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K Y B E R N E T I K A ČÍSLO I, R O Č N Í K 3/1967 

On a Classification of Context-Free 
Languages 

JOZEF GRUSKA 

The set E of strings is said to be definable (strongly definable) if there is a context-free grammar 
G such that E is the set of all terminal strings generated from the initial symbol (from all non­
terminal symbols) of G. The classification of definable and strongly definable sets in dependence 
on minimal number of nonterminal symbols needed for their generation is given. 

1. INTRODUCTION AND SUMMARY 

It is well-known that a context-free language can be generated by grammars with 
a different number of nonterminal symbols (metasymbols). In this paper we shall 
investigate context-free languages in dependence on a minimal number of meta­
symbols needed for their generation. It gives a classification of languages — 'J„ will 
denote the class of context-free languages which may be generated by a grammar 
with n metasymbols but not by a grammar with a smaller number of metasymbols — 
and we shall investigate the properties of languages from separate classes. 

In the rest of this paper context-free languages will be called — similarly as in 
papers [3, 4] - definable sets. Therefore, to every grammar C there is associated 
the definable set - L(G) ~ defined as the set of all terminal strings which are gener­
ated from the initial symbol of G. In preceding paper [4], moreover, the set LS(G) -
defined as the set of all terminal strings which are generated from all metasymbols 
of G — was associated to grammar G. These sets were called strongly definable. In 
this paper also a similar classification of strongly definable sets is given. 

Strongly definable sets are investigated in detail in paper [4]. We shall also use 
notations and definitions of that paper. The reader should be familiar with Section 1, 

[4]-
The technical results achieved in this paper are as follows. It is shown that for every 

integer n the class °Jn is non-empty. (Section 2). (This is true even when we consider 
only sets in a given alphabet of just two (terminal) symbols but not in an alphabet 
of just one symbol (Section 3).) The sets from <9>n are called ^-definable. Some pro-



perties of /i-definable sets are investigated in Section 4 and Section 5 but there are 
still many open problems in this area. Similar results are proved for strongly definable 
sets. 

2. CLASSIFICATION IN ALPHABET CONSISTING OF JUST TWO 
SYMBOLS 

For grammars with one metasymbol the concepts "definable set" and "strongly 
definable set" are obviously equivalent. It is natural to inquire as to whether there 
is a strongly definable set which is not generated by a grammar with one metasymbol. 
In the sequel we shall prove that such set exists and, moreover, that for every n _• 1, 
there is a strongly definable set which is not strongly generated by a grammar with 
a less number of metasymbols than n. Similar results will be proved for definable 
sets, sequentially definable sets*) and regular sets. All this is true even for alphabets 
consisting of just two terminal symbols. 

Let srf be an alphabet. Denote 3>* (^;f), n 3; 1 the family of all definable (strongly 
definable) sets in s4 which are generated (strongly generated) by a grammar with /( 
metasymbols but are not generated (not strongly generated) by a grammar with 
a smaller number of metasymbols. The sets from 3»f (S^f) will be called /i-definable 
(fl-strongly definable) in si'. By ,®„ {Sf„) we shall denote the family of all /i-definable 
(n-strongly definable) sets in all alphabets. 

In the remaining part of this section let s4 = {a, b}. We shall prove: 

Theorem 1. <?f + A for n ^ I 

and 

Theorem 2. if* 4= A for n = 1. 

Denote, for every n ^ 1, 

(1) M„ = {ab}x u {a2bY u . . . u {a"b}* = U {a'b}'' . 

At first we shall prove: 

Lemma 1. M, e ®f and M„e9*+i if n ^ 1. 
Proof. The case n = 1 is trivial. Now denote C"+l the grammar defined by the 

set of rules 

(2) /„+ 1 - > / ; , I = 1,2,. . . , / / , 

/,- -» /,«'/) , /, -> a'b , ( = 1 , 2 , . . . . n 

with the initial symbol /„ + 1 . Obviously L(C"+1) = M„ and G"+l consists of just 

* For the concept "sequentially definable set" see [3]. 



