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KYBERNETIKA —~ VOLUME 24 (1988), NUMBER 5

SELF-TUNING CONTROLS OF LINEAR
STOCHASTIC SYSTEMS IN PRESENCE OF DRIFT

MONIKA BOSCHKOVA

This paper deals with self-tuning controls constructed by inserting the estimates for the un-
known parameters. The model of linear controlled system (5) containing a constant drift is
considered. The unknown parameters are estimated by the least squares method. Recursive
formula for the estimate is introduced and a sufficient condition for its consistency is presented.
Assuming the consistency the asymptotic distributions of the estimate and of the quadratic
functionals are investigated. From the asymptotic distributions the quality of the self-tuning
can be assessed. At the end two examples are included for illustration.

1. INTRODUCTION

One of the methods for constructing self-tuning controls consists in expressing
the calculated feedback gains as function of the unknown parameters and in sub-
stituting for the parameters their on-line estimates. This approach has been named
the Principle of Estimation and Control. The monographs [4], [10] and the survey
[3] contain the information of the present state of the subject. Generally speaking
the approach can be identified with the Certainty Equivalence Principle. The latter
is however mostly connected with the separation of the filtering and of the control
in linear/quadratic control problems under indirect observation (see [2]) or with
the Beyesian method.

The Estimation and Control Principle has been developed using the asymptotic
theory of parameter estimation. The verification of the self-tuning property is of
primary importance. Since the class of the self-tuning controls is usually extensive,
it is advisable to apply additional criteria. By analogy with mathematical statistics
asymptotic distribution of the parameter estimates or of certain cost functionals
etc. are used to this purpose.

The subject of this paper are self-tuning controls of systems with constant drift.
The paper continues the work done in [5], [6], [7]. When investigating controlled
systems with known parameters the drift can be eliminated by transforming the
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variables. Systems with unknown parameters require certain modifications of the
basic methods. The modifications exhibit some additional properties of linear

systems.
A typical example of the constant drift is the reference input r, function of which

is to keep state vector near a prescribed quantity (see Fig. 1).
Let us present the following elementary model. The controlled system in Figure 2
is written in equations for the trajectories as

(1) dX, = —aX,dt + dY, + U, dt,
(2) dY, = —bY, dr + dW, -
Inserting from the second equation into the first one we obtain
(3) dX, = —(aX, + bY,)dt + U, dt + dW,.
From (1} it follows )
(4) Y, =X, — X, — [((—aX, + U)ds + Y,
The integral in (4) is denoted by Z,, hence,
dZ, = (—aX, + U,)dt.
Substituting (4) for Y, in (3) we get
dX, = —(a + b)X,dt ~ bZ,dt + U, dt + dW, + cdt,

where

c=b(Y, — Xo)-
In the case that only X, is observable, ¢ is an unknown parameter and represents

a constant drift.

Xt

-a

Fig. 2.
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2. LEAST SQUARES METHOD

Let us consider the model of linear controlled system
(3) dX, = f(«) X, dt + e(a)dt + gU,dr + dW,, 120,

where

is the (g + I)-dimensional vector of parameters,
fl@) = fo + %,
e(a) = ep + a'ey + ... + a'e,.

Let the dimension of X, and U, be n and m, respectively. Let f,, fi be (n x n)-
matrices, eg, ey, ..., 2, be n-dimensional vectors and let ey, ..., e, be linearly in-
dependent. ¢ is a constant matrix. W= {W, t 2 0} is the n-dimensional Wiener
process with incremental variance matrix h, i.e.

E(W, — W) (W, — W) = h{t —5), 1>5.

The parameter o is assumed to be unknown to the controller in this paper. The
true value of o will be denoted by «q = («, g, ..., %4)". The estimate o} of oy from
the observations of X, t € [0, T] is obtained by the least squares method.

