication



K - D is said to be 3-v.-relatively almost true, if

my,

[\%

My, + myg + Myx + My, + My
(if p = 1 we say that the implication K — D is 3-v.-relatively true).

39. Theorem. Every 3-v.-relatively almost true implication is logically implied
by a conjunction of some prime and almost prime disjunctions.

Proof. This canbe proved in the same way as the Theorem 2 in [2] using the fact
that a 3-v.-relatively almost true implication is almost true.

40. Lemma. K — D is 3-v.-relatively almost true in # iff K — D is relatively
almost true in each 2-v.c. of M.

Proof. 1. Suppose that K — D is 3-v.-relatively almost true in .#. Let M be
a 2-v.c. of M, let g, Wiy, Moy, Mg be the numbers defined wr.t. # and K — D
similarly as in .#. We have

My = ny; + & where & <y + My + Moy
and
Mg = Myg + My x + Myo + My«

which implies

my; + ¢

mll >

My + My T Mot Mk F B+ P+ My e

v

myy

v

Zp
My + Mg + My + Mgy + M,

2. If K — D is relatively almost true in every 2-v.c. of . then it must be relatively
almost true in the 2-v.c. # which results by completing each card satisfying K
and not deciding D or deciding neither K nor D or not deciding K and satisfying 71D
to a card which satisfies K and 1D and each card, not deciding K satisfying D
to a card which satisfies 71K and D. (That is possible by Corollary 17.) If i,
m, e etc. are frequencies of .# then we have

iy < myy

My + Wy My 4 Mg+ Myx + My + my

IIA

P

41. Let K — D be an implication (K is an elementary conjunction and D is an
elementary disjunction, no variable occurs both in K and in D) logically equivalent

429
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to some prime or almost prime disjunction (say 4) of .#. The antecedent K is said
to be good (with respect to A) if the following holds:

(a) there are at least s objects in . satisfying K (s is a fixed number less than
the number of all cards in the model),
(b) if A4 is almost true then K — D is 3-v.-relatively almost true.

We say that a conjunction K is a part of K, iff every letter of K 1s a letter of K.

42. Theorem. If K is a good antecedent with respect to A then every elementary
conjunction which is a part of K is also a good antecedent w.r.t. A.

Proof. By Theorem 3 of [2] and Lemma 40.

43. To summarize, the task of the computer proceeding three-valued models
using the present theory can be formulated in the same words as it was formulated
for two-valued models, namely, to generate all the elementary disjunctions (or the
elementary disjunctions belonging to some probe) and print the prime and almost
prime ones. Secondly, to each prime and almost prime disjunction find all its maximal
good antecedents.

* % %

Finally, we want to generalize the theory developed in [3] for three-valued models.
We recall some definitions.

44, Let # be a two-valued model with m objects and n properties denoted by
Pis +-+s Pn—1, 4. The property q is called the preferred property, p’s are symptoms.
Let k be the frequency of g and let 0 < k < m. For every elementary conjunction
K built up from some of the symptoms, let r be the frequency of K and let a be the
frequency of K & q. The numbers b, ¢, d, s, | are defined by the following “frequency
table™:

q g
X a b r
1K ¢ d s
Lk I | m

(For example b is the frequency of K& T1q; b + d = 1)
Put
tstkt
U(a, r,k, m) = ristkt !
m!a!blc!d!

and
min(e,k)

Aa,r, k,m)y= Y ofi,r, k,m).
I



K is said to be associated with q iff

(1) a_k
r om
and
() Aa, v, k,m) < g,

where g, is a given small number (e.g. o, = 0-05).

(This definition is based on the so-called (one-sided) exact Fisher’s test.)

In [3] an algorithm is described, which, given a two-valued model, generates all
the elementary conjunctions K and prints those associated with ¢ and prime in 4
(in the sense that K is not equivalent in .# to any of its proper subconjunctions).

45. Now let # = (M, P,, ..., P,_,, Q> be a three-valued model and let p, ...
.+ Pa—1» g be variables denoting the corresponding properties. We suppose that each
object in the model decides the preferred property Q. Given an elementary conjunc-
tion K built up from some of the symptoms, let the numbers of objects satisfying
both K and g, satisfying K & ~1g not deciding K and satisfying q etc. respectively
be given by the following table:

q g
Kk | a b | -
Kx i i u
K ¢ d s -
| k 1 m

(In p articular u is the number of objects not deciding K.)

46, Theorem. K is associated with q in every 2-v.c. of M if and only if

a k
1 > —,
() r+j m
) Ma, v +j, k,m)< o,

Proof. If K is associated with g in every 2-v.c. of .# then also in the 2-v.c. where
the frequencies are as follows:
q g
K| a [b47 r+/
K e+ d s+ i
k ! m

431
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We denote such a 2-v.c. by .#, (K). This implies (1) and (2) by the definition. Con-
versely, suppose that (1) and (2) hold. The following was proved in [3] (and is casy
to prove):

If
a k
3 .
@) r+1 m
then
(a, r, k, m) < Ala, r + 1, k, m)
if
k
@ 2o
r n
then

A(a, r, k, m) > Ala+ 1, r+ Lk, m) .