(n + 1) metasymbols. Now let G = (s/, V„, M, S> be a grammar with a minimal 
number of metasymbols and such that 

(3) L(G) = M„ 

then G(T) 4= A if T e VN because in the opposite case there would exist a grammar 
with a smaller number of metasymbols satisfying (3). Moreover, if Te VN, T + S 
than there are / and./ such that T -> /, r(/) = Tbecause in the opposite case Twould 
be a reductible metasymbol (see [2]) and we could construct a grammar with a less 
number of metasymbols satisfying (3). Similarly we may assume that T—> Tfor no 
Te VN and that for every Te VN there are x and / such that S => x and x(j) = T 

At first we shall prove that 

(4) if Te VN, T + S, then there are uniquely determined integers i1, s, /, i2 such 
that L S i ^ n, 0 S h = n> ° = '2 = n, 0 g s =M, G(T) c a"/rs{a'/'}0" a'2 

and either s = 0 = /, or s = 1. 

(We shall write i = <p(T)). 
Indeed, it can be readily seen that there are strings P,, P2, Qt, Q2 e ,rf'JJ such that 

T=> P t Tg,, S => P2TQ2 and P,Q, + e. Then S => P2P[TQ[Q2 for every integer j . 
Let x e G(T). Then S => P 2 P i x 2 j g 2 = t e Mn and / = (a'/))y for suitable /, j . Thus, 
there are uniquely determined integers a0, a,, a,, a2, s0, s,, s,, s2, />„, />,, 6,, b2, 52, 
c0, c,, c,, c2 such that 

p2 = (a'bf2 a" , P, = a"'bs'(aib)'" ac' , ,x = aaobso(a''b)ho ac" , 

Q, = ai"bs'(aib)'" a" , Q2 = a52/r'2(a''/>)62 , 

and, moreover, 

either s, = 0 = at = c2 or s, = I , a t + c2 — i, 

either s0 = 0 = a0 = c, or s0 = 1 , a0 + c\ = i , 

either s, = 0 = a, = c0 or s, = I , a, + c0 = i , 

either s2 = 0 = a2 = c, or s2 = 1 , a2 + c, = 1 . 

Let P, + e (the case (^ + E, P t = e is investigated similarly). Then there is a j such 
that P2P

iixQ'{Q2e M„ and the length of PJ is more than 2M + 1. Hence we may 
assume without loss of generality that bt ^ 2; it means that for every x0 e G(T) 
we have P2P\X0QiQ2 - (a'b)'0 for a suitable j 0 . Hence x0 = aaalf°(a'bf aco for 
a suitable k, whereby a0 = i ~ cx, s0 = 1 if c, +- 0 and a0 = 0 = s0 otherwise, 
c0 — i — a, if s, + 1 and c0 = 0 if s, = 1. This completes the proof of (4). 

Now suppose that there is a / such that S => / and t(k) = S for some k. Then there 
are strings P, Q e ^=° such that PQ + e and S => PSQ. That is S => p3„ + 4SQ3n + 4 
too. Assume that P + e. (The case P = s + Q is investigated similarly). Then there 



are integers /, j and strings P,, Q1 e j * * such that E3"+4 = PL(a'by Qt, j > 3. 
Since L(G) = M„, there is /, + / s u c h that (a'b)3 6 L(G). But then (a'&Y (ahbf are 
substrings of the string P3" + \a

hb)3 Q3" + 4 which contradicts the definition of M„. 
Hence S => / implies f(/) = S for no,/'. 

Now let n0 be the number of metasymbols of G. Obviously I g «0 <? « + i and 
suppose that n0 ^ "• Then there is an i such that J ^ / «£ « and <p(T) = / for no 
Te Vv — {S}. If S -> / and t(k) e VN for some k then, with regard to the definition 
of M„, {x; t => i e . # } <= {a""'mb}y\ Hence the set {x; x e {a'b}*, S -> x} is 
finite which contradicts the definition of M„. Thus, n0 = n + I. This completes the 
proof of Lemma I. 

