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KYBERNETIKA - VOLUME 21 (1985), NUMBER 3 

REPRESENTABLE P . MARTIN-LOF TESTS 

LUDWIG STAIGER 

In some recent papers [2, 3] the problem of representability of P. Martin-L6f tests [5] by 
Kolmogorov's concept of program complexity [4] has been considered. Here we derive some 
simple combinatorial properties of representable P. Martin-Lof tests which enable us to solve 
several problems which remained open in [3]. Moreover by the help of these conditions we 
rcderive and generalize some statements (theorems) of [2] and [3] in a manner which makes 
them more transparent and avoids cumbersome constructions. 

1. PRELIMINARIES 

Let N = (0, 1, 2,. . .} denote the set of natural numbers, and let A/+ =df (J, 2, . . . } . 
For any finite alphabet X, card X = p ^ 2, let X* be the set of words on X including 
the empty word e. For v,w e X* their concatenation is denoted by vw, and Ivvl is the 
length of the word w. 

Throughout this paper let 

v ( l ) v ( ! ) ,.(2) „(2) . v ( 3 ) ,.(3) . (A) 

be a quasilexicographic ordering of X*. Consequently x("\ ..., x^ is a lexico­
graphic ordering of X" = {w : vv e X* & |w| = »}. 

According to [5] we introduce the following notion. 

A subset V £ X* x /V+ is called P. Martin-Lof test (M-Ltest) provided 

(0) V is recursively enumerable , 

(1) for all m e N+ , Vm+i £ V„,, where V, =d f [w : (w,j) e V) , and 

(2) card Vm n X" g t, Z _ 
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In particular, we have 

V„, n X" = 0 , if m ^ n 

(3) card V„_f n X" ^ 1 , and 

card V„_2 n l ' ^ + l . 

Since V, 3 V„, for all m e /V+, and Vm n X" = 0 for m ^ n, the function 

(max {m : w e Vm} , if w e Vt 
m ^ - [ 0 , otherw.se 

is well-defined, and it is referred to as the critical level function of the test V. 
As a further function connected with M-L tests we introduce the extent pv of the 

test V<= X* x N+: 

(4) Pv(m, n) =d f card {w : w e X" & mv(w) = in) . 

Since w e V„, iff mv(w) ^ m. we obtain 

(5) card V„, n AT" = £ JS (̂/, " ) . 

A particular case of M-L tests are the recursive tests V investiged in [3], i.e. tests 
V c Ar* x /V+ fot which an algorithm deciding whether (w, m)e V exists. 

Lemma 1. Let V be an M-L test. Then the following conditions are equivalent: 

(a) Vis recursive subset of X* x /V+. 
(b) mv is a recursive function. 
(c) pv is a recursive function. 

Proof, (a) -> (b) is shown in [3]. 
(b) -> (c) is easily verified by the defining equation (4). 

(c) -» (a) In view of Eq. (5) an algorithm deciding (w, m) e Vis described as follows. 

Compute n = |w| and enumerate V up to £ />K(/, n) distinct pairs (v, m) with \v\ = n 

appear. Check, whether (w, m) appeared in the enumeration. • 

We define still another subclass of M-L tests. An M-L test V is called weakly 
recursive provided the set 

ffK =df{(w,mv(w)):weVl} 

is recursively enumerable. (£K is the graph of the partial critical level function 

,/ \_ .[max {m : we Vm} , if w e Vt 
v^ ' df [undefined , otherwise . 

Hence an M-L test V is weakly recursive iff its partial critical level function m'v is 
partial recursive. Clearly, every recursive M-L test is also weakly recursive. 
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2. REPRESENTABLE M-L TESTS 

To the concept of M-L test one can relate in some sense the concept of Kolmogorov 
program complexity, though both concepts are not equivalent [7, 8]. 

For a partial recursive function q> : X* x N -+ X* the Kolmogorov complexity 
function [4] K^ induced by q> is defined by 

, , , _ Jmin {\n\ : n e X* & q>(n, n) = w} , if |w| = n & 3n(q>(n, n) — w) 
,p(wln) -a ^undefined , otherwise . 

If w = q>(n, |w|), the word n is referred to as a program computing w when given \w\. 
Since there are at most pk programs of lengt k, we have 

(6) card {w : \w\ = n & K^wjn) = k} ^ / . 