Leti =i, + iyandj = j, + j,, where iy, i, j,, j, are nonnegative integers. Consider
an arbitrary 2-v.c. 4" of .# with the following frequencies:

AN I
K a+ i } b+ jy | r+il+i1
K| e+ iy e p | stith
k 1 ! ‘ m
Then we have
a+i; >_a @

rdictie rtgy
and
Ma + iy r+ iy + jik,m) S Aa, r + jy, k,om) £

< A(a, r+j,k, m).

This implies that K is associated with ¢ and .#’ by (1) and (2), which completes
the proof. )

47. The preceding Theorem enables us to define: K is associated.with q in the
three-valued model .# if (1) and (2) hold. We see that it is the matter of a slight
modification to change the algorithm described in [3] such that it proceeds three-
valued models and, for every such model, it finds succesively its prime conjunctions
associated with the preferred property.

48. Proceeding the model .# we could also omit every object having some crosses
in its card (or omit in every moment all objects not deciding the conjunction pro-




ceeded) and then use the old algorithm. The following theorem compares this method
with the method consisting in applying Theorem 46. Given K, we denote by .#(K)
the submodel of .# which results by omitting all the objects not deciding K.

49. Theorem. If K is associated with q in .4 then K is associated with q in .#(K)
(on the same level of significance ay).

Proof. The following tables describe frequencies concerning K and ¢ and the
models 4, 4 .(K), .#,(K) respectively (where # (K) is defined as in 46):

g | g
K I b r
A Ko | J u
K %A 4 ) d s
Lk m
q g
a e
A (K)
1 T
k il m

where f=b+j,y=c+i,o=r+jt=s+1

q “laq
K a b r
HAK)
K ¢ d K]
x A ]

where x =k — i, A=1—-j,n=m-—u
Evidently it suffices to prove that if K is associated with ¢ in .# (K) then also
in a submodel of .# .(K) where we have the following frequencies

q g l q g

K a -1 e—1 K | a B e
or i

K |y d T K |y—1| 4 -1
k | 1—1| m—1 k=1 ¢ | m—1

respectively. Both cases are analogous and we consider only the first one. Evidently,
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ajo > k/m implies af(¢ — 1) > kf(m — 1). Further let 0 < p < min (r, k) — a.
We prove the inequality

* ola +pokm>da+po—1km=1).
This is equivalent to
ot kt ! .
m!(a + p)!(b — p)!(y — p)!(d + p)!
. (0 — 1)!2(I — 1)1 k! .
(m—=1Da+pt(B-1~-p'y—pld+ p)

By equivalent transformations we obtain:

— 2 .,
m(B ~ p)
el 8) > mle ~ a = p),

m(a + p) > ¢k,

[ m

a+p> k

s

the last inequality follows from afe > k/m. From (*) we obtain

min(g.k) min(e—1,k)

Aa, 0 k,m)= Y o(i,oe.k,m)> ¥ oliie—1km—1)=
i=a

i=

=4d(a,0— Lk,m—1).

In fact, if k < g then both sums have the same number of members, every member
of the first sum being greater than the corresponding member of the second sum,
and if ¢ £ k then the first sum has, moreover, an additional member.

50. 1t is easy to show that the converse theorem does not hold. For example,
puta=d=1i=j=25b=c=0. A short calculation shows that K is associated
with g in #(K) on the level 1%, whereas K is not associated with g in /.

(Received November 10, 1970.)
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VYTAH

Metoda GUHA a trojhodnotova logika

PeTr HAJEK, KAMILA BENDOVA, ZDENEK RENC

Cilem metody GUHA je generovat automaticky viechny zajimavé hypotézy
verifikované na zdklad€ daného experimentalniho materidlu. Pfi kaZdé konkrétni
realizaci tohoto cile je nutno piesné definovat tyto pojmy: experimentalni material,
hypotéza, verifikace. V této praci je (v porovnani s pfedchozimi) zobecnén pojem
experimentalniho materialu. Pracuje se s trojhodnotovymi modely, tj. se strukturami
typu A = {M, Py, ..., P,> kde M je neprizdnd kone€na mnoZina a P, jsou funkce
zobrazujici M do t¥iprvkové mnoziny {0, 1, x }. Hodnoty P{a) = 1, 0, x odpovidaji
piipadtim ,,vim, Ze @ ma P,,“ ,,vim, Ze a nema P; a ,,nevim, zda ¢ ma P,*. Cilem
préce je dat teoreticky zdklad pro automatické zpracovani trojhodnotovych modeli
vzhledem k principu metody GUHA a v analogii k existujicim realizacim pro dvoj-
hodnotové modely. Z podané teorie (opirajici se o trojhodnotovou logiku Kleeneho)
je zfejmé, jakym zpisobem je tfeba modifikovat existujici realizace pii vySetfovaném
zobecnéni pojmu experimentalniho materidlu.

Dr. Petr Héjek, CSc., Kamila Bendovd, Matematicky tistav CSAV (Mathematical Institute —
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