Lemma 2. Denote N2 = {a}* u {i>}. Then /V2 e Df. 
Proof. Let G be a grammar defined by rules 

(5) B-+A, B-*b, A-*Aa, A-+a, 

with the initial symbol B. Then L(G) = N2. Now suppose on the contrary that there 
is a grammar G, with one metasymbol S such that L(G,) = N2. Then S -> b has 
to be the rule of G,. Moreover, there is a ? such that S -> /, t = PSQ where PQ e 
e {,5/ u {S}}°°. Thus, there is a string x such that S => x e .a/00; x has at least two 
symbols and x(/) = b for some /; this contradicts the definition of N2 and therefore 
N2 s D2 . This completes the proof of Lemma 2. 

Theorem 1 is now an immediate consequence of Lemma 1 and Lemma 2. 
To prove Theorem 2 we proceed as follows: If a set Z is strongly generated by 

a grammar G with /? metasymbols then obviously there is a grammar GL with « + 1 
metasymbols such that L(G^) = Z. The set M„ (see (8)) is strongly generated by the 
grammars with rules: 

S ( -> Si«'/7 , S ; -> a'/? , i ' = l , 2 , . . . , / i 

which has /; metasymbols. If M„ would be strongly generated by a grammar G[ 
with a smaller number of metasymbols than n, then, as we have just shown, there 
would exist a grammar G2 consisting of j ^ n metasymbols and such that L(G2) = 
= M„, contrary to our previous result Mne&n+1. Hence M„e S„ , This completes 
the proof of Theorem 2. 

We have actually proved much more. By (2), the set M„, n > I is sequentially 
definable and, moreover, regular and is generated by a sequential grammar with 
n + I metasymbols but not by a sequential grammar (and also non-self-embedding 
grammar) with a less number of metasymbols. Similarly the set N2(M,) is regular 
and is generated by a non-self-embedding grammar with two (one) metasymbols. 
Hence the same result as in Theorem 1 is valid for a family of sequentially definable 
sets (even when we consider only sequential grammars) and also for a family of 
regular sets. 



26 By a method similar to that given in this section it can be shown that if n > 1, 
I 5. f, < (2 < . . . < /'„ and 

(6) M „ ( / „ . . . , / , _ , ) = {„"_}* 'u . . . {a ' " - ' _} ' 

then 

(7) M > ( / . , . . . , / ._ 1 )e_.f( 6^_ 1 ) . 

Moreover, if QIn is a finite non-empty subset of {a'"£»}°° and 

/V„(i, /„)= Mn(/, /„_,) u<2(n 

then 

(8) NJLilt...,iJe9f(e£rf). 

Finally, there holds 

(9) P„(/, /'„_,) = {x; x = _JvcJ',./ ^ 0. r e M„(/„ ..., /„_,), _ is a letter] _ £*„ 

3. CLASSIFICATION IN AN ALPHABET CONSISTING OF JUST 
ONE SYMBOL 

Now we shall investigate a similar problem as in the previous section but for the 
case that the alphabet consists of just one symbol. 

Theorem 3. Every definable (strongly definable) set in the alphabet consisting 
of just one symbol is generated (strongly generated) by a grammar with two 
metasymbols. Moreover, there is a definable (strongly definable) set which cannot 
be generated (strongly generated) by a grammar with one metasymbol. 

Proof. Let M be a (strongly) definable set in s4 = {a}. By Corrollary 2, [3], 
{//; a" e M} is an ultimately periodic set of integers, i.e. if {x„}„>, is the sequence 
of its elements ordered by magnitude and the sequence {y„}„>i is defined by y{ = x,, 
v i+1 = x i + | - A-,-, /' = 1, 2, ..., then there are n0 and p such that ym + p = vm for all 
»i >. /!„. Let G be the grammar defined by rules: 

(10) 

where 

S -> aXi , ;' = 1,2,... • " o . 