For evei-y partial recursive function q> : X* x N -* X* the set 

(7) v(q>) =d f {(w, m):we X* &meN+&m < \w\ - K,,(w/|w|)} 

is an M-L test (see Example 10 of [1]). 
As in [2] we call a Martin-L6f test W £ X* x N representable over X provided 

there is a partial recursive function q> : X* x N -> X* such that W = V(q>). If W = 
= V(q>) is a representable Martin-L6f test then its critical level function mw and the 
Kolmogorov complexity function K^ induced by q> are strongly related via 

(8) mw(w) = \w\ - K„(w/|w|) - 1 for w e Wx, 

i.e. to every w e Wt there is a shortest program n of length \w\ - mw(w) - 1 for which 
q> computes w when given |w|. 

From Eqs. (6) and (8) we obtain the following necessary condition (cf. also Theorem 
3 of [3]). 

Proposition 2. If Wis an M-L test representable over X, m e N + , then 

(2') pw(m, n) g p"-'"-1 for all m, n ^ 1 . 

Eq. (2') explains also Example 2 of [2] where it is shown that the Martin-L6f test V = 
= {(000, 1), (010,1), (111, 1)} is not representable over X = {0, 1}. The condition 
(2'), however, is not sufficient for a Martin-L6f test V c X* x N+ to be represent­
able over X. 

Before proceeding to a counterexemple, we mention the following easily derived 
property of representable Martin-L6f tests. 

Proposition 3. If W = V(<,o) is an M-L test representable over X and Pv(m, n) = 
= card {w : we X"&mw(w) = m} = p""m_1 for some n,meN+ then <p maps 
X„-m~i x | w j j n a o n e . to .one manner onto {w :we X"&mw(w) = m}. 

Proof. Since W = V(cp) is representable over X, to every w e X" with mw(w) = m 
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there is a program n of length n - m - 1 for which <p computes w when given n. 
But there are exactly p""m_1 programs of length n — m — 1. • 

Example 1. (A nonrepresentable M-L test.) Let M c /V+ (1, 2, $M) be a non-

recursive recursively enumerable set. 

Define V _ X* x /V+ via K , n I = F 1 n AT2 =d f 0, 

Қ _ x n __"--„, 
{x'/0}, if n e M 
0, otherwise , 

and for n _ 3 

қ _ 2 n л : " = ... = V! n Z " = 
{x<">, x<2"\ ...,x<;-+1}, if » E M 
{x^"', x%\ ..., x£°} , otherwise . 

Clearly, V is a P. Martin-L6f test which satisfies (2'). Moreover card {w :we 
eXn& my(w) = n - 2} = p for all n = 3. 

If V = V(cp) for some partial-recursive q> : J. * x /V -> AT* by Proposition 3 to each 
w e AT" with mv(w) = n — 2 there is a program n of length 1 for which cp computes 
W when given n. Hence 

Define for « ^ 3 

/ M [-' + ] ' i f 3 x ( x e X& (p(x> n ) = x$1) 
7 W df {1, if 3x(x e AT& <p(x, n) = x?>) . 

Since Q? is partial recursive and either x£"+ j e <p(AT, {n}) or x f e (̂Af, {«}), the thus 
defined function/ is recursive. Now, M = f~l(p + 1) is also recursive which con­
tradicts our assumption. • 

Though Eq. (2') is not sufficient for the representability of an M-L test V, an 
additional assumption on the test V will make it representable when satisfying Eq. 
(2'). 

Theorem 4. If V s AT* x A/+ is a weakly recursive M-L test satisfying Eq. (2') 
then V is representable over X. 

Proof. We describe an algorithm computing a function cp such that V = V(cp). 

Let be given the inputs n and n. If {«_[ _£ » — 1 then output cp(n, n) = d f n. 

For |it| _ n — 2 estimate the position g(n) of n in the lexicographical ordering 
of Af1*1 i.e. n = x(

g\'^. Then enumerate GK up to a(rc) distinct elements of the form 
(w, m) with m = n — \n\ — 1 appear (it Pv(m, n) < g(n), q>(n, n) remains undefined), 
and output the first component of this r'th element. 

Since (w, m), (w, m') e l£K implies m = m!, by the above construction to every 
word w belongs at most one program n of length |7i| <; |w| — 2 for which n computes 
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w when given |w|. Moreover, this very program n satisfies 

| J = |w| - mv(w) - 1 , hence mv(w) = |w| — fCv(w/|w|) - 1 

whenever Kp(w/|w|) ^ |w| — 2. 
Finally, the condition (2') fiv(m, n) ^ p"~m~i guarantees that to every w with 

mv(w) ^ 1 (i.e. (w,mv(w))e<£v) there is a program n of length jvvj - mv(w) — 1 
such that q>(n, |w|) = w. • 

Corollary 5. Not every M-L test is weakly recursive, and not every weakly recur­
sive M-L test is recursive. 

