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K Y B E R N E T I K A - V O L U M E 26 (1990), N U M B E R 3 

SINGLE-SWEEP TIMING SIMULATION 

PETR PAVLÍK, JIŘÍ VLACH 

Timing simulators of digital integrated circuits provide an electrical simulation of time char­
acteristics which can detect hazard states, spikes or race conditions in the logic design. The de­
scribed method NMSS (no matrix, single sweep) can be used either as a simple tool for the personal 
computer, enabling the design of blocks of hundreds MOS transistors, or as a part of a mixed-
mode simulator for large design systems. 

The method uses a simplified charge conservation model of MOS transistors. The circuit 
matrices are not built, only vectors obtained by scanning the network description in a single 
sweep are stored. No algebraic equations are solved, the unknown values of node voltages are 
obtained by an explicit integration in the time domain, using a variable two-step predictor/cor­
rector method. The method is powerful enough to handle transmission gates, floating capacitances, 
or oscillating circuits. However, it is inappropriate for bipolar transistors or stiff systems (e.g. 
memories). 

The method was realized in the timing simulator WATTIME at the University of Waterloo, 
Canada. It combines the benefits of both electrical and logic approach: The even-driven simulation 
uses a status of node, similarly to logic simulators, but the designer can choose among analog, 
multilevel or binary output for each node. The simulation is about one and half order faster 
than SPICE. 

An example of a ring oscillator is given which is a usual test for electrical simulators, showing 
the resulting waveforms both in the electrical and digital representation. 

1. INTRODUCTION 

In the analysis of digital circuits, there is a constant demand for speed improvement. 
The early timing simulators of the last decade such as MOTIS [1] sacrificed accuracy 
for speed. On the contrary, the classical simulators as SPICE [2] or ASTAP [3 J 
have represented an about one and half order slower but reliable and accurate tool 
for the circuit analysis. 

In this decade, the gap between classical and timing simulators was filled by 
relaxation-based simulators [4] which substitute certain part of the classical simula­
tion by an iteration process. This can be done at three levels: 
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LEVEL 1: System of differential equations in the time domain (Waveform Relaxa­
tion, RELAX 2 [5]) 
LEVEL 2: System of nonlinear equations after discretization of differential equations 
of Level 1 (Iterated Timing Analysis, SPLICE 1.6 [6]) 
LEVEL 3: System of linear equations in the loop of the Newton method which 
solves nonlinear equations of Level 2. 

At levels 2 and 3, integration and equation solving can be combined into a single 
block. These are so called Single Sweep (or single pass) methods, and their formulas 
can be derived as a limit case of levels 2 and 3 if only a single iteration is performed 
per time step. Such formulas lead to algorithms which are close to timing simulators 
and they often have this name. 

Yet a more detailed classification can be made: By substituting certain part of 
a classical simulator by a single iteration, implicit single sweep methods are obtained 
(as the integration method in classical simulators is traditionally implicit). On the 
contrary, another class of explicit single sweep methods exists, and this one is 
explained in this paper. The explicit formulation also offers the means for no-matrix 
approach where the equations are formed by scanning device tables only. The 
combination of both principles, i.e. No Matrix and Single Sweep (NMSS) has become 
a theoretical background of the simulator WATTIME developed at the University 
of Waterloo, Canada [7]. 

2. EXPLICIT TIME DOMAIN INTEGRATION 

In the time domain, the system equations of an MOS digital circuit are 

Q'(V) + G(V) = J (2.1) 

where Q'(V) denotes the time derivative of node charges (i.e. capacitive currents) 
and G(V) expresses the effect of nonlinearities connected to each node (i.e. resistive 
currents). The external current sources / are supposed to be zero (a voltage driven 
circuit). 

Using a piecewise linear charge model, the term Q' can be linearized within certain 
region to obtain 

CV + G(V) = 0 . (2.2) 

Assume that the resistive nonlinearities are described by equations I; = Gt(V). 
Their values are updated in each new time instant t as they are functions of V(t). 
In the same manner, there must be made an update of the capacitance matrix C 
as it is also a function of V(t) (see Sect. 3). 