S - s t . 
S, -> axi , /' = и0 + 1 , .••. "o + P 

S1 -> Sta
J 

j 
иo + p 

= I V* - Л ' »o + P " - Л '-„ • 



Then L(G) = M = LS(G) and the first assertion of Theorem 3 is proved. Now we 
prove that the set R = {a3}00 u {a2} is not (strongly) generated by a grammar 
with one metasymbol. 

Assume on the contrary that there is a grammar G, with one metasymbol S0 such 
that L(GL) = R. Since R is an infinite set, there are / and./ such that S0 -+ /, t(j) = S0. 
We may assume that / = S0°ar' where r0 ^ 1, /-, ^ 0, /•„ + , - , > ! . (Since G_ 
consists of just one symbol, ordering of symbols in / is obviously irrevelant). As the 
strings a2 and a3 belong to R, we have / => a3(ro~1, + 3 + ri e R = L(G,), t => 
=> a^

r»-'> + 2 + " 6 /.̂  whereby 3(r0 - 1) + 2 + r, = 3;-0 + >•_ - 1 _> 3 contrary 
to the definition of R. Hence the assumption that G_ has only one metasymbol 
yields a contradiction and the proof of Theorem 3 is completed. 

Remark. In an alphabet consisting of just one symbol the concepts: definable 
set, sequentially definable set and regular set are, by [3], equivalent. Therefore. 
Theorem 3 is valid if we replace the word "definable" by the words "sequentially 
definable" or "regular". 

4. CLOSURE PROPERTIES OF ;i-(STRONGLY) DEFINABLE SETS 

Let n 2_ 1 be an integer and G_, U2 some /.-(strongly ) definable sets. What can we 
say about G, n U2, E7, (complement)? Are G, n U2, G, definable sets? As to the 
intersection we have 

Lemma 3. For every n there are 17,, U2e&„ (e £fn) such that G, n U2 is not 
a definable set. 

Proof. We shall not carry out the proof in detail, only the main idea will be 
sketched. Consider grammars G, and G2 defined as in (11) and (12) 

(11) A -* aaAc , A -> bAc , A -* be , 

(12) A ~> aAcc , A->aAb, A ->• ah . 

Then LS(GX) = L(G1)e91 = ,9\, LS(G2) = L(G2)e @t = Sf\ and L(G,) n L(G2) = 
= Ls(Gt) n LS(G2) is not definable (see [3], p. 381) and hence neither strongly defin­
able. Now let ;? > 1 and I _$ /, < i2 < ... < /2„_2. By using a similar method as 
in Section 2 we can show that if Q,„ , (£>,„,_,) is a finite subset of [e'" '_.}* 
({ei2"-1d}'°) then 

G, = L(G,) u {eild\r- u ... u {e'"-2..}" u Qin_t e 9„ (e $"„) , 

U2 = L(G2) u {c'"./}"" u ... u {eu->d¥J u Qllit__ £ ®„ (e </>n) . 

But then G, n G2 = L(G\) n L(G2) and hence G, n G2 is not definable. 
it is an open question whether for every / there is a G e __>; (e .§",•) such that the 

complement of U is not definable (although, by Theorem 2, [4] there exists some i 
with this property). 



5. PROPERTIES OF n-(STRONGLY) DEFINABLE SETS 

Let n ;> 1 and U„ U2 e __?„(e _^„). It is readily seen that U, u U2 e _#y (e _^t) for 
some,/ g 2n + 1 (k ^ 2n). It is not difficult to prove with respect to (7), (8) and (9) 
that for each j e </?, 2n + 1> (k e <n, 2 n » there are U„ U2 e S>„ (g y„) such that 
U, #= U2 and U, u U2 e _2>y (e $fk). Indeed, let 1 < /, < /2 < . . . < /2„ + 1. If j e 