To define of we introduce the discretized version of (5) and minimize the weighted
sum of squares

1
(6) v (AX,, — f(2) X, Aty — e(w) At, — gU, ALY
k

I(AX,, — f(@) X,, At — e(2) At, — gU,, A1),

where [ is a positively semidefinite symmetric matrix. Equating the derivatives
of (6) with respect to o', i = 0, ..., g, to zero we obtain the following relations

;X}kf{lflx,k At a® + ;é‘X,’kf[lej At =
= kZX;kf{l(AX,k — foX Aty — eq Ay, — gU,, A1),
;eﬁlleu Ata® + ; _ile;.le, Aol =
, i=
= Zke}l(AX,k — foXy At — e At ~ gU, A), i=1,..,q.
From here we get letting A#, — 0 the system of equations for of
@ Xl X drod* + iljgx;f{lej dt of* =
i=
= [IXUUAX, — foX, dt — e df — gU,df),
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q
o eilfy X, drad® + 3 [T ejle; dr of* =
j=1

= {§el(dX, — foX,dt — egdt —gU,dt), i=1,...,q.
The matrix of system (7) is denoted by A;. It holds
(8) Ap = [ Z]Z, dt,
where
Z, = (len €15 cvns eq), .
From 4
dX, — foX,dt — eodt ~ gU,dt = a3f, X, dt + Y obe; dt + dW,,
ji=1
and from (7) it follows

©) Al — a0) = 3 Zi1 aW,.

Next we demonstrate that o is a recursive estimate. Assume that the matrix A4,
is nonsingular for t = 0. Set

P, =(4)"".
From (8) it follows that
(10) dP, = —PZ/IZ,P,dt .
Using P, the solution of equations (7) is expressed as
ay = Pr [§ ZU(dX, — foX,dt — egdt — gU, dt).
Differentiating this equality and using (10) we get after rearrangements
(1 dof = PZI(dX, — f(eF) X, dt — e(a})dt — gU, di).
The differential d(o — o,) is obtained by addition and subtraction of the term
f(a5) + e(2y) on the right-hand side of (11),
d(af — op) = PZH{dW, — faf — og) X, di — e(of — a5) di).

(5), (10), and (11) are differential equations for the trajectories of process X,,

the matrix P,, and the estimate o}".

Applying the recursive least squares estimation method (see [4]) to (6) and then
letting 7, — 0 we get the same result.

3. THE SELF-TUNING PROPERTY

Next we investigate the consistency of the estimate af. We recall equation (S)
and assume that a design method, which yields the control U, in the feedback form

U, = k(a) X, + ko(x),
has been selected. The pole assignment method or optimal stationary controls with

respect to quadratic cost can be mentioned as examples.
Since the true value o is unknown, «, is replaced by the least squares estimate
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af. This leads to

(12) U, = k(oaF) X, + ko(a}) = kFX, + Kk, .

Thesets " = {k(x), a e R** '}, A7y = {ko(x), x € R*" '} are supposed to be bounded.
This can be usually achieved by slightly modifying the design method. To guarantee
the stability of the system under control (12) we make a global Liapunov type hypo-
thesis.

Assumption 1. There exists a positively definite matrix z such that the matrices
2(f+gky+(f+gk)yz+1, kex,
are negatively semidefinite.

Further some consequences of this assumption are derived.
Considering any nonanticipative control in the form

U, =KX, + Ky, KieA, KyeAy,

the equation (5) is rewritten as
dX, = (f + gK,) X, dt + (e + gKo,) dt + dW,.
Let X, = x. From the It6 formula it follows
(13) XrzXp — x'zx = 2 (T Xiz(f + gK,) X, dt +
+ 2 [0 Xiz(e + gKo) dt + 2§ Xiz dW, + Ttr (zh).
Assumption 1 implies that the first term on the right-hand side of (13) is smaller
than
— [ ]X,|*dr.

Since |z(e + gKo,)] is bounded by a constant z,, we have
(14) EX7zXp + E[§|X |2 dt — 2z (3 |X,|dt < Ttr(zh) + x'zx.

By the Schwarz inequality it follows {rom (14)

[T [ [T 1/2
E 7J‘ [X|? dt — 2z, (~j |X.J? dt) < tr(zh) + o,(1).
TJo T)o
Hence,
1 T
(15) E~I |X|2dr < C,
T)o
where
(16) Co = (25 + (25 + trzh))?

independently of the control and the initial state.
Analogously from (13) we obtain

T T T
I—<X'TZXT +f [X |2 dt - ZZOJ. |, dt) < tr(zh) +1 (x’zx + 2‘[. Xz dW,) .
T 0 . T

0
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(15) implies that the last term on the right-hand side converges to zero a.s. Letting
T — o we get

— 1
(17) lim ~J |X 2 dt < Co.

Tow o

Similar reasoning applied to (X7.2X)? yields
(18) lim [X}/T=0 as.
T—w

The relations (17) and (18) are used in the proof of the following proposition.

Proposition 1. Let Assumption 1 holds, let /() e;, i = 1, ..., g, be linearly inde-
pendent. If f; # 0 (i.e. the parameter «, is not absent), let \/(I) f; \/(h) = 0. Then,
as! — oo,

af >, as.

