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K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 3 

ON CHARACTERIZATION OF USEFUL 
INFORMATION-THEORETIC MEASURES 

OM PARKASH, R. S. SINGH 

A characterization of the unified measure associated with a pair of probability distributions 
and a utility distribution, under a set of axioms has been provided. An interesting aspect is that 
under suitable additional boundary conditions, this unified measure gives rise to two useful 
information-theoretic quantities which lead to Kullback's information and Kerridge's inaccuracy 
concepts. 

1. INTRODUCTION 

Let P = (py, p2,..., p,X 0 < pt < 1, £ Pj = 1, be a finite discrete probability 
; = i 

distribution of a set of n events E = (£ , , £2 , ..., £„) on the basis of an experiment 

whose predicted probability distribution is Q = (qu q2,..., cj„), 0 < qt < 1, £ 9. = 
= 1. 

There are two information-theoretic measures associated with a pair of probability 
distributions which are of great significance in Statistical estimation and Physics. 
One of these two measures is the measure of information known as Kullback's 
information or directed divergence [3] given by 

(i-i) /.[P; Q ] - i J»I log CP*/«»). 
; = I 

and the other is Kerridge's inaccuracy [2] given by 

(i.2) IB[P;e] = - i p i i o g 9 i 
1= 1 

Now we attach a utility distribution U = (i. l ; u2,..., u„) to the random ex­
periment £ = (£j , £ 2 , . . . , £„), where w; > 0 is the utility of the ith outcome £ ; . 
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Thus we have two utility information schemes: 

"E, E2 ... E„] 

(1.3; S= pt p2 ... Pn , Pi,ut>0, ][>,•= 1, 

ui u2 . . . u„ , = 1 

of a set of n events after an experiment, and 

"E! E2 ... E„" 

•4) S* = l 2 

U, U-, 

Чn «.•>-*. > o , 5 > , = i , 

of the same set of n events before the experiment. 

In both the schemes (1.3) and (1.4) the utility distribution is same, because we as­

sume that the utility «,- of an outcome E, is independent of its probability of occurrence 

Pi or predicted probability </,-; ut is only a 'utility' or 'value' of the outcome £,- for an 
observer relative to some specified goal. 

After attaching the utility distribution, Taneja and Tuteja [5], characterized 
a measure corresponding to (1.1), given by 

(1-5) I„[P;Q;U] = S«1-p,log(p i/cj/). 

A similar type of quantitative-qualitative measure corresponding to (1.2), has been 
characterized by Taneja and Tuteja [6] given by 

(1.6) l„[P; Q;U]= - ŻuiPflogq,. 

The object of this paper is to characterize a measure which jointly contains (1.5) 
and (1.6). Also by imposing certain conditions on this measure, we obtain these 
two measures separately and further on ignoring the utility distribution, we obtain 
Kullback's measure [3] and Kerridge's inaccuracy [2]. 

In what follows we shall assume that OlogO = 0 log (0/0) = 0 and all logarithms 
are considered to the base 2. 

2. AXIOMS FOR QUANTITATIVE-QUALITATIVE MEASURES 
OF INFORMATION 

Let I„[pi, p2,..., p„; qu q2,..., q„; uu u2, ..., u„] be the quantitative-qualitative 
measure of information associated with the goal oriented experiment E = (E1,~E2, ••• 
..., £„). In order to characterize the I„[P; Q; U] function, we consider the following 
three axioms: 

Axiom I. The function I„[P; 0; U] is continuous with respect to its arguments 
Pi's, a/s and u,s. 
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Axiom II. (Branching Property.) The function I„[P; Q; U] satisfies the following: 

!,,[pi, p2 , •••, p„; Qu _2, •••, q„; «i, "2, •••,«»] = 

M1p1 + M2n2 
= In-i Pi + P2.P3 p„; _i + « 2 , _3 , • • • . ?« ; , M 3 , . . . , ! . ( „ + 

L Pi + P2 J 

+ (p1 + p 2 ) / 2 r - ^ _ , - ^ - ; ^ i - , - ^ - ; M l , M 2 l 
LPi + P2 Pi + P2 <?i + <Ji .1 + _2 J 

Axiom HI. The quantitative-qualitative measure of information provided by an 
outcome E; is proportional to its utility „ ;, i.e. for each non-negative A, the following 
holds: 

/[p, ; <?,; AM,] = Xl[Pi; q,; M(] . 