Proof. The first assertion follows immediately from Example 1 and Theorem 4, 
and the second one is readily seen by the example 

F = d f {(*<">, \):neM] 

where M = N+ (1, 2 $M) is a nonrecursive recursively enumerable set. ~~ 

For recursive M-L tests we obtain the following strengthening of the Theorems 3 
and 9 in [3]. 

Corollary 6. Let V s X* x N+ be an M-L test. Then V is recursive and satisfies 
Eq. (2') if and only if there is a recursive function cp : X* x N -> X* such that V = 
= V(cp). 

Proof. Let V be recursive. We proceed as in the proof of Theorem 4. Since fiv 

is also recursive, the condition Pr(m, n) < g(n) can be checked, and if /JK(m, n) < 
< g(n) we set (p(n, n) =d f n. 

Conversely, let q> : X* x N t—• X* be recursive. Then the condition K^,(w/|w|) <. k 
is equivalent to 3n(\n\ ^ fc& (p(n, |w|) = w) and is recursively decidable. Now, Eq. 
(7) yields (w, m) e V(q>) iff Kv(w/|w|) <, \w\ — m — 1, which proves the assertion. • 

3. EMBEDDING OF M-L TESTS 

In [3] (cf. Theorem 2) it has been shown that every recursive M-L test V E X* x 
x N+ is embeddable into an M-L test V(q>) representable over X satisfying (w, 1) e 

e V iff (w, 1) E F(<p). In fact, studying the results of [3] more thoroughly, one could 
even prove the following assertion: For every recursive M-L test V £ X* x /V + 

there is a recursive M-L test W representable over X such that V S W and (w, 1) e 
e V iff (w, 1) e JV. 

In this section we solve that question which remained open in [3] whether an 
arbitrary M-L test V s X* x /V+ can be embedded into a representable one. 

To this end we derive the following auxiliary result. 

Proposition 7. Let W c AT* x N+ be an M-L test such that 

p»-- - 1 
card Wm n * " = 

P- 1 
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for some m, ne AV+. If there is a partial recursive function <p : X* x N -* X* such 
that W £ V(<p), then q> maps the set 

{(JI, n) : \n\ ^ n - m - 1} 

in a one-to-one manner onto Wm n J."". 

Proof. Since W _; F(<p) we have mw(w) _ mV{<p)(w) = |w| — K~(w/|w|) - 1 for all 
we W1. Hence for every weWmn X" (i.e. mw(w) ^ m) there is a program nw of 

length |jrw| _ n — m — 1 such that <7>()TW, «) = w. Since there are at most £ p' = 
i = 0 

= ( />"" ' — !)/(/> — 1) programs of length _ n — m — 1 and since card Kra n 
n X" = (p"~ra - l)/(/» — 1), the assertion follows. • 

Now we can construct an M-L test V £ X* x N+ which cannot be embedded 
into any M-L test representable over X. 

Example 2. (A nonembeddable M-L test.) Let A, B £ /V+ (1, 2 £ A u B) be a pair 
of recursively inseparable sets (cf. [6]), i.e. a pair of disjoint recursively enumerable 
sets such that any function / : N H+ N satisfying A £ / _ 1 ( 1 ) and B £ / " '(2) is not 
recursive. 

We define our M-L test W £ X* x /V+ as follows: 

W » n l ' = f), if n 5_ 2 

W„„2 n A-" = ... = Wi n X" = {x(">,..., *« , .} , if n _ 3 , 
and 

[{x^}, if » e A 
^ - ^ 1 " ^ {x(">}, if n e 8 

(0 otherwise. 

Since card Wn^2 n X" — p + 1, Proposition 7 implies that <p(e, «) is defined for all 
n _ 3 if W c V(<p) for some partial recursive function (p. In this case, according 
to the definition of Wn^u we have cp(e, n) = x^ if ne A and <p(e, n) = x2"> if n e B. 
Set 

f(\_ U, if <p(e,«) = xf° and n 2> 3 
/ W " d f J 0 , otherwise. 

Then, since <p(e, n) is defined for all n _ 3, the function / is recursive and satisfies 
/ - 1 ( 1 ) 2 A and / _ 1 ( 2 ) 2 B, a contradition to our assumption. • 

The test of Example 2 can be shown to be not weakly recursive. Thus, it is an open 
problem whether weakly recursive M-L tests can be embedded into representable 
ones. We conjecture that the following more general (cf. Theorem 4) statement be true. 

