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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 5 

SELF-TUNING CONTROLS OF LINEAR 
STOCHASTIC SYSTEMS IN PRESENCE OF DRIFT 

MONIKA BOSCHKOVÁ 

This paper deals with self-tuning controls constructed by inserting the estimates for the un­
known parameters. The model of linear controlled system (5) containing a constant drift is 
considered. The unknown parameters are estimated by the least squares method. Recursive 
formula for the estimate is introduced and a sufficient condition for its consistency is presented. 
Assuming the consistency the asymptotic distributions of the estimate and of the quadratic 
functionals are investigated. From the asymptotic distributions the quality of the self-tuning 
can be assessed. At the end two examples are included for illustration. 

1. INTRODUCTION 

One of the methods for constructing self-tuning controls consists in expressing 
the calculated feedback gains as function of the unknown parameters and in sub­
stituting for the parameters their on-line estimates. This approach has been named 
the Principle of Estimation and Control. The monographs [4], [10] and the survey 
[3] contain the information of the present state of the subject. Generally speaking 
the approach can be identified with the Certainty Equivalence Principle. The latter 
is however mostly connected with the separation of the filtering and of the control 
in linear/quadratic control problems under indirect observation (see [2]) or with 
the Beyesian method. 

The Estimation and Control Principle has been developed using the asymptotic 
theory of parameter estimation. The verification of the self-tuning property is of 
primary importance. Since the class of the self-tuning controls is usually extensive, 
it is advisable to apply additional criteria. By analogy with mathematical statistics 
asymptotic distribution of the parameter estimates or of certain cost functionals 
etc. are used to this purpose. 

The subject of this paper are self-tuning controls of systems with constant drift. 
The paper continues the work done in [5], [6], [7]. When investigating controlled 
systems with known parameters the drift can be eliminated by transforming the 
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variables. Systems with unknown parameters require certain modifications of the 
basic methods. The modifications exhibit some additional properties of linear 
systems. 

A typical example of the constant drift is the reference input r, function of which 
is to keep state vector near a prescribed quantity (see Fig. 1). 

Let us present the following elementary model. The controlled system in Figure 2 
is written in equations for the trajectories as 

(1) dX, = -aX, dt + dY, + U,dt, 

(2) dY, = -bYtdt + dW,: 

Inserting from the second equation into the first one we obtain 

(3) dX, = -(aX, + bY,) dt + U, dt + dW, . 

From (l) it follows 

(4) Y, = Xt-X0- {< (-aXs + U.) ds+Y0. 

The integral in (4) is denoted by Z„ hence, 

dZ, = (-aX, + U,)dt . 

Substituting (4) for Y, in (3) we get 

dX, = -(a + b)X,dt - bZ, dt + U,dt + dW, + cdt, 
where 

c = b(Y0 - X0) . 

In the case that only X0 is observable, c is an unknown parameter and represents 
a constant drift. 

Fig. 1. 
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2 LEAST SQUARES METHOD 

Let us consider the model of linear controlled system 

(5) dX, =f(a)Xtdt + e(a) dt + gU,dt + dWt, t = 0, 

where 
a = (a0, a1, ...,a")' 

is the (q + l)-dimensional vector of parameters, 

/(«) = jo + «°j. . 

e(a) = e0 + a1el + ... + a"eq . 

Let the dimension of X, and U, be n and m, respectively. Let f0, f{ be (n x n)-
matrices, e0,eu...,eq be /.-dimensional vectors and let eu ..., eq be linearly in­
dependent, g is a constant matrix. W = [W„ t = 0} is the ^-dimensional Wiener 
process with incremental variance matrix h, i.e. 

E(Wt - Ws) (Wt - Ws)' = h(t - s), t> s. 

The parameter a is assumed to be unknown to the controller in this paper. The 
true value of a will be denoted by a0 = (a0, a0 , . . . , ag)'. The estimate a* of a0 from 
the observations of X„ t e [0, T] is obtained by the least squares method. 