6 < n , 2 n - 1> and U, = A f » ( i 1 , . . . , i l H ) u f , U2 = Mn( iy_„+ 1 , . . . , i ;_.) u g<2\ 
where Q n \ 2 ( 2 ) are different non-empty finite subsets of {a'1"* 'fc}00, then (see (8)), 
U„ U2 e _*„ (e _/g and U, u U2 = My(/„ ..., / ,_,) u Q, u 0 2 _ _?y (e S" }). If./ = 
= 2n and U3 = P„(iy_.+ „ ..., / , _ , ) , then U3e_?„ (see (9)) and U, u U3eS2„. 
If U4 = P„(/„ ..., (',,_,), then UAe&„ and U3 u [7 4e_? 2 n + 1 . The proof of this 
assertions is not difficult but cumbersome and -it is therefore omitted. Moreover 

Ur = M n + I ( i „ ..., i„)e.9„. U2 = M n + , ( i n + ) Z2„) e ^ „ , and U, u U2 = 
= M , „ + 1 ( / „ .... <2„)e -r2„. 

Like in the proof of Lemma 2 we can show that the set U, = {a"b'"\ n S: m > 1} u 
u {ab2} e i22(e .y2) and also U2 = {a"bm; m ___ n > 1} u {a2/.} e _3>2(e ,.9'2). But 
U, u U2 e __?, (e £f i). Therefore there are n, j and U„ U2 such that j < n, U., U2 e 
e _3?„(e _5̂ „) and U, u U2e3> }(e / / , ) . But it is an open question whether for arbitrary 
n >./'___! there are U„ U2 e __„ (e ,_̂ „) such that U, u U2 e _2y (e .S ,̂-). 

As to intersection, it is easy to prove that for every n and j such that n > j > 1 
there are different sets U„ U2 e _̂ „ (e .9",,) such that U, n U2 e __?y (e £fj). Indeed, 
let I ^ I, < i2 < ... < i2„ and U, = M„(/„ ..., /,,_,) u g „ U2 = M„(/„_y+„ ... 
..., i2,.-j-1) u Q2 where Qx c o2 and <2„ Oj2

 a r e non-empty different finite subsets 
of {ai2"b}m.Then U, n U2 = M y_i( /„- y +„ ..., .„_,) u Q, e _2>y (e ._/,) and U„ U2 e 
e 9„ (e £f„). 

It is an open question whether for every n and j > n there are U„ U2 e &„ (e .9',,) 
such that U, n U2 e <?y (e Sf}). 

It is readily seen that if M e __?„ then M x e 9k for a /c ^ n. (If G = < V-, VN, if, S> 
is a grammar such that L(G) = M, and if we put G, = <VT, VN, M u {S -» SS}, S>, 
then L(Gj) = M°°). Hence if M e _?„ then also Ma> e _?,. Moreover, for every 
n > 1 there i s a M e f , such that Ma> e _?„. Indeed, the set M„(l, .,., n - 1) e __?,, 
(see (7)) and M* e _3>„, too. The proof of this assertion and of the assertion given 
below is omitted because it is similar to the proof of Lemma 1. It is an open question 
whether for every I ^ j g n there is a U e &„ such that U00 e S/)j. 

Tf M e Sf„, n > 1 then (see Section 3, [4]), M°° e _^4 for a k g n + 1. The set 
M„ + 1 ( l , . . . , n) defined by (6) belongs to ._/„ and M"+ 1 € ^,1 + „ too. But it is also 
an open question whether for every 1 < j < n there is a U e ff „ such that UM e SP}. 

(Received May 25th, 1966.) 
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O jednej klasifikácii bezkontextových jazykov 

JOZEF GRUSKA 

Množina reťazcov E sa nazývá definovatelnou (silné definovatelnou) ak existuje 
bezkontextová gramatika G taká, že £ je množinou všetkých terminálných reťazcov 
odvodených z daného neterminálneho symbola (zo všetkých neterminálnych sym-
bolov) gramatiky G. 

V práci je dané rozdelenie definovatelných množin (tj. bezkontextových jazykov) 
a silné definovatelných množin do tried podlá minimálneho počtu neterminálnych 
symbolov potřebných k ich odvodeniu. Vyšetrujú sa niektoré vlastnosti množin 
z jednotlivých tried. 
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		webmaster@dml.cz
	2012-06-04T13:14:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




