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K Y B E R N E T I K A — VOLUME 16 (1980), NUMBER 2 

Convergence Properties of Adaptive Threshold 
Elements in Respect to Application 
and Implementation 

WERNER SCHOENBORN, GERD STANKE 

Referring to the convergence proof of the error correction algorithm estimations of the upper 

bound tg of correction steps and of the sufficient weight interval (— wg, + wg) in digital implemen­

tation are derived and illustrated. Both tg and wg depend on the gap 2 J between the convex hulls 

of classes in pattern space. The estimations give tg ~ | jc|m a x /J2 and wg ~ |*|max/<4, where |* | m a x 

is the largest pattern vector of both classes. 

1. INTRODUCTION 

Adaptive threshold elements (ATE) are used to realize or to modify linear dis­
criminant functions in a training (learning) process. ATE are applied as basic building 
blocks for learning systems (hardware) and for iterative determination of discriminant 
functions with aid of computers (software). They are simple realizable. There exist 
numerous detailed descriptions of the convergence properties of training algorithms 
and of the classification properties, e.g. [1, 2, 5, 6 and 9]. 

The convergence proofs show that for the case of linear separability a solution is 
found after a finite number of correction steps. For practical purposes it is unsatis­
factory proving only the finiteness of the number of correction steps without giving 
a bound. In the third part of this paper an estimation of the upper bound in relation 
to the gap between the convex hulls of pattern classes is derived. 

The fast progress of digital circuits has an important influence on the recent 
implementations of ATE, e.g. [3, 13 and 11]. These constructions are characterized 
by a limited number of bits for the parameter values of the discriminant function. 
Therefore the possibilities for the implementation are restricted. In the fourth part 
a relation is derived between the gap width and the weight interval ensuring conver­
gence. The results of the 3rd and 4th part are connected in the 5th part. 

For illustration the estimations of tg and wg are applied on the special case of 
threshold functions in BOOLEAN space. 



In the following part the properties of ATE are illustrated and basic definitions are 
introduced. 

2. PATTERN SPACE AND d-SEPARABILITY 

Patterns are characterized by n-component vectors x in ^"-space. Let Jfl and Jf2 
be two pattern classes. In the linearly-separable case a pair of hyperplanes exists 
separating these classes. The hyperplanes are determined by the normal vector 
M>+/]H>+|, the signed distance a from origin and the distance 2A > 0 between the 
hyperplanes (Fig. 1).*) 2A denotes the distance between the convex hulls of J f l 
and JT2. 

Fig. 1. Two-class problem with hyperplane distance 2A and gap width 2A in #"-space. 

The decision rule is 

(1) 

l\A =>xe^l 
I <; -A =>xe XI 

otherwise => rejection. 

The inner product of vectors is not especially indicated. For the following con­
siderations it is useful to introduce ^t-space (defined by the augmented pattern 
vector y), the weight vector w and a parameter S: 

*) Notice that in all figures underlined letters denote vectors (printed by bold letters in the text). 



w = (w\wn+1)
 1 6 1 

, „ y=(x,xn+1) for x e J f l 
(2) j = ( - x , - x „ + 1 ) for x e / 2 

5 > 0 . 

Using Eq. (2) we can write for Eq. (1) 

(3) wy = 8 , 

(4) with a = — X„+1W„ + 1/ |H>+ | and A = <5/|H>+| . 

To separate j f 1 and JT2 we have to find a vector w satisfying wy > 0 for all y. One 
of the algorithms doing this is the following well known error correction algorithm 

wt arbitrary 
(5) wt+1 = wt + yyt if wty, < 0 

with 0 < e ^ y ^ c < c o , 

where y is the correction factor and t denotes the correction step. Only patterns y 
misclassified during the adaption process cause corrections and are accounted to the 
y, sequence. 

