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KYBERNETIKA-VOLUME 17 (1981), NUMBER 5 

INVARIANTS AND CANONICAL FORMS FOR LINEAR 
MULTIVARIABLE SYSTEMS UNDER THE ACTION OF 
ORTHOGONAL TRANSFORMATION GROUPS 

M. M. KONSTANTINOV, P. HR. PETKOV, N. D. CHRISTOV 

Subject of the present paper is the study and construction of complete independent invariants 
and canonical forms for linear multivariable systems under the action of orthogonal transforma­
tion groups. Stable computational algorithms for finding the orthogonal canonical forms are 
presented and their numerical properties are discussed. 

In view of their nice numerical properties the orthogonal canonical forms are preferable for 
computations. They reveal the basic invariant structure of linear multivariable systems and 
provide the same theoretical advantages as the canonical forms relative to general transformation 
groups. 

1. INTRODUCTION 

The problem of finding invariants and canonical forms for linear multivariable 
systems (LS) is of current interest for the analysis and synthesis as well as for the 
realization theory and identification of these systems: [ l ] — [8], etc. However the 
determination of canonical forms relative to general transformation groups (e.g. 
general linear or feedback groups) is quite unsatisfactory from computational point 
of view (see [9] for more details). That is why the determination of canonical forms 
relative to smaller groups is of great importance, the more so, as such canonical forms 
provide the same advantages in the synthesis of LS. Unfortunately there are no in­
vestigations up to tliis moment devoted to the rigorous study of this subject. 

In [9] - [11] the so-called serial canonical form (SCF) of LS is introduced and 
applied to the solution of the general problem of synthesis of LS with complete and 
incomplete state feedback. In [9] the SCF is defined relative to the orthogonal group 
£>(«); however for multi-input (multi-output) systems this variant of SCF is in fact 
quasicanonical. 

In this paper a complete independent invariant of LS relative to O(n) and €>+(n) 
(0 + (n) c O(n) denotes the group of pure rotations) is defined and stable computa-
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tional algorithms for finding the corresponding canonical forms are presented. The 
orthogonal canonical forms reveal the basic invariant structure of LS (e.g. the 
Kronecker indices) and have the same theoretical advantages as the canonical forms 
relative to general transformation groups, being as well favorable for computa­
tions. 

Further on the following abbreviations are used: 3tm - the space of real n x m 
matrices (0l\ = M", 0Lm = 01 m, 0l\ = 3i); l„e0t"n - the unit matrix; AT e M"„' - the 
transpose of A e 0i"m; ©£(«), D(n) and 0 + (n) - the groups of matrices P e f J with 
det P * 0, PTP = /„ and PTP = /„, det P = 1 resp. 

2. ABSTRACT INVARIANTS AND CANONICAL FORMS 

Let X be a set and © a group of automorphisms g, h, ..., on X. The transformation 
group © defines an equivalence relation E on X: xEy o y = g(.r) for some g e ©. 
The set Ex = {Q(X) : g e ©} is called an orbit of x e X. The set X is the union of all 
disjoint orbits: X = \JEX. 

I f / i s any set then a function f: X —» / i s said to be an invariant (for the equivalence 
relation £, or relative to the group ©) if xEy implies f(x) = f(y). If in addition 
f(x) = f(y) => xEy, the function f is said to be a complete invariant. In what follows 
we shall deal only with surjective invariants, replacing (if necessary) / by f(X). 

A subset I c l i s called a set of canonical forms, or a canonical set, if for any 
x e X there exists exactly one xe X such that xEx, i.e. if X n Ex = {x}. Denote by Cx 

the set of all canonical sets in X. 
The subgroup ©-,. = {g e © : Q(X) = x} is said to be the stabilizator for xe X. 

The element x is unstable if (&x = {e}, where e e © is the identity. Denote by Ux = 
= {x e X: <5X = {e}} the subset of unstable elements in X. It can be shown that if 
xEy then xe Uxoye Ux. Indeed, let xe Ux and y = h(jc). Then g(j) = y leads 
to g 0 h(x) = l)(x), I)"1 o g o h(x) = x and h" 1

 0 g 01) = e, i.e. g = e and ©y = {e}. 
A simple corollary is that X e Cx and X <= Ux imply X = Ux. 