Proof. Equation (9) is multiplied from left by («7 — «,)’/T. This yields
LT 1 (T
(19) (0F — ao) = | Z{Z, At} — o) = (o — o)’ = | Z:dW,.
TJo T)o
Denote for p = (1°, ..., p?)
AT
Li{p) = ~J ZJZ,dt .
TJo
Ly(1)[T s a quadratic-linear functional of the trajectory of the form

L) = %,JT(X;Q(N)X: + X, qo(u)) dt + q,(n),
where ’
(20) gy = WO filf:, .
‘IO(ﬂ) = 2u°f} \/(l) (x/(l)j;lejﬂj) s

0 = O L ey (VD 3 e
If f; = 0, then Ly(u) = q4(u), (34) holds and the proof of the proposition is
simple. Let f; = 0. The equation of the system can be considered in the form
dX, = floo) X, dt + e(0) dt + gU, dt + dW, = S, dt + dW,.
Set for fixed u
QT(N) = Ig (X; Q(H)Xr + X; qc(ﬂ)) dr + ¢ j.g |Stlz dr.
We shall deal with the problem of minimizing the average cost Qz(1)[T, as T — oo.

The minimum is denoted by @,(u). To obtain @ (u) we solve the stationary Bellman
equation

(1) inf[VW(y) s+ 3t (BV'VV(Y) + y'ay + ¥'do + ¢|s|* ~ €] =0,
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tr denotes the trace operator. The solution of this equation is found in the form
(22) V(y) = r'oy + y'vg .

Inserting (22} into (21) we get

(23) inf [(2y'v + v5) s + tr (ko) + ¥gy + y'go + ¢s's — ©,] = 0.

By differentiating the term in the square brackets with respect to s we obtain the

optimal value of s
s = —(2vy + v)/2¢,

which is substituted into (23) again. This yields the following equations for v, v,
and @,(u),

(24) —-vfe+qg=0,
(25) vovfe + g =0,
(26) — vhvofde + tr(hv) — @, =0.

From (24) and (20) it follows that
v = (&) W] (L)

The symmetric matrix fIf, can be expressed as
A ]

where Y is an ortogonal matrix built from the characteristic vectors. It holds that
Vi ‘

(flflj'l)llz —_ Yi Vi 1 Y; .

| 0
First suppose that f11f, is nonsingular, i.e. p = n. Then from (25)

= £ 200 ()7 VO (O S e)

Hence,
/ Z i o’ - ’ Z j
vgv0/(4¢) = (\/’(Z)Zlej!")/ NOIRUA R HNIUR NI Zlejl‘J) =q(y).
j= j=
Let f;If, be singular. To prove the solvability of (25) multiply vy, from the left
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by the ith column of Y,
Yooy = ) 1] (4) y7vo .
From (25) and (20) it follows
(27) ) |0 (1) yvy = —2u°ch;,
where 4
b= RGOS e).
If 4; = 0, then b; = 0. Hence, -

vy = iiZ\/(c)*bv'

is a solution of (25) and
bZ

G0, (4‘) Z g

=14 '
Limit passage using nonsingular matrices enables us to deduce from (27)the inequality
vovof{4e) £ q,{n) .
Finally from (26) it follows that
(28) 0.(1) + ax(s) 2 1 (ho) = (&) |1 tr (WS 15,)17)
Since /(1) /1 /(h) # 0, the following matrices are nonzero
VO GIING) . OGN, S0 ) ).
The trace of the last matrix equals tr (h(f{1f,)'/?), which consequently is positive.

Denote by ¢(y, s) the term in the square brackets in (21). According to (21)
(/)(},‘) = 0 for s e R". The Ité6 formula gives

6 dV(X) = [§ o(X,, S)dt + [T VV(X)dW, — @ + O.T.

Hence,
1 1
(29) %QT"QC?: }(V(X0)~ V(X7) + fo VV(X ) dw,).
The right-hand side of (29) converges to zero a.s. in virtue of (17) and (18). It results
(30) lim 04T = O, .
T—oo

It follows from (30) that

hm LT(;L) z 0.(u) + q,() = ¢ lim ——J‘ |S,}? de.