Bounds for the number of correction steps and the sufficient weight interval can 
be obtained only when some assumptions are made concerning the type of separa­
bility. Starting point is a definition of separability with gap. A definition given in 
[10] will be expanded. 

Definition 1. Two classes X I and JT2 are said to be Separable if there exists 
a weight vector w with 

wy = 8t > 0 and \w,\ g l , i = 1,2,..., n + 1 . 

Definition 2. Two classes J f l and X~2 are said to be max-8^separable if they are 
c^-separable but not (8 + e)1-separable with e > 0. 
Figure 2 shows examples for the Definitions 1 and 2. 

3. UPPER BOUND OF CORRECTION STEPS 

Linear separability is assumed. Then the proof shows that algorithm (5) yields 
a solution vector after a limited number of correction steps, and the correction bound 
is especial a function of the gap 22. 

Let wd be a solution vector of the region Ws containing all w with wy > 8 (Fig. 3). 
Then each aw6 for a > 0 is a solution vector of the solution region if0 containing 
all w with wy > 0 (Fig. 3). We only consider such y of the (cyclical) pattern sequence 
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Fig. 2. Illustration of the Definitions 1 and 2 in the weight space. Each class contains only one 
pattern. The hatched region for S^separability in a) degenerates to one point for max-S^sepa-

rability in b). 

Fig. 3. Solution region •#"„ for wy > 0 and i T s for wy ^ <5. 

which lead to a correction. Then the following relations are valid (compare also [2]): 

wt+1 = wt + yyt, 

(6) wt+i - aws = w t - awd + yyt, 

\wt+i - aws\
2 = \wt - aw6\

2 + 2ywtyt - 2yawdyt + y2\yt\
2 , 



with wtyt g 0, wsy, ^ <5 and |j>2| ^ \y\2
ma% Eq. (6) yields 

(7) K + i - a ^ l 2 = K ~ <™s\2 ~ 2ya8 + y2\y\2
max . 

Starting with the weight vector M>! we obtain after t corrections 

(8) K + i - °™s\2 = |wi - «wa|2 - t(2ra<5 - y2\y\2
max) • 

If Wj = 0 is chosen and 0 :g \wt+1 — aws\ is taken into consideration, then from Eq. 
(8) follows 

0 g « 2 | M > , | 2 - . ( 2 y a ^ - ^ | 2
m „ ) . 

After rearrangement we obtain 

(9) t* cť\w,\ 
2yaS - 72|j>|majc 

Since t must be positive the same follows for the denominator of Eq. (9) and finally 

(10) a > Ms. . 
V ! 26 

Relation (10) ensures the step by step approach of wt to aws. With tg as upper bound 
for the number of correction steps in Eq. (9) the minimization in respect to a yields 
for 

(„) . - * £ -
the correction bound 

(12) ,, = klktell 

in ^t-space. The estimation of correction bound tg in Eq. (12) gives a minimum if, 
for a given 8, the shortes solution vector is taken as ws or, for max-81-separability, 
<5j and w(8t) are put in. 

However, a relation between the correction bound tg and the gap 2A in ^"-space 
would be quite clearer. Eq. (12) can be written as 

03) I , - ( N L . + ^ . ) K | 1 ;""". 

With A = 8j\w+\ and a = -wn+1x„+1/ |H>+ | follows 



164 We only know \a\ < \x\mm about the value of a and with 2 for A we obtain 

Ix lL . + x2
n+1f (14) 

Figure 4 illustrates Eq. (14). 

log (tgâ*5 

t„ = 
.2 J2 

Fig. 4. log 0 g ^ 2 ) as function of Id (xn+1) with | j r jm a I as parameter. 

Figure 4 shows that an inadequate choice of the (n + 1) th component can in­
crease tg at some orders. In the literature x„+1 is in general chosen independently on 
|*|max- The minimum of tg with respect to xn+1 is 

(15) t. = 4^ for xn+1 = \xi 

Eq. (15) gives a direct dependence of the correction bound tg on the gap 22 and the 
largest pattern vector |x|max in ^-space. 