To define a* we introduce the discretized version of (5) and minimize the weighted 
sum of squares 

(6) I ^- (AX,k - f(a) Xtk Atk - e(a) Atk - gUtk Atk)' 
k Atk 

l(AXtk - j(a) Xtk Atk - e(a) Atk - gU,k Atk), 

where / is a positively semidefinite symmetric matrix. Equating the derivatives 
of (6) with respect to a', i = 0, ..., q, to zero we obtain the following relations 

IX',JilfiXtk Atk a° + X t X'J'Jej Atk a' = 
k k j=l 

= lX'J'J(AXtk - f0Xtk Atk - e0 Atk - gU,k Atk) , 
k 

Ye\ViXtk Atkx° + ^ t e\le} Atka' = 
k k j = \ 

= Ze'iK^X,k - f0X,k Atk - e0 Atk - gUtk Atk) , i=l,...,q. 
k 

From here we get letting Ar, -* 0 the system of equations for a* 

(7) jT
0 X'tf[ lftX, dt a°r* + t ft X'J[ lej dt a f = 

J = I 

= HX',f[l(dXt - f0X, dt - e0 dt - gU, dt) , 
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JJC,//1X,d.4* + £J0
r*.M'4* = 

j = > 

= \T
0 e'^dX, - f0Xtdt - e0dt - gUtdt) , i= \,...,q. 

The matrix of system (7) is denoted by Ar. It holds 

(8) Ar= J0
rZ;/Z rdr, 

where 
Z, = (f1X„e1,...,eq)'. 

From q 

dX, - f0X, dt - e0 dt - gU, dt = a°0flX, dt + £ a0e,. df + dPVr, 

and from (7) it follows 

(9) AT(a*-a0) = lT
0Z',ldW,. 

Next we demonstrate that a* is a recursive estimate. Assume that the matrix At 

is nonsingular for / ^ 0. Set 

From (8) it follows that 

(10) dP r = - p r z ; / z r p r d / . 

Using P, the solution of equations (7) is expressed as 

a* = P r | T Z;/(dZr - f0X, dt - e0 dt - gU, dt). 

Differentiating this equality and using (10) we get after rearrangements 

(11) daf = P,Z',l(dX, - f(a*) X, dt - e(a*) dt - gU, dt). 

The differential d(ar* — a0) is obtained by addition and subtraction of the term 
j(«o) + e(a0) on the right-hand side of (11), 

d(a* - a0) = P,Z'tl(dW, - / (a* - a0)X, dt - e(a* - a0) dt). 

(5), (10), and (11) are differential equations for the trajectories of process X„ 
the matrix P„ and the estimate a*. 

Applying the recursive least squares estimation method (see [4]) to (6) and then 
letting tk -* 0 we get the same result. 

3. THE SELF-TUNING PROPERTY 

Next we investigate the consistency of the estimate a*. We recall equation (5) 
and assume that a design method, which yields the control U, in the feedback form 

Ut = k(a)Xt + k0(a), 

has been selected. The pole assignment method or optimal stationary controls with 
respect to quadratic cost can be mentioned as examples. 

Since the true value a0 is unknown, a0 is replaced by the least squares estimate 
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a*. This leads to 

(12) V, = fc(a*) X, + fc0(a*) = fcfX, + fc0*,. 

The sets Jf = {fc(a), a e R«+ '}, JT0 = {fc0(a), a e R , + ' } are supposed to be bounded. 
This can be usually achieved by slightly modifying the design method. To guarantee 
the stability of the system under control (12) we make a global Liapunov type hypo­
thesis. 

Assumption 1. There exists a positively definite matrix z such that the matrices 

Af + 9k) + (f+ gk)' z + 1, keX , 

are negatively semidefinite. 

Further some consequences of this assumption are derived. 
Considering any nonanticipative control in the form 

Ut = K,Xt + K0t, KteJf, KoteJT0, 

the equation (5) is rewritten as 

dX, = (/ + gK,) X, dt + (e + gK0t) dt + dW,. 

Let X0 = x. From the Ito formula it follows 

(13) X'TzXT - x'zx = 2 JT X',z(f + gKt) X, dt + 

+ 2 J0' X',z(e + gK0t) dt + 2 JJ X',z d W, + Ttr (zh). 

Assumption 1 implies that the first term on the right-hand side of (13) is smaller 
than 

~ J o W d t -

Since |z(e + gK0,)\ is bounded by a constant z0, we have 

(14) EX'rzXT + E JJ \X,\2 dt ~ 2z0 J0' \X,\ dt ^ Ttr (zh) + x'zx . 