T-w

Since (17) holds,

T

Tim 7[ [S)*dr £ C,
Tl.

for some constant C,. Hence,
(31 lim Lr(n) 2 ©.(u) + q:(n) — ¢Cy -

T—®
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We aim to fulfil
(32) limLy(p) =6, peR*T, |;1| =1, as.,
forad > 0. o
If |u°] = 0, then g(u) = go(n) = 0 and
Le(w) = qi(w) 2 6,, || =1, with 5, >0

as follows from (20) and from the assumption that \/(I) e;, i = I, ..., g, are linearly
independent. Relation (17) implies the uniform continuity of Ly(y) in g, [u] = 1.
This gives the validity of Ly{s) 2 16,, T > 0, for g, |u| = 1, with |¢°] sufficiently
small, i.e. [4°] <y, y > 0. From (31) and (28)

(33) lim L{1) Z /() 2] 1 (H7111)") — €,

For |u°| > 7 there exists ¢ > 0 such that the right-hand side of (33) is positive.
Using the uniform continuity of Ly() in , [u| = 1, we get (32). Hence,

(34) lim (5 - xo)’l}j:ZHZt A1 (o — ) 2 dlak — o] as.
From (19) it follows
Tl_i:m;O lTJ‘:z;de, 2 lof — o) .
On the other hand
]T LT Z14w,

converges to zero a.s., as T — oo, provided (17) holds, as it is seen by expressing
the integral by means of a random time change in a Wiener process. Hence,

of >y as., t— w0,
is a consequence of (34). 0

4. ASYMPTOTIC RESULTS

In this section the limit distribution of the estimate and of quadratic functionals
will be derived.
Assume first that the true value o, is known and consider the control in the form

(35) U, = k(o) X, + kolotg) = kX, + kg -
Then (5) becomes
(36) dX, = (f + gk) X, dt + (e + gko)dt + dW,.

Provided that the matrix f + gk is stable, X, has as t— co asymptotically normal
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distribution N(m, v), where m and v fulfil the following equations

(37) (f + gk)ym + (e + gko) = 0,
(38) (f + gk)o + o(f + gk) + h=0.
Set
X,=X,—m.
From (36) it follows
(39) dX, = (f + gk) X, dt + dW,.
In the case that the true value «, is unknown, (12) is used, i.e.
(40) U, = k(@}) X, + ko(of) = ki X, + kg, -

(5) can be then rewritten as
(41) dX, = (f + gk) X, dt + g{(k} — k) m + (kg, — ko)) dt + dW,.

Note that (39) is the limit case of (41) for k7 — k and kg, — ko as t > oo,
Next we shall study the asymptotic behaviour of quadratic cost

(42) Cr = jg ()?;c)—(, + Xico) dt
as T'— 0. When X, is used instead of X,, the cost can be transformed to the form

(42) up to an additive constant. The mean of the integrand in (42) with respect
to the limit distribution N(0, v) is

E, (XX, + Xjco) = tr(ve) .
Denote by @ = tr (vc) the limiting average cost.
The cost potential for initial state X, = x and control (35) has the expression

P, = [¢ EX;cX, + X;co) dt .
It can be proved that

P, = X'wx + X'wy + const.,
where X = x — m, and w and w, fulfil the equations
43) w(f + gk) + (f+ gkyYw +c=0,
(44) (f + gk) wy + ¢, =0.

We shall need the following equation for investigating the asymptotic behaviour
of Cras T'— 0.

Lemma 1. For any nonanticipative contro! of the form U, = K, X, + KD‘r it holds
(45) Cr — TO + XiwXp + Xpwy — X'wX — X'wy —
— [T WX, + wo) g((K, — k) X, + (K, = Ky m + (Ko, — ko)) dt =
= {3 QwX, + woy dW,.
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Proof. Using the 1t6 formula and the relation (41) for U, = K, X, + Ko, we get
XwXy — X'wx = [§ dX;wX, =
=25 Xpw((f + gK) X, + g(K, — k) m + g(Ko, — ko)) dr +

+ 2§ X;wdW, + Ttr(wh).

Analogously
Xiwe — X'wyp = wy [§ dX, =

=wp, Jo (f + 9K) X, + g(K, = k) m + g(Ke, — ko)) dt + wp g dW, .
Further, it holds
tr (wh) = tr (vc) = © .