The rearrangement of Eq. (15) results in 

(16) 2 < 2\x\mJjt. 

After t corrections the following statement can be made, the gap is less than or equal 
to the right side of Eq. (16). 



4. SUFFICIENT INTERVAL OF WEIGHTS 

Theorem 1 gives the basis for the convergence of algorithm (5) in case of a limited 

number of bits for each weight. 

Theorem 1. If X I and X 2 are c^-separable a n d if y is chosen 

( 1 7 ) 0 < y < nr-
then algorithm (5) with the additional condition |w;| ^ 1, i = 1, 2,..., n + 1, leads 

to a solution after a finite number of corrections. 

For proving this we go back to part 3. From Eqs. (7) resp. (10) follows that for 

0<y <YY~ 

w approaches any w e ifd at each correction. For proving this put a = 1 and deter­

mine y for 

y to | H - ( + 1 - wd\
2 - \wt - wa\

2 < 0 . 

How is the influence of weight limitation? Let wa be a vector outside the bounded 

hypercube and wb the nearest vector to wa inside the bounded hypercube, then we 

can show for all vectors w inside 

\wb — w\ < \wa — w\, 

particularly for w e -Ws, too, where nrb is the bounded region of iVi (hatched in 

Fig. 2). The vector w enters the region "WQ during the step by step approach of w 

to ifd. This completes the proof. 

For 

25. 
y > 

ML,(i-<5?) 
examples can be given, where w oscillates during training (Figure 5). Therefore 

estimation (17) can not be essentially improved. 

For digital implementations (pattern components and weighting coefficients are 

digital) algorithm (5) has to be chosen with integer y. An appropriate choice is y = 

= y = 1. From Theorem 1 follows: 

Corollary 1. Supposing 8^separability and putting y = y = 1 in algorithm (5) 

the following interval (—wg, +w s ) of weights is sufficient for convergence: 

(18) w . ^ Љ 
2Ő X 



~w 

Fig. 5. Example for a not convergent training with 
^ + i - - » . * ^ o ( M - b 2 l - - ) -

For |WJ| < wg the correction factor ywg with y < 2<51/|j>|max according to Eq. (17) 
ensures that M> enters the bounded solution region, and fixing wg by ywg = 1, for 
digital implementation of algorithm (5), results in 

W f f > J _ J k . 
9 25, 

Demanding a separation gap 3 < <5X the same arguments lead to 

(19) w. > M"1" . 

The Ineqs. (18) and (19) are related to the $t-space. In the following the dependence 
of wg from |x |m a x and 2_" in #-space will be determined. 0 = <5/|M>| is introduced as 
auxilliary variable. With _ = 5j\w+\ and a = — wn+1x„+1l\w+\ we find 

(20) ! = -H_ = ^-Ă^УÃ^éУ 
As in Eq. (14) also in Eq. (20) only \a\ < | „ | m a x can be assumed: 

_ — < 1 + Ѓ) 



resp. 

> 
x„+iA 

In case of max-8rseparabiUty there is at least one |w,| = 1 and hence |H>| ^ 1 as 

well as 

Inserted in Eq. (18) and with 2 for A we obtain 

2xn+12 

resp. 

(21) w=_*L, + x2„+1y_ 
2xn+12 

Figure 6 illustrates the influence of xn+1 on the sufficient interval of weights. The 

Fig. 6. Id {wgA) as function of Id (xn+l) with | x | m „ as parameter, 

minimum of Eq. (21) with respect to x„+ x is 

(22) 
w° = ъlf 2 foг X « + 1 = N-/V2. 



168 If wg is fixed by the implementation then the convergence of algorithm (5) is ensured if 

V27І4 
4 w„ 

and x„+1 = IxLrf/V2-

Demanding the separation of classes with a zone width 2 J near 2A Eq. (19) yields 
for the sufficient weight interval 

(23) w„ = fe + ->2+1)_3/2 for 0 ^ I < 2 

resp. 