By the Schwarz inequality it follows from (14) 

E -
T 

í \X,\2 dt - 2z0 l i f |Z, |2 d/Y / 2 <; tr (z/i) + o,(l) 

Hence, 

(15) E i C\Xt\
2 dt ^ C0 , 

r J o 
where 
(16) C0 = (z2 + v/(z2 + trz/1))2 

independently of the control and the initial state. 
Analogously from (13) we obtain 

i (x'TzXT + í \Xt\
2 dt - 2z0 í \XX\ dí j g tr(zh) + i íx'zx + 2\ X',zdWA 
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(15) implies that the last term on the right-hand side converges to zero a.s. Letting 
T -> co we get 

1 fT 
(17) lim - \X,\2dt ^ C0. 

r-ooTJo1 

Similar reasoning applied to (X'TzXT)2 yields 

(18) l i m [ X r | 2 / T = 0 a.s. 
T->oo 

The relations (17) and (18) are used in the proof of the following proposition. 

Proposition 1. Let Assumption 1 holds, let J(l) e_, i — 1, ..., q, be linearly inde­
pendent. If j ! + 0 (i.e. the parameter a0 is not absent), let ^/(Oji V(^) * ^. Then, 
as r -> co, 

a* -> a0 a.s. 

Proof. Equation (9) is multiplied from left by (a* - a0) ' /T This yields 

(19) (a* - a0)' I fT Z'tlZ, dt(a*T - a0) = (a* - a0)' i f Z./ dW.. 
TJo r J o 

Denote for/u = (/u°,..., /.«)' 

Lr(/.) = Ai'i f Z.JZ.dt.u. 
r Jo 

LT(n)JTis a quadratic-linear functional of the trajectory of the form 

M/0 = i f (*;«(/.) ̂ r + * ; ?o00) dt + «t0.), 
IJo 

where 

(20) < )̂ ~wynih, 
cj0(/t) = 2^/;V(0(V(oi^), 

J = l 

^w = (V(oz^)'(V(oi;^')-
; = i J = I 

If/_. = 0, then Lr(/z) = qi(n), (34) holds and the proof of the proposition is 
simple. Let /_ + 0. The equation of the system can be considered in the form 

dX, = /(«„) X, dt + e(a0) At + gU, dt + dW, = S, dt + dW,. 

Set for fixed /i 

QM = jo (X't q(n) Xt + X't q0(ii)) dt + c ft |Sr|
2 dr. 

We shall deal with the problem of minimizing the average cost QT(n)jT, as T~> co. 

The minimum is denoted by 6>c(/u). To obtain ©c(ix) we solve the stationary Bellman 

equation 

(21) inf [VV(y) s + J tr (h V'VV(y)) + / a y + / a 0 + c|s|2 - 0C] = 0 , 
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tr denotes the trace operator. The solution of this equation is found in the form 

(22) V(y) = y'vy + y'v0 . 

Inserting (22) into (21) we get 

(23) inf [(2y'v + v'0) s + tr (hv) + y'qy + y'q0 + cs's - 0C] = 0 . 

By differentiating the term in the square brackets with respect to s we obtain the 
optimal value of s 

s = - (ivy + v0)\2c , 

which is substituted into (23) again. This yields the following equations for v, v0, 
and 0c(n), 

(24) - v2\c + q = 0 , 

(25) v'0vjc + q'0 = 0 , 

(26) - v'0v0j4c + tr (hv) - 0C = 0 . 

From (24) and (20) it follows that 

The symmetric matrix f[ lfi can be expressed as 

ňVi = Y Y = YЛY', 

where Y is an ortogonal matrix built from the characteristic vectors. It holds that 

s]h 

(f'Jfy)Ш = Y A r. 