To obtain this result equation (38) is multiplied from left by the matrix w and equation
(43) from right by the matrix v and the trace operator is applied to both equations.
Hence,
(46) Cr — TO + XjwXy + Xypwg — FwXx — F'wy =

= [0 (X'eX + X'co)dt + [5 2X'w + wp) dW +

+ [0(2X"w + wp) ((f + gK) X + g(K — k) m + g(K, — ko)) dt =
o (X'eX +2X'w(f + gk) X)dt + [{(X'co + wo(f + gk) X)dt +
+ o (2X'w + wo)g((K — k) X + (K — k)ym + (Ko — ko)) dt +
+ 5 2X'w + wp) dW.

The first two integrals on the right-hand side of (46) are equal to zero in consequence
of relations (43) and (44). This imply the validity of (45). m}

Next we return to the system of equations (7) for the estimate o). Assume the
strong consistency of «, i.e.

(47) af -y as. as 11— o0,
and make the following hypothesis.

Assumption 2. The matrix f + gk is stable, and k(«) and ko(«) are continuous
atog.

Since the Liapunov condition is fulfilled in a neighbourhood of a,, the results
from previous section can be used in the proof that the law of large numbers holds
for quadratic functionals (see [2]). Hence, by the law of large numbers A,/T con-
verges as T— oo to the matrix a = (a;;); j=o,..., fulfilling

Qoo = Ir (f{[fﬂ)) + m'filfim,

‘g
Ag; = dio = m'file;,

.
a; = aj; = ejle;,
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The matrix a is supposed to be nonsingular. Then, according to (9),

T
(48) (a;—uo)~a“l}ij Z1dw,.

0
Denote for z € [0, 1]
Yy = (Y YL, L YA YR =

- L,T( TTE X fILAW,, [T el AW, ., 3% €L dW,, (72 (2w, + wo) dW)’ .
/
N

We shall study the limit distribution of the process {*¥y,ze[0,1]} as T — co.
Consider, e.g. the element
P |
(49) W= X = F rwrr = W
where "%, is a Wiener process and
Vr: = [o° X filhif X dt
by the known representation of Wiener integrals.
Vy/Tapproaches as T — oo the value
= tr (f{Ihlfv) + m'f{lhlfym
according to the law of large numbers. This consideration indicates that the process
{7Y?, z € [0, 1]} converges weakly as T — oo to the Wiener process fulfilling (dZ)* =
= b dt. When we investigate all the vector Yy, z € [0, 1], we take linear combination
of its elements and prove using the same consideration that the process {*Y, z € [0,1]}
converges weakly as T — oo to the (¢ + 2)-dimensional Wiener process

(50) oW, WLy = (“/7/;,"///‘_3“)’,26 [o, 1],
with incremental variance matrix

b py,

p d

d = 4tr {whw'v) + wohw ,

where

pis the (1 + g)-dimensional vector with elements
po = 2tr (uf | Thw) + m'f{lhw,
pi =¢elhwy, i=1,..,q,
and b is the ((1 + ¢) x (I + ¢))-matrix, the elements of which are
boo = tr (f1IhIf1v) + m'f{1hlfym ,
by; = bio = m'filhle;, i=1,..
b;; = b = ejlhle;, Li=1,..,4g.

i

i\

Using this limit relation for Yy and using (48) we get the following proposition.
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Proposition 2. Let Assumption 2 and (47) hold, and let the matrix @ be nonsingular.
Then /(T) («F — %) has asymptotic distribution N(0, a™'ba™ ") as T — co.

Next the equation (45) is used for Cy, i.e.
Cr. ~ OTz = [§7 2wX, + wo) g((kf — k) X, + (k} — k)m +
+ (kg — ko)) dt + [§7 (2wX, + wo) dW, + 0,(/T) .
The integrand of the first integral on the right-hand side is denoted by I,. Provided

that the functions k(«), ko(a) are twice continuously differentiable at «,, we can use
their Taylor development at a,. Set

i) ] ;
— k(o) = k', — kolwo) = ko, i=0,..,4,
Jo oo

and
(51) uX) = (2wX + wo) g(k'X + k'm + ki), i=0,....q.
Then
a ) = |
=Y ud X ) (@ — b)) + o (X + D e — 0]?),
i=0

and hence,
q Tz 1 T _ B R
Cr,— OTz =Y [ —J’ u (X ds (@ = of)di + J(T) Vi + 0, (JT)"
=0 Jo 1 Jo
Using the substitution ¢ = yT we get after rearrangements

I | yT _ . X , ,
Cr: =0Tz =3 J *f u(X) ds (057 — o) dy + J(T) Y + 0,(JT).
0

oVJo

q
From (48) it follows
/ ¢ i |
\/(T) (“#: - “o) ~ Jia 1o ZYT s
z

where *¥, = (*Y7, ..., *¥§)" and j; is the row vector having I at ith position and 0
elsewhere. Hence,