Now before proving the main result, we give some results as lemmas based on the 
above axioms: 

Lemma 1. If 

vk __ 0 , k = 1, 2 , . . . , m ; , £ t>k = Pi > 0 ; hfc > 0 , fe = 1, 2 , . . . , m,, 
i t=i 

| > „ = _ i > 0 ; 
_=i 

and 

r t _ > 0 , fe = 1,2, ..., m ; , Z - ^ L = w , - > 0 , for every i = 1, 2 , . . . , . . , 
fc = i ^ A 

2>* 
k = i 

then 

(2A) I_„+„-i[Pi, P2, . . . , P . - _ I , » I , y2, ••-,»«,, Pi+i, •••>?»; 

quq2, ...,q,-.i,hu h2, ..., hmt,qi+1, ...,<?„ 5 

u t , M2, ..., «,._!, rj, r2, ..., r,„., M ; + 1 , ..., M„] = 7„[F; Q\ U] + 

r T^l V2 Vm '71 ' ' . ''m-
+ Pi Im - , — , . . . , — ; — , — , - • • , — ; ru r2, • •., . m 

LPi P; Pi 4< <?i "7; J 
Proof. We shall prove the lemma by induction. For m; = 2, (2.1) reduces to 

Axiom 11 i.e. our lemma is true for m; = 2. 

Now applying (2.1) for m; in Im.+n, we get 

(2.2) lm, + n[Pl, Pi, • • • . P i - 1 , »1,»J, • • • , fm i +l ,Pi+l> •• ' ' P» I 

. 1 , _ 2 , •••» _ . - l , !*1, *»-, - .- , &«,+ _, « i + l , •••><?" I 

M1; u2, ..., M,_ !, r1; r2, ..., r,„.+ 1, «,+ 1, ..., «„] 
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= l"+i[pi, Pi,--- Pi-t,vi,p,pi+u •••. Pn; 

</,, </2, ...,-</,--!, huq,qi+i, ..., gn; «,, ti2, . . . , « ;_ ! , r l5 u, ui+i, ...,«„] 

+ - / T ^ iJii±i - _2 l'm.+ l . ,. r 1 

'"' LP ' ' p 3 ' ' 3 "' • J 

r2.3) = / „ [ P ; e ; u ] + P ; / 2 ^ , ^ ; / ^ , ^ ; r 1 , i 7 l + 
LPi Pi <?i <7; J 

+ P / _ T ^ ESU+J;** *=i±l; ,-_,. ...,-,„,. 
L P P q i 

(Using Axiom II in (2.2)) where 

P = 'o2 + i'3 + . . . + i'„„+i) , <7 = (h2 + h3 + ... + h,„.+ l) 

and 
_ (r2v2 + r3v3 + ... + r,„.+ lvm.+ l) 

Now for n = 2, Axiom II is 

(2.4) /,„,+ i r ^ , . . . , ^ ; / ! i , . . . , , ^ ; r 1 , . . . , ) - m i + 1 l = 
LPÍ PÍ li ch J 

- W a l \ * ; - \ . £ ; r . , i i 
P Í P ; <?,- l i 

-V-J^.---^;ћ^--^;^--^wil 
7 LP P Ч <! J 

Using 2.4) in 2.3), we see that the result of the lemma is true for m. + 1)-
Hence by induction, lemma follows. D 

The above lemma can be extended easily in the following form: 

Lemma 2. If 

Vu _ 0 , . / = 1 , 2 , . . . , nil, X vij = Pi > °. Z Pi = l a n d ,,;/ - ° ' 
j = i i = i 

./ = 1,2,..., m,-, 

_j /i,7 = <:/; > 0 , X </,- = 1 and r,. _ 0 , j = 1, 2, ..., m,-, 
y = ) i = i 

I »"u»y 
i_J — u . > 0 , for every i = 1, 2, ..., n , 

7 = 1 
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then 

(2.5) /nm„[V; H; R] = In[P; Q; U] + 

+ 
v г Г и п Vim< hn hin 

'=' LPi PÍ í i fl. J 

Now we come to the main result of this paper. 

Theorem 1. The function I„[P; Q; U] satisfying Axiom I - I I I determine the func­
tion /„ as 

(2.6) In[P; Q; U] = A £ uiPi log Pi + B £ M j P | log q ; , 
i = l i = l 

where A and B are arbitrary constants. 