First suppose thatjj/j, is nonsingular, i.e. p = n. Then from (25) 

vo - ± 2 v(c) (A u\)-i/2 f[ v(o (vco t V ) • 
Hence, 

foV(4c) = ( v w i wvco/iC/iVi)"1/. v(o-(V(oi^ j') - «iW. 
J = I > = i 

Let f'xlfi be singular. To prove the solvability of (25) multiply vv0 from the left 
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by the ith column of Y, 
yVw0 = V(c) \fi°\ V .̂-) y'\ • 

From (25) and (20) it follows 

(27) V(«0|M°|V(*.)/'»<>= -2Ab,-, 
where , 

6. = y7lV(0(V(0E^M0-
J = I 

If A, = 0, then b ; = 0. Hence, 

Vo = + i 2 V(c) 1 b-y 
i = l 1 ; 

is a solution of (25) and 
P tf 

v'0v0l(4c) = E V" ' 

Limit passage using nonsingular matrices enables us to deduce from (27) the inequality 

v'0vol(4c) < qi(/i). 
Finally from (26) it follows that 

(28) 0e(fi) + qi(fi) = tr (ho) = VW \n°\ tr (*(Ii//,)1/2). 

Since V(0 ji V(lO * 0> t n e following matrices are nonzero 

yoocj/AWCO, vco(j;<j>)1/4, V(/o(j;/j<)l/2voo-
The trace of the last matrix equals tr (/i(j;/jl)

1/2), which consequently is positive. 
Denote by cp(y, s) the term in the square brackets in (21). According to (21) 

(p(y, s) 2; 0 for s e U". The Ito formula gives 

j 0
r dv(xt) = ft <p(xt, st) dr + rj vV(xr) diY, - Q T + ocT. 

Hence, 

(29) I QT - 0C = ~ (V(X0) - F(Xr) + JJ VV(X() d FF,) . 

The right-hand side of (29) converges to zero a.s. in virtue of (17) and (18). It results 

(30) lim QTJT = &c. 

It follows from (30) that 
1 ľT 

Иm Lт(џ) = c(ju) + qi(џ) - c lim - |S,|2 dr. 
Г-cc г-» TJo 

Since (17) holds, 

lim - I |S , | 2 dí < d 
Г-=o T ' 

for some constant Cj. Hence, 

(31) lim Lr(^) = ec(n) + qi(n) - cC, . 
r-oo 
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We aim to fulf i l 

(32) hm Lr(/i) = <5, neUq+l, \fi\ = 1 , a.s . , 
r-»co 

for a 8 > 0. 

If |/.°| = 0, then q(ii) = q0(fi) = 0 and 

LT(M) = ?i00 ^ *., |M| = i , with a, > o 

as follows from (20) and from the assumption that j(l) eh i = 1, ..., q, are linearly 
independent. Relation (17) implies the uniform continuity of Lr(/.) in ft, \fi\ = 1. 
This gives the validity of Lr(/i) = i ^ , T > 0, for //, |^| = 1, with |/J°| sufficiently 
small, i.e. \n°\ = 7, 7 > 0. From (31) and (28) 

(33) hm Lrin) = V(c) |/*°| tr (h(f[ If,)1'2) - cCt . 
T->ai 

For \fi°\ > y there exists c > 0 such that the right-hand side of (33) is positive. 
Using the uniform continuity of LT(JX) in p., \n\ — 1, we get (32). Hence, 

1 CT 

(34) lim (a* - a0)' - Z'JZ, dt (a* - a0) = <5|a* - a0|2 a.s. 
r-co TJ0 

From (19) it follows 

•]> lim |~ I z;/diYJ > ála* - a0|. 
r-co T 

On the other hand 
1 rT 

',ldW, W> 
converges to zero a.s., as T-> 00, provided (17) holds, as it is seen by expressing 
the integral by means of a random time change in a Wiener process. Hence, 

a* -> a0 a.s., / -> co , 
is a consequence of (34). • 

4. ASYMPTOTIC RESULTS 

In this section the limit distribution of the estimate and of quadratic functionals 
will be derived. 

Assume first that the true value a0 is known and consider the control in the form 

(35) U, = k(a0) X, + k0(a0) = kX, + k0 . 

Then (5) becomes 

(36) dX, = (j + gk) X, dt + (e + gk0) dt + d W,. 

Provided that the matrix / + gk is stable, X, has as t~* 00 asymptotically normal 
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distribution N(m, v), where m and v fulfil the following equations 

(37) (/ + gk) m + (e + gk0) = 0 , 

(38) (/ + gk) v + v(f + gk)' + h = 0 . 

Set 
X, = X,- m. 