(24) 

2xn+1{2- Л) 

w УІE tìk f o r oѓЯ<2 and xn + 1 = U U / J 2 . 
9 4 4 - <d ' ' , v 

Figure 7 shows the hyperbolic growth of wg for 3 -+ 2. 

Wg 

0 0,5 2 'A' 

Fig. 7. Sufficient interval of weights (— w , +w) depending on A and A. 

5. INTERVAL OF WEIGHTS AND CORRECTION BOUND 

In what respect does the interval of weights influence the statements for the cor­
rection bound? The basis for estimating the correction bound tg is the step by step 
approach of w to a vector OLWS with wd e W^ Is ws specified by w, where w is the solu­
tion vector for max-5 ̂ separability, Eq. (11) yields for y = 1 an a = |_v|max/<5i- As 
in Figure 8 is shown, aw lies in a hypercube with the half edge 

(25) 
öi 



Fig. 8. Hypercube with w for max-S ^-separability and xw of the convergence proof to algorithm (5). 

By a limitation of weight to |w,| ^ |j|max/<5i the correction bound tg according to 
Eq. (12) is not increased since the impact of limitation at a correction step only leads 
to a stronger approach of w to aw in this step (compare the proof of Theorem 1). 

The comparison of wx from Eq. (25) and wg from Eq. (18) leads to 

(26) 2w„. 

The statements for the correction bound in part 4 allow a limited interval for the 
weights of + wa = + 2w9. 

6. EXAMPLE: BOOLEAN THRESHOLD FUNCTIONS 

The separation problem in BOOLEAN space is a well known special case. For 
lower dimensionality the interval (—wmax, +wmax) of weights is known being suf­
ficient for the realization of all threshold functions according to 

under the condition 

wy ^ 1 with yt = ± 1 

YJ |WJ| = minimum 

[4, 7 and 12]. Therefore we have all information to determine tg and wg. 
The number of all existing threshold functions and the maximum weight wmax for all 



170 dimensions :§8 are given in the 2nd and 3rd row of Table 1. For the dimension n 
we obtain \y\mux = n + 1. With 51 = l/|w|max Eqs. (12) and (18) lead to 

(27) 

and 

(28) 

ř = (И + l ) 2 w2 

n + 1 

dimension n 1 2 3 4 5 6 7 8 

threshold function 4 14 104 1882 94572 15028134 8,38. 109 1,76. 1 0 1 3 

maximum weight и ' m a x 1 1 2 3 5 9 18 42 
correction bound tg 4 9 32 225 900 3969 20736 142884 
sufficient weight wg 1 1,5 4 7,5 15 31,5 72 189 
bits for (— wf, +wg) 2 3 4 5 5 7 8 9 

The 4th and 5th row of Table 1 contain tg and wg. The 6th row contains the needed 

bits for the interval (— wg, + wg). 

It should be remarked, that the estimation (27) and (28) are not related to optimum 

conditions for tg or wg and accordingly they give too large values. 

For higher dimensions n an upper bound of wmax can be used [7]. 

7. SUMMARY 

Basing on the convergence proof of the error correction algorithm for ATE (5) 

and referring to the gap 2A in S-space estimations of the correction bound tg (15) 

and of the sufficient interval ( — wg, +wg) of weights (22) for digital implementation 

were derived. The estimation of tg yields an upper bound for 2A in dependence on 

the actual number of correction steps (16). In case of bounded interval of weights 

the estimation of tg is preserved if the interval ensuring separation is doubled. The 

interval of weights ensuring separation is also given for adapting a zone 2A < 22 

(24). As an example the well known BOOLEAN threshold functions are used for 

a concrete determination of values for tg and wg. 

(Received May 13, 1977.) 
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