The following propositions are essentially used later: 

Proposition 1. Let X e Cx. Then the following two statements are equivalent: 

(i) X = Ux; 

(ii) for each xe X there exists an unique s e © such that S(JC) e X. 

Proof, (i) => (ii). Let Q(X) = i)(x) = xeX. Then I) 0 g" J(x) = x and h 0 g"1 = e, 
i.e. g = h = s. 

(ii) => (i). If g(x) = x and b(x) = x e X then I) „ Q(X) = x. Now (ii) yields h = s, 
g o h = s and g = e. Hence ©x = {e} for any x e X. Q 
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Proposition 2. Let X <=. X and X = Ux. Then X e Cx iff 

(}) XnEx+-<& for each x e X; 
(jj) for each yeX and g e © the inclusion g(.y) e X implies g = c. 

Proof. "Only if" statement. Let X e Cx. Then (j) is valid by definition. Let now 
g + e and y, g(j) e X. Since (5y = {c} then g(j) + y and hence X contains at least 
two different elements from one orbit. The contradition shows that g = c and (jj) 
holds true. 

"If" statement. According to (j) X contains at least one element from every orbit 
and this element is unique in view of (jj). Q 

In what follows we assume that the elements A; of X are sets of real matrices. 
Then Xis isomorphic to certain subset of a finite-dimensional space over 9%. 

3. ORTHOGONAL INVARIANTS AND CANONICAL FORMS 
FOR LINEAR MULTIVARIABLE SYSTEMS 

Consider the completely controllable LS 

(1) ^x(t) = Ax(i) + Bu(t), 
at 

where x(t)eMn, u(t)e&T and Ae3tn, Be0l"m. The system (l) will be identified 
with the matrix pair S = \A, B) e &m(n). Here £Cjn) c 0t\ x Sim is the set of all 
pairs S with rank Cn(S) = n, 

Cn(S) =[B\AB\...\A"-1B]e 9fnm . 

Let © be a transformation group with exact matrix representation S - » 5 c 
c: ©£(n) whose action on &Jn) is given by 

9 [ A B ) = [ P - 1 A P , P - 1 B ) ; g e © , P = P ( g ) e g , 

and corresponds to the linear transformation x(t) = P x'(t) in the state space 01". 
Further on we shall identify © with the matrix group $• 

An invariant f for LS relative to g can be determined as the product of an integer 
valued and a real valued functions in the following way. Let Z(n) be the set of ordered 
additive partitionings z = (nu ..., «„,) of n : nx + ... + nm = n, nt ^ 0. Then the 
invariant f can be chosen in the form f = (a, ra), where the first projection o : «Sf m(n) -» 
-» Z(n) is surjective and is said to be arithmetic invariant [8]. On each subset 
o~1(z) <= &m(n) we define an integer At = N(z) and a rational invariant function 
ra : a~1(z) -> R~, where R~ is isomorphic to &t'. Then the image / of f is the set of 
pairs (z, v) with z e Z(n), v e R~, and 

f:S^(a(S),Us)(S)). 
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If the invariant f is complete and R~ _ £Cm(n) then R~ is a canonical set for 
a~1(z), where z is a fixed member of Z(n). Moreover, in this case the invariant f 
is independent in the sense of the definitions from [4], [5], [7], [8]. 

In the construction of invariants and canonical forms an alternative approach 
is possible: For - fixed first find N — N(z) and construct an appropriate set _?

m(n) -
c .-%,(«) (isomorphic to MN) which satisfies the conditions of Proposition 2, and clari­
fy that every S e Sfm(n) is unstable. Then Z£m(n) is a canonical set and the non-fixed 
entries of S~ e _?

m(n) constitute an independent invariant relative to gf. Adding 
the map a which produces the Kronecker indices of S one obtains a complete in­
dependent invariant. 