From (36) it follows 

(39) dX, = (f + gk)X,dt + dW,. 

In the case that the true value a0 is unknown, (12) is used, i.e. 

(40) U, = k(a*)X, + k0(a*) = k*X, + k*t . 

(5) can be then rewritten as 

(41) dX, = (f+ gk,) X, dt + g((k* - k) m + (k*, - k0)) dt + d W,. 

Note that (39) is the limit case of (41) for k* -> k and k*, -> fc0 as t -> oo. 
Next we shall study the asymptotic behaviour of quadratic cost 

(42) CT = jT (X',cX, + X',c0) dt 

as T-> oo. When X, is used instead of X„ the cost can be transformed to the form 
(42) up to an additive constant. The mean of the integrand in (42) with respect 
to the limit distribution N(0, v) is 

E^tT'.cX. + Ttc0) = tr (vc) . 

Denote by 0 = tr (vc) the limiting average cost. 

The cost potential for initial state X0 = x and control (35) has the expression 

Px = J? Ex(X',cX, + X',c0) dt. 
It can be proved that 

Px = x'wx + x'w0 + const. , 

where x = x — m, and w and w0 fulfil the equations 

(43) w(f + gk) + (f + gk)' w + c = 0 , 

(44) (/ + gk)' w0 + c0 = 0 . 

We shall need the following equation for investigating the asymptotic behaviour 
of CT as T-> co. 

Lemma 1. For any nonanticipative control of the form U, = K,X, + Kot it holds 

(45) CT - T0 + X'TwXT + X'Tw0 - x'wx - x'w0 -

- ft (2wX, + w0)' g((K, -k)X, + (K, -k)m + (K0t- k0)) dt = 

= JJ (2wX, + w0)' dW,. 
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Proof. Using the Ito formula and the relation (41) for U, = K,X, + K0l we get 

X'TwXT - x'wx = \l dX'twX, = 

= 2 J0
r X'tw((f + gKt) X, + g(K, - k) m + g(K0, - k0)) dt + 

+ 2 ]T
0X'tw dWt + Ttr (wh). 

Analogously 
X'TW0 - x'w0 = w'0 J0 dX, = 

= < ]l ((j + gKt) *< + 9(K, - k) m + g(K0t - k0)) dt + w0 JJ dWt. 

Further, it holds 
tr (wh) = tr (vc) = 0 . 

To obtain this result equation (38) is multiplied from left by the matrix w and equation 
(43) from right by the matrix v and the trace operator is applied to both equations. 
Hence, 

(46) CT - T0 + X'TwXT + X'Tw0 - x'wx - x'w0 = 

= J0
r (X'cX + X'c0) dt + J5 (2X'w + w'0) dW + 

+ \l(2X'w + w'0) ((j + gK) X + g(K - k) m + g(K0 - k0)) dt = 

= jl (X'cX + 2X'w(f + gk) X) dt + JJ (X'c0 + w'0(f + gk) X) dt + 

+ JJ (2X'w + w'0) g((K - k)X + (K - k) m + (K0 - k0)) dt + 

+ \T
0(2X'w + w'0)dW. 

The first two integrals on the right-hand side of (46) are equal to zero in consequence 
of relations (43) and (44). This imply the validity of (45). • 

Next we return to the system of equations (7) for the estimate a*. Assume the 
strong consistency of a*, i.e. 

(47) a* -> a0 a.s. as ( -* oo , 

and make the following hypothesis. 

Assumption 2. The matrix / + gk is stable, and k(a) and k0(a) are continuous 
a ta 0 . 

Since the Liapunov condition is fulfilled in a neighbourhood of a0, the results 
from previous section can be used in the proof that the law of large numbers holds 
for quadratic functional (see [2]). Hence, by the law of large numbers Ar/T con­
verges as T-> co to the matrix a = (ai})ij = 0 q fulfilling 

a00 = tr(f\lf» + m'f[\f,m , 

a0i = ai0 = m'filet, i=l,...,q, 

atJ = 0ji = e'ilej, i,j = 1, ...,q . 
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The matrix a is supposed to be nonsingular. Then, according to (9), 

(48) (a* - a0) ~ a'1 - f Z',l dW,. 
IJo 

Denote for z e [0, 1] 
*rT = (ZF°, zY7l,...,zY |,zYT

+1)' = 

= -j-(f?X'tnidWt, J0
TI e\\dWt, ..., J0

rz e'ql dWt, &(2wXt + w0)' dWt)'. 

