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KYBERNETIKA — VOLUME 24 (1988), NUMBER 5

TABLES FOR AR(1) PROCESSES
WITH EXPONENTIAL WHITE NOISE

JIRf ANDEL, KAREL ZVARA

A new method was recently proposed for estimating the parameter of the AR(1) process
with non-negative values. The exact distribution of this estimator was derived for the case that
the white noise has an exponential distribution. Here we present tables containing the expectation
and standard deviation of the new estimator.

1. INTRODUCTION

Let X be a non-negative random variable such that EX? < 0. Let Y, Y, ..., ¥,
be i.i.d. non-negative random variables with a distribution function F having a finite
second moment. Let Y,, ..., ¥, be independent of X,. Consider the AR(I) process

{X,, 1 £t £ n} given by

(1.0) X, =bX,., + Y, 2=t5n)

where be [0, 1). Bell and Smith [2] proposed this model for investigating non-
negative time series. The parameter b can be estimated by

b* = min (X,/X,,).
2<t<n
Theorem 1.1. The estimator b* has a positive bias. As n — o0, b* is consistent
if and only if there exist no numbers ¢, d such that 0 < ¢ < d < oo, F(d) — F(c) = 1.

Proof. See[2].

If the condition introduced in Theorem 1.1 is satisfied, then b* is even strongly
consistent.
It is clear that the effect of X, on b* is diminished as time increases.
The most important case is when Y, has an exponential distribution Ex(a) with
the density
f(r)y=ate?, y>0.
Andgl [1] proposed to consider the model, in which X, ~ Ex[a/(1 — b)], because
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in this case EX, is the same as the expectation of the stationary distribution. He
derived some explicit results.

Theorem 1.2. Let X, ~ Ex[a/(1 — b)], Y, ~ Ex(a). Then the distribution of b*
is given by P(b* < v) = 1 —~ G(v), where
Go) =1 = b){[v+ (1 = bB)][*+(t =51 + )] ...
B e (R ) N O I S S |
B e A I ) (R O A s I 1
forv = b,and G(v) = 1 forv < b.
Proof. See [1].

Critical values of this distribution are introduced in [I] It was proved in the
same paper that
b+n {1 —-b2<Eb*=b+(n-2)",
var b* < 2b[(n — 2)71 — n"Y (1 = b)?] + 2(n — 2)"' (n = 3)"' — n7 (1 — b)*.

Unfortunately, for b + O these inequalities give only very rough bounds for Eb*
and var b*. On the other hand, simulations show that the estimator b* has con-
siderably smaller standard deviation in comparison with the classical least squares
estimator. If the bias of b* were known exactly, b* could serve even much better.
However, no explicit formulas are known for the integral Eb* = — {vG'(v) dv.

Table 1 contains Eb*, Table 2 (var b*)!/2 for b = 0(0-1) 0-9, 0-95(0-01) 0-99 and
n = 10(5) 50(50)150 . Eb* and var b* were computed using formulas

Eb* = b + |7 G(v)dv,
var b* = 2 [ v G(v) dv — 2b [ G(v) dv — ;> G(v) dv]?
and the integrals
{3 Gv)do and [y v G(v)do

were calculated numerically. In each case, the interval (b, oo) was written in the form
(b, 00) = (b, B] U (B, ). The constant B (B = b) was chosen so that the

integral over (B, oo) was smaller than 107°, and the integral over (b, B] was then
calculated using the Gauss method.

2. AN APPROXIMATION

Sinc . Y,
1nce b* = b + min !
25120 X,
it suffices to consider the distribution of
(2.1) ¢ = min
2zexn X,oy
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Without loss of generality we can assume that ¢ = 1, because the distribution of &
does not depend on a (see Theorem 1.2). Denote m = EX,. Since X,, ..., X, can be
considered from practical point of view as stationary, we have from (1.1)
m=bm+1,
ie.
m = 1/(1 — b).
If we substitute m for X,_, in (2.!), we have for ¢ an approximation

1 .
-- min Y,.
M 2gizn

Since Y, ~ Ex(1) we have min Y, ~ Ex(1/(n — 1)). Thus

251<n

¢

Sappr =

The quality of this approximation can be judged using Table 3. The exact values
are taken from Table | and Table 2.

Table 3.
Exact values Approximate values
b n Eb* (var b¥)!112 Eb* (var b“)‘/2
0-2 10 0-2824 0-0767 0-2889 0-0889
02 100 0-2080 0-0079 0-2081 0-0081
09 10 09149 0-0181 0-9111 0-0111
09 100 0-9010 00010 09010 0-0010

For the practical purposes our approximation can be used in the form

3. AN APPLICATION
It was mentioned that Eb* > b. Using Table 1, we can reduce the bias of the
estimator b*. We can proceed in the following way:

1. Calculate b*.
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2. Find b such that Eb = b*; denote this b by b,.

3. Use b, as a new estimator.

To illustrate this approach, we produced a small simulation study. For each value
of b introduced in Table 4, 100 simulations of the stationary AR(I) process X, ...
..., X50 with ¥, ~ Ex(1) were produced, In the column b* the averages of the corre-
sponding estimates are given. The next column s.d. b* contains empirical standard
deviations. In the column b, the new estimator is presented, which is calculated
from values placed the column b*. It was obtained by interpolation in Table 1.
To compare these results with classical estimators, we introduce also the average of
the least squares estimates b® and the empirical standard deviation s.d. b°.

Table 4.
b b* s. d. b* b »° s. d. b°
0 0-021 0-019 0-001 —0-008 0-142
05 0511 0-01t 0+501 0-492 0121
09 0-902 0-002 0-900 0-828 0-103

Table 4 shows that b, is more concentrated around b than b*. Further, s.d. b*
is much smaller than s.d. b°. Thus in the AR(1) processes with exponential white
noise the new method gives considerably better estimators than the classical least

squares method.
(Received January 26, 1988.)
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