The problems of construction of canonical forms relative to ©fi(n) (i.e. in the case 
5 = ©fi(n)) have been studied by many authors: e.g. in [1] —[4] for the Brunovsky-
Luenberger canonical form, and in [10] — [12] for the SCF. 

However the methods for obtaining canonical forms relative to the general linear 
group ©fi(n)are numerically unstable since they correspond to transformation of 
a matrix in its Frobenius form [9]. Most of these methods require the determination 
of the controllability matrix Cn(S). This matrix however is ill-conditioned since its 
columns tend to become linearly dependent for large n [16]. 

The algorithms proposed in [17] are free from this disadvantage since they are 
based on elementary transformations of A, B. Unfortunately these algorithms are 
also numerically unstable as a result of setting unit elements in prescribed positions 
in the canonical form. 

The above numerical difficulties are common for all canonical forms relative to 
general transformation groups. Thus it is necessary to develop a theory and computa­
tional methods for obtaining canonical forms of LS relative to smaller groups which 
are more favorable from computational point of view. Typical representatives 
here are the orthogonal groups €>(n) and €) + (") which act on -S?m(n) according 

Q[A, B) = [PTAP, PTB); P = P(g) s O(n) (P = P(g) e 0 + (n)). 

In this section complete independent orthogonal invariants and canonical sets 
for LS are defined and numerically stable algorithms for transformation into the 
orthogonal canonical forms are derived. 

Let z = («!, ..., nm) be the set of ordered Kronecker indices for the pair S = 
= [A, B). Denote by (m0, m l5 ..., mp) the set of unordered conjugate indices m = 
= m0 = mj = . . . = mp = 1, mx + ... + mp = n, where m; is the number of n^s 
that are _ i: 

ml = rank C^S) - rank - ^ ( S ) , i = 1 ; CQ(S) = 0 . 

Each z uniquely determines p + 1 unordered sets 

«« = {j : » , _ * } = ( i f , . . . , £ > ) , If> < . . . < £ > 

such that r(p) e t<-p'1) e . . . e tm. 
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and set 

Let 

Consider the following procedure which transforms the sets t(k) into another 

collection of sets 

^ - ( . ^ . . . . . S ) ; fc-i,-,p. 

For k = 1 let g ( 1 ) = f(1) and let pj be a permutation such that p1(t[1)) = s; s = 

= 1, ..., mj. 

If the sets q(1), ...,q(k) and the permutations p., ..., p*_. are already determined, 

define the permutation pk such that 

p ^ ( t ) ) = .v; s - 1 , . . . , - * , 

_< t + 1 '*(_?+ 1>,...,._;:V). 

_ ? + 1 > - P - - h - i o . . . o / . 1 ( i i » + 1 ) ) ; s - = l , . . . , m _ + 1 . 

B = [b. j... | 6 J , _.,e_f" 

C(S) = [ b ^ ' ) j . . . : b ^ » ! A _ ^ ' ! . . . ! A b ^ | . . . 

. . . |A"- J b 9 «" | . . . |A '- 1 b,2 ' 1 >]e_l | ; 

the matrix formed by the first n linearly independent columns of Cn(S). Then the set 

_?m(n) can be represented as the union 

_?M(n) = i? + (n) u _3P~(B) 

of the disjoint sets 

Sf+(n) = (S:detC(S) > 0} 

_?-(«) = (S : det C(S) < 0} . 

For - fixed let -S?~ + (n) c _?+(n) be the set of pairs S~ = [4~, B~) such that 

and denote by 

н. • - > . -

A~ = B~ = 

0.- i 6,-1 
D„ 

H p _ t 

G„ 

where 

G ; є Җ J , H ; є Җ f (s. - n - m. - . . . - mt) 
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and the matrices 

D, = røei;;.,, 

«i° й 0 . . . ÍÍ.Í--І «Í2 

i i i i 
1 + 1 

j + i ^ 
DІ = 0 ' m 

І + L 
have the property 

Df = 0 for k < q\k) 

4° = ->&«. > o 
Djj* — non-prespecified for k > qf*. 