We shall study the limit distribution of the process {ZYT, z e [0, 1]} as T-» oo. 
Consider, e.g. the element 

(49) ZTT° = J - CWil <W = - ~ irr(KT,)/r = T*VT./T , 

where T ^ „ is a Wiener process and 

VTz = \l*X'tf'xlhlfxXtdt 

by the known representation of Wiener integrals. 

VT/Tapproaches as T -» oo the value 

b = tr (f[lhlf,v) + m'f[lhlf\m 

according to the law of large numbers. This consideration indicates that the process 
{ZYT, z E [0, 1]} converges weakly as T-> oo to the Wiener process fulfilling (dZ)2 = 
= b dl. When we investigate all the vector ZYT, z e [0, 1], we take linear combination 
of its elements and prove using the same consideration that the process {ZYT, z e [0,1]} 
converges weakly as T -> oo to the (q + 2)-dimensional Wiener process 

(50) (iT°z, W\,..., iV\, HrTl)' = (iV"z, -W\+1)', z e [0, 1] , 

with incremental variance matrix 
(b p\ 

\P dJ 
where 

d = 4 tr (whw'v) + w'0hw , 

p is the (1 + (j)-dimensiona] vector with elements 

p0 = 2 tr (vf'Jhw) + m'f[lhw0 , 

Pi = e'fhw0 , i = 1, . . . , q , 

and b is the ((1 + q) x ( l + g))-matrix, the elements of which are 

fe00 = tr (filhlftv) + m'f'Jhlf.m , 

b0[ = bl0 -= m'filhle,, i=l,...,q, 

bu s= bji = e'tlhlej, i,j = 1, ..., q . 

Using this limit relation for ZYT and using (48) we get the following proposition. 
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Proposition 2. Let Assumption 2 and (47) hold, and let the matrix a be nonsingular. 
Then J(T)(a* - a0) has asymptotic distribution N(0, a~1ba~1) as T-* oo. 

Next the equation (45) is used for CTz, i.e. 

CTz - 0Tz = & (2wXt + w0)' g((k* - k) X, + (k* - k) m + 

+ (k*0t - fc0)) At + J0
rz (2wXt + w0)' dW,+ 0 p (VT ) . 

The integrand of the first integral on the right-hand side is denoted by / t . Provided 
that the functions k(a), k0(a) are twice continuously differentiable at a0, we can use 
their Taylor development at a0. Set 

d d 
—, k(ao) = k' , — 7 fco(«o) = K , i = 0, ..., q , 
da oa 

and 

(51) ut(X) = (2wX + w0)' g(klX + k'm + k0), i = 0, ..., q . 

Then 

/ . = i u;(X,) («;* - «') + op((\X,\2 + 1) \a* - a0Y), 
;=o 

and hence, 

CTz -QTz = i P - f u,{X.) ds («;* - a0) dt + J(T) *Y<! + ' + op(VT) ' 
• = o Jo t Jo 

Using the substitution f = yTwe get after rearrangements 

cTz - ©Tz = i f i f u,.(x,) ds («;* - «0) dj. + V(T) z yr x + op(VT). 
*=ojo y j o 

From (48) it follows 

J(T)(«»-oft-],<*-*-%, 
z 

where ZYT = (ZYT, . . . , Z Y | ) ' and j t is the row vector having 1 at ith position and 0 
elsewhere. Hence, 

~]~(CTz - QTz) = i f 1 fut(Is)ds V(T)(«;* - «o)dt + z r r X + o,(l) = 
V T ' = o J o T t J o 

= £ r - P"«.(*,) d--./.--1 'Yrdr + ZY|+1 + o,(l). 
' = o J o T t J o t 

From (51) applying the law of large numbers it can be established that 

~ f ut(Xs)ds, i = 0, ...,q, 
TJo 

approaches as T~* <x> the value 

r' = 2 tr (wflfc'y) + w'0gk'm + w'0gk'0 , i = 0, ..., q . 
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This yields using (49) and (50) that (CT: - 0Tz)/x/Tconverges weakly as T-> oo to 

r - E ^ a - ' ^ d t + -rf1. 
Jo t i = 0 

Set r = (r°, rl,..., rq)'. From the above consideration the following proposition 
can be formulated. 