1 a 1 [T . .
F7(Cn 0T =% [ wmyas v es — oty ao s 2wzt w0 =
0 0

q

=y

i=0

7 T _ 1 ~
— | udX)ds=ja™ Yo dr + Y 4+ 0,(1).
o TtJs t
From (51) applying the law of large numbers it can be established that
Lo
— | ulXy)ds, i=0,...,q,
TL (X,) q

approaches as T — oo the value

= 2tr (wgk'v) + wogkim + wigkl, i=0,...,q.
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This yields using (49) and (50) that (C;, — ©@Tz)/\/ T converges weakly as T — oo to

: e N
j . Y rljaTt L+ Wt

ot i=0

Set r = (r° r', ..., %Y. From the above consideration the following proposition
can be formulated.

Proposition 3. Let the matrix a be nonsingular and let the functions k(x), ko(«) be
twice continuously differentiable at o,. Assume

U, = ko) X, + kolof), 120,
where « is the least squares estimate of a, satisfying

limof = o, as.

o

Then the distribution of the process {(Cr, — @Tz)/\/T, z € [0, 1]} converges weakly
as T~ oo to the distribution of

jﬁlz}dwzf, zef0.1],
ot

where Z = {(Z},2?),1c[0,1]} is the two-dimensional Wiener process with in-

cremental variance matrix
ra ‘ba”'r pla”lr\.
pla~lr d

5. EXAMPLES

5.1. Elimination of the drift

‘We shall consider the model of linear controlled system

dX, = fX,dt + e(2)dt + U, dt + dW,, t20,
where

e(a) = eo + e,0' + ... + e
Assume that «,, the true value of parameter « = (o', ..., o), is unknown. The
least squares estimate o satisfies the following system of equations

g )
(52) S {5 elle; dt o = [J eil(dX, — X, dt —eq dt — U, dt), i=1,...,q.
i=1
Denote by aa(g x g)-matrix with elements
aj; =eile;, i,j=1,...,q,

and suppose that a is nonsingular. From (52) we obtain
(53)  (T)(E = o) = 0™ ers oo W] (T) = a™ e 1W 5] (T).
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Since Wy /\/T has distribution N(0, k), it holds
J(T) (@F — o) ~ N(0, a™e'Thlea™ "} .
To offset the drift ¢(x) we introduce the control in the form U, = —e(s7). Hence,
dX, = fX,dt + e(og) dt — e(f) dt + dW,.
Using the matrix F(f) = exp (tf) and the relation (53) for (¢ — a,) the expression
for X, is obtained in the form
X, =F(t)(Xo + [5 F(s)7 ' (f + bs™") W, ds) + W,,
where
b= —ea'el.
Computation of the variance matrix
q(’) = E(X' - EXI) (Xr - EX,)'
yields
q(t) = (1) — q,/t + o(*"%), 1> oc, §>0,
where §(1) denotes the variance matrix of X, fulfilling
dX, = fX,dt + dw,,

and ¢, satisfies the equation

Jay + qif + (bhd' + bh)f~' + £ '(bhb + bh) = 0.

5.2. Recursive model of self-tuning control

Let
(54) dX, = afX,dt + gU, dr + dW,,
where U, is one-dimensional. We look for k such that for U, = —k'X, the system

(54) has a transfer function with beforchand selected poles, i.e.
O=det(zl —af + gk') =D(z)=z"+d, 2" ' + ...+ d,_yz + d,,

where dy, ..., d, are fixed.
According to the Ackermann formula (see [ 1]) this k has the following expression

k' =(0,...,0,1) (g, afg, «*f?g, ..., " ' [""1g)"* D(af).
After rearrangements we get
(55) k' =(0,...,0, 1)(g, fg, f*9, ... /" 'g) "
NEACE N +'l'illd,v,1f”71*"a"' .

In the case that the parameter « is unknown, we use the least squares estimate
of fulfilling the recursive relations

dof = PX,f'i{dX, — «ffX, — gk;X, dt),
dP = —PXX,f'IfX,dt,
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as follows from (I1). Applying the Itd formula to d(«*) we obtain from (55 the
recursive expression for the estimate of the control k

die, = (0,...,0, 1) (g, fg, ... /" 1g) -
n—1
e R E e M) T e (4 1) (o) (d))]
i=1
(Received January 29, 1988.)
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