Introduce also the set if~-(n) c ^ " ( n ) which differs from =Sf~+(n) only by the 
assumption d£p) < 0 (instead of d(^ > 0). Let finally 

J?~(n) = &^+(n)u&~-(n). 

Now we are in position to formulate our main result: 

Theorem. 

1°. Table 1 defines the canonical sets for the action of orthogonal groups on sets 
of completely controllable LS. 

Set of LS K(~) &m(n) -V") &m(n) 

Transformation group 0 + (n) 0 + (n) D + (n) D(n) 

Canonical set ^~m+(n) &m~(ri) ^m(n) &~m+(n) 

2°. Let X, © and X denote any set, transformation group and canonical set as 
described in Table 1. Then for each SeX there exists an unique g e © such that 
g(S) = S ~ e X . 

3°. The non-prespecified as zero entries of S~ (with regard to their position in S~) 
constitute a complete independent rational invariant for the action of © on X. 

Remark 1. Note that only the group £>+(n) can be defined on i f + (n) or ̂ ~{n) 
since the members of 0 ( n ) \ D + ( n ) = 0~(w) are not automorphisms on these sets. 
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Remark 2. When z is not preliminary fixed, the complete independent invariant 

consists both the surjective arithmetic invariant a : X -> Z(n) and the independent 

rational invariant described in 3°. 

The proof is organized as follows: 

a) We first show that all elements of X are unstable. Hence if X is a canonical set 

then in view of Proposition 1 the transformation Si-»g(S) = S~ e X is unique. 

b) After choosing an appropriate I c l w e prove that the conditions of Proposi­

tion 2 take place. At the same time we present a stable computational algorithm for 

obtaining the orthogonal serial canonical form (OSCF) S~ of S. 

Proof. Consider the set «S?„,(rc) under the action of ©(»). 

a) Since C(g(S)) = PTC(S) we see that g(S) = S imply P = /„. This is a well 

known fact which follows from the complete controllability of S. 

b) We shall describe a numerically stable algorithm for transformation of [A, B) 

into the OSCF [A~, B~) e J2?~+(n) which is based on a sequence of QR-decomposi-

tions. 

Step 1. Let [A, B) = [At, Bt) and 

"D, 
0 

в , = <Л l / l Є © ( » ) , D l Є , 

be the QR-decomposition of B1 (a detailed consideration of the QR-decomposition 

technique may be found in [18], [19]). Then 

where P. = Uu Gt e @Z\, [A2, B2) e i?m,( s i) a n d r a n k B z = m~-

Step 2. Let 

B2 = U2 [
D l l ; U2 e D ( S l ) , D 2 e «™ 

be the QR-decomposition of B2. Then 

( P ^ ^ ^ ^ P , = 
[G'i H 1 

D2 
G; н; 

. 0 ßз ЛзJ 
and (PtPzY Bt = B~, where P 2 = diag (/mi, U2), [A3, B3) e JSPm.(s2) and rank B 3 = 

= m 3 . 

Step Ic. Extending this procedure for k S: 3 we obtain the pair HAt, Bk) e 

e i f m k i (
5 fc-i) w i t h r a n k Bk = m * a t t h e (k ~ 1)-th s t eP- L e t 

B 4 =uJ°*Л; Uke©(s^O, Ð4 
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and set 

Pk = diag(/„,+...+„,,.„ U»). 

Final step. Denoting P = P^P2 ... Pp one gets 

[PTAP, PTB) = [A~,B~)e^~m
 + (n) 

(if necessary, P can be multiplied by a diagonal matrix with ± 1 diagonal entries in 
order to obtain djf) > 0; i = 0, ..., p; j - 1 , . . . ( m,). 

If only the group © + (n) is considered, and if the obtained matrix P e ©""(n), then 
the matrix diag (/„_., - 1 ) P transforms [A, B) into [A~, B~) e J?~(n). 

It is easy to show that Q e £>(n) and [QTA~Q, QTB~) e SCm
+(n) imply Q = /„. 