The matrix C contains contributions from grounded capacitances, floating capa­
citances, and transcapacitances. As a necessary condition for further derivation 
it is assumed that each node has a nonzero capacitance (constant or dynamic) to 
ground at any time instant. 
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There are two basic ways how to integrate (2.2). The first way corresponding 
to classical simulators and their relaxation-based improvements applies an implicit 
discretization formula 

V'n = ~ KV„ + ^Vn-X + ••• + *kVn-k) (2-3) 
K 

Substituting (2.3) into (2.2) a set of nonlinear equations is obtained 

f(Vn) = ^CVn + G(Vn) + const. = 0 . (2.4) 
K 

The implicit relaxation-based simulators either solve (2.4) as N decoupled one-
dimensional nonlinear equations (Level 2) or as a whole system of N nonlinear 
equations (Level 3). The relaxation principle is then applied either as a sequence of 
one-dimensional Newton steps or the linear system of the multidimensional Newton 
step is decoupled and the variables Vx, ..., VN are relaxed. 

When just one iteration per time step is performed (i.e. only a partial convergence 
is allowed) then the limit case for both levels is the implicit single-sweep (timing) 
algorithm 

Vn = F--i - [diag Jn(Vn^)y'fn(Vn_x) (2.5) 

where / = dfjdV is the Jacobian matrix of / . Notice that only diagonal elements 
of / are necessary to be calculated. The equations (2.5) are decoupled, and they can 
be solved using either Gauss-Jacobi or Gauss-Seidel method. There exist also modifica­
tions which calculate the diagonal terms of /„ using a secant method. 

The second basic approach which has been used in the simulator WATTIME is 
to integrate (2.2) explicitly. If the capacitance matrix C is diagonally dominant 
(the grounded capacitances at each node is the necessary but not sufficient condition) 
then it is possible to relax the diagonal elements Ckk. All off-diagonal terms are 
transferred on the right hand side, and the kth equation then becomes 

CkkVk = -Gk(V)-^Ckjv;. (2.6) 
. 7=1 
j*k 

As all external sources are only voltages, the current sources disappear ( / = 0). 
Now instead of discretizing the equation (2.2) using (2.3) the equation (2.6) is 

solved for the unknown V: 

K = ckk
l[-Gk(v)-Y,ckjv;] (2.7) 

J=I 
j*k 

Thus a set of differential equations 

V'=f(V,V) (2.8) 

is to be integrated using an explicit formula 

vn = V„-! + K(hvn + hvU + ••• + AVU) • (2-9) 
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Notice that first V is found and just next an integration formula calculating V is 
applied. This suggests that the solution and the integration are divided into two steps. 

Now the problem is how to estimate the value of V on the right hand side of the 
equation (2.7). Explicit integration methods of the predictor/corrector type bring 
a useful tool to do this job: The predictor Vp is an approximation of V in a future 
time point. Therefore also its derivative represents our best known approximation 
of V. The derivative is obtained easily as an analytical derivative of the predictor 
formula with respect to the variable step size. As the corrector does not require 
to know the future, the value V obtained from the predictor step is used. 

The common feature of all single sweep (SS) methods is to use only one iteration 
for the solution of circuit equations. Thus an explicit SS method uses a single itera­
tion of (2.7) followed by a single predictor I corrector step. In case of good conver­
gence, the corrector is skipped. 

There is an important reason why only a single iteration is used: for the stability 
of explicit methods, it is important that a short step is used. The shorter step, the 
better is the estimate of V for the substitution into (2.7). In the combination "equa­
tion solving + integration" the process appears like shifting each iteration of (2.7) 
a step hn ahead instead of making several iterations at the end of a bigger step Hn = 
Yfin- Yet another but less significant advantage of the small step is the closer ap­
proximation of edges of the piecewise linear model of MOS transistor charge. 

3. DEVICE MODELS IN THE SIMULATOR WATTIME 

As the circuit model is the most time consuming part of the simulator, the minimal 
number of model calls is the goal (mostly one call per time step). There is also 
a reasonable compromise between the complexity of the model and the accuracy. 
WATTIME has two levels of MOS models: 

1. Constant threshold voltage and substrate potential. The conductance degrada­
tion is neglected. 

0. The same as Level 1 but also Miller capacitances CGD and CGS are neglected. 

The model equations have been obtained as a time derivative of the model [8]. 
The less important terms were neglected. As Level 0 is a simplification of Level 1, 
only the latter will be described. 