Conjectured statement. Let W _: X* x A/+ be a weakly recursive M-L test. 
Then there is a weakly recursive M-L test V _; X* x A/+ satisfying Eq. (2') such 
that W £ V. 
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4. A SUFFICIENT CONDITION 

In this section we explain why we have stressed the term representability over X. 
In [2], (cf. Theorem 3) it has been shown that every M-L test V S X* x N+ is 
representable over a larger alphabet Y ^ X, i.e. if we admit a larger quantity of 
programs of every length 2; 1. 

A slight modification of the proof of Theorem 4 yields a simple combinatorial 
explanation of the above quoted fact and moreover, yields some interesting conse­
quences. 

Lemma 8. Let W be a P. Martin-L6f test over X which satisfies 

(2") card W ^ n X " ^ / 1 ^ 1 . 

Then Wis representable over X. 

Proof. We describe an algorithm computing a partial recursive function <p : X* x 
x N -> X* representing W. 

The algorithm computing q> operates as follows: 

Given a program n and an output-length n it estimates m = n — \n\ — 1 and the 
position g(n) of n in the lexicographic ordering of X'"'. Then it enumerates Wm 

up to g(n) distinct elements of length n appear, and outputs this a(7t)th element. 

From (2") it follows that every word weWmn X" has a program n of length 
n — m — 1 for which cp computes w when given |w| = n, and by construction only 
a word w e W„, n X" can have a program 71 of length n — m — 1 for which <p compu­
tes w when given |w| = n. ~~ 

The condition of Lemma 4 is however not necessary. To this end consider full 
P. Martin-Lof tests (cf. [3]), i.e. tests satisfying Eq. (2) with equality. Consequently, 
a full P. Martin-Lof test Valso satisfies Eq. (2') with equality, i.e. ftv{m, n) = p " ~ m ~ \ 
hence V cannot satisfy Eq. (2") unless n = m + 1. Thus, according to Lemma 1 
every full P. Martin-Lof test is recursive and by Corollary 6 also representable 
over X. 

An example of a full M-L test Vis the following: 

Vm n X" = d f |*<-> : 1 š J á -

Although being an easily derived sufficient condition for representability, Lemma 8 
gives simple explanations why an increase of the program resources (cf. Theorem 3 
of [2]) or a limitation of the set to be tested makes Martin-Lof tests representable: 
Since 

1="TW(/> + irm-1, 
p - 1 
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every Martin-L6f test V £ X* x /V+ will satisfy Eq. (2") when we regard V as 
a Martin-L6f test over a larger alphabet Y -a X. This yields Theorem 3 of [2]. 

Corollary 9. Let F £ jf * x /V+ be an M-L test over X Then for any larger 
alphabet Y =3 X the set V is an M-L test representable over Y. 

Define for u e X* and a set V £ X* x N their concatenation uF = d f {(uv, m) : 
: (u, m) e V}. Clearly, if V is a Martin-L6f test over X and u e X* then uV is also 
a Martin-Lof test over X 

Corollary 10. Let u e X*, |w| 5: 1. Then uV is an M-L test representable over X 
whenever V £ X* x /V+ is an M-L test over X. 

Proof. Since /< =d f \u\ ^ 1, we have 

card (uVmn X") = card Vm n X"-fc £ --- — •£ p~m~x, 
/ » - 1 

and the assertion follows from Lemma 8. Q 

It is interesting to note that Corollary 10 yields the well-known (cf. [5]) relation 

(9) mv(w) £ \w\ - K(wj\w\) + cv for all we X* 

between the critical level function of a Martin-Lof test Vand a universal Kolmogorov 
complexity function K (cf. [4]) not utilizing the existence of a universal Martin-Lof 
test. Let V be a Martin-Lof test over X, and let u e X Following Corollary 10, 
there is a partial recursive function <p such that uV = V((p). Consequently 

(10) muV(uw) = \uw\ - Kv(uwl\uw\) - \ 

whenever uweuVltle. weVy. Clearly, 

(11) muV(uw) = mv(w), for all w e X* . 

Since K is a universal Kolmogorov complexity function, there is a c,f depending 
only on cp such that 

(12) Kv(wj\w\) ^ K(wf\w\) - c„ for all w e X* . 

Moreover (cf. [8]), there is a c satisfying 

(13) K(uwl\uw\) ^ K(wj\w\) - c - 2 log \u\ 

for all u, w e X*. 
Now, substituting Eqs. (11), (12) and (13) into Eq. (19) and utilizing |u| = 1 we get 

(9') my(w) S \w\ - K(wl\w\) + c„ + c 

for we Vlt where cv + c depends only on V. If w $ Vt, mv(w) = 0 and (9') is trivially 
satisfied. 

(Received March 23, 1984.) 
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