Proof. In Lemma 1, if we replace m; by m, and substitute 

vtJ = \\mn , n y = 1/rs , r y = 1 
and 

Pi = l/m , a; = 1/r , w, = 1 , for every i = 1, 2, ..., n and j = 1,2,..., m 

where m, rt, r, s are positive integers such that 1 _ m 5S r, 1 = H ̂  s, then we obtain 

(2.7) F[mn; rs; 1] = E[m; r; 1] + E[n; s; 1] 
where 
(2.8) F[m; r; 1] = / [ l /m, ..., l/m; 1/r, ..., 1/r; 1, ..., 1] 

Now (2.7) is Cauchy's functional equation in two variables and its most general 
bounded solution ([1], Chapter 5), is given by 

(2.9) F[m; r; 1] = A' log m + B' log r 

where A' and B' are arbitrary constants. 
Now we prove Theorem 1 for rationals and the continuity of /„ proves the result 

for reals. 

If m, r, i\ and tt are positive integers such that Y,ri~m^ E U = r a n ( l if w e P u t 

i = i ; = i 

vtJ = l/m, hy = 1/r, rtJ = 1, and P ; = rtjm, qt = rf/r, M; = 1, for every i = 1, 2, . . . 
..., n, then an application of Lemma 2, gives 

(2.10) / [ l /m , . . . , l/m; 1/r, ..., 1/r; 1 , . . . , 1] = I„[P; Q; 1] + 

+ tl»,/[l /rJ , . . . , l /r l;l /» f , . . . , l /t l;l , . . . , l] 
i = i 

or 

(2.11) F[m; r; 1] = I„[P; Q; 1] + J P ; F[r£; f;; l] 
i = l 

Using (2.9), (2.11) gives 

(2.12) 1„[P; Q; 1] = (A ' log m + B' log r) - £ P ; (A ' log r ; + B' log fr) 
> = i 
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Since £ pt <= 1, we have 
1=1 

(2.13) T„[P; Q; 1] = A t p. log pt + B f p; log «, 
i = l i = l 

where A = — A' and B = — B', are arbitrary constants. 
Now in Axiom III, setting M; = 1 and X = M;, for each /, we get 

(-•14) /[?.;.!!«.] «MOi.«/;i] 
Using (2.14) in (2.13), we get (2.6). D 

On ignoring the utility i.e. taking M; = 1 for every /, we get 

h[P; 6] = ^ I p, log p, + 5 £ p, log .7,, 
i = l i = l 

which is an information-theoretic quantity associated with a pair of probability 
distributions characterized by Sharma and Taneja [4]. 

3. APPLICATIONS TO INFORMATION THEORY 

As remarked earlier, Kullback's information and Kerridge's innaccuracy are 
two information-theoretic measures which are particular cases of the results studied 
by Taneja and Tuteja [5], [6] and their characterizations are given below: 

Theorem 2. The function T„[P; Q; U] under Axioms I —III and satisfying 

(3.1) I2[P; P; U] = 0 , pe(0, 1) and « > 0 

and 

(3.2) I2[\, 0; i, i; 1, 1] = 1 

is given by 

(3.3) T„[P;Q;U] = fjuiPi log (pjqt) 
i = l 

Proof. Using (3.1) in (2.6), we get A + B = 0. 

Also using (3.2), (2.6) gives A = 1 and B = — 1. Substituting these values of A 
and B in (2.6), we get (3.3), which is a result studied by Taneja and Tuteja [5]. 
Further on ignoring the utility (3.3) gives Kullback's information [3]. Q 

Theorem 3. The function In[P; Q; U] under Axioms I —III and satisfying 

(3.4) T3[pu p2, p3; qu q2, q2; uu u2, M3] = 

, r u2p2 + u3p3~\ 
= I2 Pu Pi + p 3 ; tji, q2; - i , - ^ — 

L p2 + Ps j 
and 
(3-5) I2[h i; i, i; 1, 1] = 1, 

250 



is given by 

(3-6) / „ [ P ; e ; U ] = ~ t UiPt log Qi 
i = l 

Proof. Using (3.4) and (3.5) in (2.6), we get A = 0 and B - - 1 . Thus (2.6) 
reduces to (3.6), which is a result studied by Taneja and Tuteja [6]. 

Further on ignoring the utility, (3.6) gives Kerridge's inaccuracy [2]. Q 
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