The condition of charge conservation is 

QG+ QS+ QD+ QB = 0. (3.1) 

The indices G, S, D and B correspond to gate, source, drain and substrate nodes. 
Assuming a constant substrate potential V£ = 0 and making a time derivative, 

Q'G + Q's + Q'D = 0 (3.2) 
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is obtained. Denote 

Kat =VG-VS-VT (3.3) 

where Vsat is the saturation voltage. According to its value, the model consists of 
three regions: 

1. Off-region. Vsat < 0 and the channel D —S is closed. Then 

IDS = 0 . (3.4) 

and as V'B = 0, it follows that 

QG = C0XVGB = C0XVG (3.5J 

where Cox is the oxide capacitance. In this region, Q'D = Q's = 0. 

2. Sa tu r a t i on region. 0 ^ Vsat ^ VDS. The channel current IDS is purely qua­
dratic 

IDS = ~2 VL (3-6) 

while the charge changes as 

QG = iCoxVGS . (3.7) 

Assuming that the channel charge is divided into 60% source charge and 40% drain 
charge and making a time derivative, 

Q's = ~IC0XVGS, Q'D - -f*5CoxVGS (3.8) 

is obtained. The corresponding transcapacitances are not symmetrical: 
l O ^ n s-1 6 •*! 

GS ~ H ^ o x 5 ^SG — r5^ox •> 

CGD ~ 0 , CDG = J5C0X 5 (•'•") 

CDs = ~YJCOX , CSD = 0 . 

As the charge derivatives are sufficient for the simulation, the transcapacitances are 
used for illustration only, or for comparison with measured data [8]. 

3. Tr iode region. Vsat > VDS. The channel current is 

IDS = PVDS(Vsat - \VDS) (3.10) 

while the gate charge becomes 

QG = \C0X(VGS + VGD). (3.11) 

For 50/50 partition of the channel charge 

Q's = ~iC0XVGS , Q'D - - |Co xVG D , (3.12) 

just simple capacitances illustrate the model in this region: CGD — CGS = iCox. 
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4. NO-MATRIX APPROACH 

For substitution of the MOS model into the kth circuit nonlinearity Gk(V) and 
into the equation (2.7), the charge change contributions YS^^S a r e n e c e s s a r y to 
be calculated. The minimal number of table scans is the matter of the optimal order­
ing of the substitution process. The cue is the form in which the contributions of each 
transistor to the right hand side of (2.7) are expressed. 

Using the method NMSS, the channel currents IDS are added to the right hand 
sides of Dth and Sth equations: 

GD(V) = ...+IDS, (4.1) 

GS(V) =...-IDS, 

while the charge changes, as e.g. Q'G, correspond to the contributions to their right 
hand sides. For Q'G it is the Gth equation: 

ZcGjv: = ...+Q'G, (4.2) 
y = i 
j±G 

Notice that the indices G, D, S are local for each transistor. Thus two different 
transistors the gates of which are connected to different nodes have different values 
ofG. 

It is obvious that no matrices are necessary to be stored, and also no elements 
of the capacitance matrix, except of its diagonal. This is the No Matrix method which 
saves computer memory which is increasing only linearly with the number of MOS 
transistors. Also no multiple pointers are necessary (as it is common for sparse 
matrices). 

Now while not using matrices, there still exist two ways how to organize the 
sequence of computations: 

— E i ther for all nodes k = 1, 2, ..., N the table of transistors is to be scanned if 
G = k, D = k, or S = k holds true. This suggests the contribution to the kth 
node. A decision must follow in which region the transistor works, and after 
that the channel current IDS and the charge changes Q's are calculated and added 
to the kth right hand side. 

— Or all transistors are scanned in a single sweep, and partial sums of the Gth, Dth, 
and Sth right hand sides of (2.7) are updated by each transistor. Notice that three 
equations are updated at a time. This is the second principle of the method NMSS. 

Both approaches have their advantages. For NMSS, the minimum of scans is the 
premium compared with better flexibility of the above described selective search. 
The quadratic terms for IDS are calculated only once for each transistor, and they 
are immediately included into the equations for D and S. 

There is a disadvantage of NMSS method (which can be overcome by parallel 
processing) that only the Gauss-Jacobi method can be applied, and not Gauss-
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Seidel. The reason is that all values of V are known at the last instant, that is after 
the addition of the contribution of the last transistor. 