Proposition 3. Let the matrix a be nonsingular and let the functions k(tx), fe0(a) be 
twice continuously differentiable at a0. Assume 

U,= k(a*)X, + k0(a*), » £ 0 , 

where a* is the least squares estimate of a0 satisfying 

lim a* = a0 a.s. 

Then the distribution of the process {(CT, — 0Tz)j^/T, z e [0, 1]} converges weakly 
as T-> co to the distribution of 

í -Z1, dr + Z 2 , z e [ 0 , 1 ] , 
Jo t 

where Z = {(Zj, Zf), t 6 [0,1]} is the two-dimensional Wiener process with in­
cremental variance matrix 

'r'a~xba~lr p'a~lr\ . 
p'a~1r d 

5. EXAMPLES 

5 .1 . Elimination of the drift 

We shall consider the model of linear controlled system 

dX, = fX, dt + e(a) df + U,dt + dWt, t ^ 0 , 
where 

e(a) = e0 + e ta ' + ... + eqa
q . 

Assume that a0, the true value of parameter a = (a1, . . . ,a ' ' ) ' , is unknown. The 
least squares estimate a* satisfies the following system of equations 

(52) £ H e'Jej dt a{* = JJ e[l(dX, -fX, dt -e0dt- U, dt), i = I, ...,q. 
J = I 

Denote by a a (q x g)-matrix with elements 

atj = e'Jej, i,j = \,...,q, 

and suppose that a is nonsingular. From (52) we obtain 

(53) V(T)K - «o) = a-\eu...,ej lWTj^(T) = a-'e'lW^T). 
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Since WTI^'T has distribution N(0, h), it holds 

7(T)(a* - a0) ~ N(0, a~xe'\h\ea~v). 

To offset the drift e(a) we introduce the control in the form U, = — e(a*). Hence, 

dX, = fX, dt + e(a0) dt - e(a*) dt + dW, . 

Using the matrix F(t) = exp (tf) and the relation (53) for (a* — a0) the expression 
for X, is obtained in the form 

X, = F(t)(X0 + J0 F(s)-1 ( / + bs~J) Wsds) + W,, 
where 

b = — ea~le'l. 

Computation of the variance matrix 

q(t)=E(Xt-EXt)(Xt- EX,)' 
yields 

q(t) = q(t) - qj + o(td~2) , t ->• cc , 6 > 0 , 

where <7(f) denotes the variance matrix of X, fulfilling 

dX, =fX,dt + dW,, 
and qt satisfies the equation 

fqi + qj' + (bhb' + bh)f~i + f~\bhb' + bh)' = 0 . 

5.2. Recursive model of self-tuning control 

Let 

(54) dX, = afX, dt + gU, dt + dW,, 

where U, is one-dimensional. We look for k such that for U, = -k'Xt the system 

(54) has a transfer function with beforehand selected poles, i.e. 

0 = det (zl - af + gk') = D(z) = z" + d, z"~l + ... + dn.tz + d„ , 

where du ..., dn are fixed. 

According to the Ackermann formula (see [!]) this k has the following expression 

k' = (0, ..., 0, l)(g, afg, a2f2g, ..., a"~lf"-J)-> D(af) . 

After rearrangements we get 

(55) k' = (0,...,0,\)(gJg,f2g,...J"-lg)-i . 

.(f"a + dj"~' +Ydi+J"-1-'a-i). 

In the case that the parameter a is unknown, we use the least squares estimate 
a* fulfilling the recursive relations 

da* = P,X'J'l(dXt - a*fXt - gk',X, dt), 

dP = -P2X'J'lfX,dt, 
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as follows from (11). Applying the Tto formula to d(af) ; we obtain from (55) the 
recursive expression for the estimate of the control k 

dkt = (0,...,0,l)(g,fg,...,r-1g)-1. 

. [fdaf +"J:dt+lr-,-1(i<tf)-"1 daf + \i(i + l)(«r)~i_2(d«f)2)] • 
i = i 

(Received January 29, 1988.) 
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