Let us summarize what is necessary to be stored for the substitution into the circuit 
equations and for the integration: 

— Vector composed of Ckk, k = 1, ..., n: 
— Vector of the right hand side of the equation (2.7). After addition of contributions 

of all transistors and after division by Ckk, this vector will be changed into the left 
hand side V. 

— Table of parameters of transistors containing G, D, S, /?, Fand static capacitances 
for all regions. This table remains constant during the whole simulation. 

— Old values of V from past time steps. They serve for integration formulas and for 
the estimation of V'n. 

5. THE INTEGRATION ALGORITHM 

For the simulator WATTIME, the highest possible order of the integration 
method has been chosen which still does not involve any solution of equations for 
coefficients of variable-step formulas. 

Such requirements are satisfied by a variable two-step method with a 2nd order 
predictor and a 3rd order corrector. There is another reason why this low order is 
sufficient: Further increase of order usually does not bring improvement neither 
in accuracy nor in convergence, and it may even cause stability problems. 

Denote hn as the length of the previous time step and Xh of the next one. The 
variable order two-step method uses the values V'(t + Xh), V'(t) and V'(t — h), 
denoted as Vn, V'n_x, and Vn_2. 

The second order variable-step Adams-Bashforth predictor formula is 

••[(' ^ = ^ i + ^ i ( i + | ) c i - - ^ ; - 2 
(5.1) 

while the third order variable-step Adams-Moulton corrector formula is 

'± - —i- y+( l - V . + -JL-
,2 6 ( 1 + 4 / " V 6) 6(1 + 2) 

K - K-> + *. ľ ( j - ттт^-.vì K + (z-~) K-, + r т т ^ K-. 

(5.2) 

The integration is easy to start. For the first time step, the time point tn_2 is sup­

posed to be in the far past. Therefore hn -> 00, and as X = hn+1jhn, for the first step 

X = 0 is set and the Adams-Bashforth formula degenerates into Euler forward 

Vn = Vn_l + hnV:_1, (5.3) 

and also the Adams-Moulton formula degenerates into the trapezoidal formula 

V„ = Vn^ + hn(^ + Wn-i) • (5.4) 
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Thus for the first step the same formulas as for next steps can be used. The only 
difference is to set X = 0 which excludes the terms with the unknown V'n_2. 

For the integration algorithm used in WATTIME, the corrector is expressed as 
a difference (corrector — predictor) which saves mathematical operations: 

AVU = V„ - V; = hn(aV'n + $V'n_x + yV'n_2) (5.5) 

where a = (\ - (A/6(l + X))), ft = - ft + (X/3)), y = Xa. 
Notice that 

a + p + y = 0 (5.6) 

which is a general property of the corrector-predictor difference. This can be proven 
when both predictor and corrector approximate a straight line where V'n = V'n_x = 
= Vn_2. As AVn = 0, and the derivative is not identically zero, the sum must be. 
As a, p, and y are functions of X only, the property will hold true in general case. 

This property enables to formulate (5.5) as a(Vn — Vn_2) + fi(V„ — V'n_2) which 
saves one vector-by-scalar multiplication. The final formulas used in WATTIME 
first calculate the modified coefficients 

X 
Pi = ~ K , p2 = Pi + hn (5.7) 

which are substituted into the predictor formula 

Vl=Vn_1+p2Vn'_1-p1V^2. (5.8) 

Next the coefficients of the corrector increment are calculated using the modified 
predictor coefficients 

Cl=E± + El, c2=-^- (5.9) 
2 6 1 + X K ; 

and they are substituted into the corrector-predictor increment formulas 

V„ = V„P + c2(V'n - V'n_2) + Cl(V„'_2 - V'n_x) . (5.10) 

The stability of both predictor and corrector, decreases with growing X. This can be 
prevented either by truncation X ^ 2 or (and better) by control of the step size: 

1. In each time step calculate the predictor value Vp according to the formulas 
(5.7) and (5.8). 

2. Substitute Vp (and the guess of V'n) into the circuit equations (2.7). Make a single 
iteration of (2.7) and calculate the new derivative V'n. 

3. If V(f) is almost linear, set V'n_x = Vn, V'n_2 = V'n_x. Prolong the step and go 
to 1. 

If V(t) is very nonlinear, contract the step and go to 1. 

4. Calculate the corrector V„ using formulas (5.9) and (5.10). 

5. If the corrector-predictor difference is too big, contract the step and go to 4. 
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6. Substitute Vn (and its last calculated derivative as a guess) into the circuit 
equations (2.7). Make a single iteration of (2.7) and calculate V'n. 

7. If V(i) is very nonlinear (a rare case at this point), contract the step, and go to 4. 

8. Set V„'_. = Vn, V'n_2 = Vn_t, and go to 1. 

It can be seen from this simplified algorithm that it is optimized in such a way 
that extra calls of the circuit model are allowed only as an emergency. 

The prolongation factor X is estimated from the relative voltage tolerance s and 
the maximal voltage increment 

A = V ^ T i > i = h-.-,N. (5.11) 
fc, max 17/(0| 

i 

During the simulation, the relative voltage tolerance e changes dynamically within 
the limits 

emin = e = emax . (5.12) 

The value smin is given by the number of decimal places of the output voltage. The 
value emax is given by the maximal voltage swing Fmax — Fmin and accuracy 5: 

W = <5(Vmax - Fmin) . (5.13) 

For well designed MOS circuits, the accuracy <5 = 5% is in balance with the 
accuracy of models of MOS transistors. Even <5 = 100% has given stable results 
in all examples. If 5 < 1% is specified, the number of model evaluations starts to 
increase significantly. However, specifying a very low d (say 0-01%) may help to 
distinguish the integration error from model inaccuracies in case of small test circuits. 

The value of e is controlled by the relative second difference ft 

„ . max m±^=lM., , . i N, (M4) 
i i\v:(t + Aft) + vi(t)\ y ' 

According to fi, the linearity of V(t) is estimated: 

— almost linear /i ^ 0-25 
— acceptable 0-25 = /i = 1 
— very nonlinear /i > 1 

For average circuits, in most time steps only the predictor is calculated. The cor­
rector is necessary in about 20% of steps, and about 10% of model calls are discarded 
due to step contraction. 

6. EVENT-DRIVEN ANALOG SIMULATION 

As the external signal sources are voltages, the system (2.2) consists of JV equations 
for M < N unknowns. The remaining N — M voltages are known constants. 

The usual elimination of constant variable Vfc' would transfer it to the right hand 
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side, and the kth equation would not be built. However, the method NMSS does 
not make any difference between known and unknown variables. The first reason 
is that in ith equation all variables V-, j =1= i are at the right hand side (thus the 
system is built), and no transferring is necessary. 

The second reason is that it is expensive to discriminate between known and 
unknown voltages when scanning the table of transistors. In WATTIME the 
contributions of transistors are added even to the equations for known voltages. 
These equations are only not used. Also during the simulation a known voltage 
may become unknown and vice versa. 

WATTIME uses an event driven algorithm for marking known and unknown 
signals according to their status. The status may be active external (V known, 
V 4= 0), active internal (V unknown), latent external (V known and constant).. 

Fig. 1. Schematic diagram of a CMOS ring oscillator. 

Fig. 2. Computer simulation of a CMOS ring oscillator. 
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latent internal (Vdoes not change but it may) and conditionally latent (Vdoes not 
change but there is a suspicion that it will). 

After the change of any input signal the time of its expected end is put in stack 
and the node is marked as active external. Its fan-outs and their time derivatives are 
examined and their status changed. Thus the integration formulas work only with 
a linked list of equations belonging to nodes active internal. 

WATTIME can mix analog and digital outputs according to the user's specifica­
tions from L-X-H through multilevel logic to analog signals. However, the internal 
calculation of all signals is analog. 

7. EXAMPLE 

A CMOS ring oscillator has been simulated by WATTIME (Turbo-Pascal 5.0, 
PC-XT 8 MHz, V20 processor, 20 seconds). The schematic diagram is in Fig. 1 and 
the hard copy of the computer screen is in Fig. 2. The circuit is essentially unstable 
while its simulation is still stable. Notice the wave spreading in the feed-back loop, 
each waveform being shifted by the gate delay. The comparison between the simulated 
and measured oscillation frequency of such circuit is a very efficient means for 
tuning the device models. 

(Received August 1, 1989.) 
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