Thus both conditions of Proposition 2 are valid and the theorem is proved. • 

Of a special interest is the case m = 1. Here 

&~{n) = Jf(n) x TT , _?!+(..) = j f + (n ) x f , .S?" "(n) = •#""(») x *" , 

where: 

•f <=. M" is the set of vectors v = [v t j 0 I ... I 0 ] r with vl > 0 ; 

3tf'+(n) c 3%n is the set of upper Hessenberg matrices H = [Htjj 

(i.e. H y = 0 for i > j + 1) such that Hii.l > 0, i = 2 , . . . , n; 

.?f-(n) = diag ( /„_! , - l ) .JT+(n) and 

#_(n) = ^ : + ( n ) u ^ - ( n ) . 

The reduction of S 6 i f t(n) into the OSCF S~ can be accomplished also by n - 1 
elementary Householder reflections P., ..., P„_ l5 where 

Pi = Hn(B,) 

Pk = diag (»„_ u H„_k+1(Bk)), k = 2, ..., n - 1 , 

and H„(B) denotes the symmetric Householder matrix 

2 B A B A r /B A T B A - / „ ; 8A = B + J(BTB) [1 0 ... 0 ] r , B e i " . 

Note that in both the single-input (m = 1) and the multi-input (m > 1) cases the 
matrix C(S~) = PTC(S) of the first n linearly independent columns of the control­
lability matrix C„(S~) = PTCn(S), is an upper triangular matrix with non-zero 
diagonal entries. Hence the transformation into the OSCF is equivalent theoretically 
(but not numerically!) to a standard Gramm-Schmidt orthogonalization of C(S). 

Let us now consider the number N = N(z) of rational invariants for the multi-
input case. 
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It may be shown that 
N(z) = »2/2 + n + L + M / 2 - / , 

where 
p - l P P mp 

L=y> ; m ( + 1 , M = I>>?> I = I I « « . 
i = 0 i = l i = l s = l 

The exact bounds for N(z) are 

M*i) = #(*) = N( ?-) ' 
where 

At(-t) = n(n + l)/2 + L - (mn ~ M) , *i = (0... • •> 0, nm_m, + 1 , . . • , nm) , 
"m-m, + l S ••• ^ "m 5 

N(z2) = n(n + l)/2 + L, z2 = (»., ..., nmi, 0, ..., 0) , 

nx ^ ... ^ nni . 

Note that in the generic case m ~ m . = ••• = t"P-i one has n = (p - 1) m + 
+ mp, and 

Ar(z) = n(n + l)/2 + mn . 

It is interesting to compare N(z) with the number NGL(z) of the independent rational 
invariants relative to (5£(n). 

It follows from the results in [4] that 

NGL(z) =Q + R, 
where 

R = S Emin(n;, n,) 
; = i ; = i 

and g is the number of pairs (nt, n,-) with; < i and n ; > nt. 
On the other hand it can be shown that R = M. Hence 

#G t(z) = Q + M. 

Straighforward calculations give 

N(z) - NGL(z) + n(n + l)/2 . 
Therefore 

Q - (n - M)/2 + L-I 
and 

NGL(Z) = (n + M)/2 + L - I . 

Note finally that the above results can be extended directly to the observable LS 

| x ( 0 = Ax(») 

y(t) = C x ( 0 , 

where x(r) e @", y(t) e ST and A e 3tn, C e Mr„. 
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4. NUMERICAL PROPERTIES OF THE ALGORITHMS FOR 
COMPUTING THE ORTHOGONAL SERIAL CANONICAL FORMS 

In contrast to the canonical forms relative to general transformation groups, the 
OSCF can be obtained by stable computational algorithms. 

The computational algorithm for transformation of multi-input LS into the OSCF 
is based on QR-decomposition of the matrices Bk at each step. This may be ac­
complished by the subroutine SQRDC from LINPACK [19]. It permits pivoting 
which in turn makes possible to obtain the decomposition of Bk in the form 

*-*[*$*]: 
where Dl, is upper triangular, and £ is a permutation matrix. The latter reflects the 
moving of the columns of Bk during the decomposition. The determination of 
rank Bk (i.e. the dimension of D a ) is discussed in details in [19]. Thus the obtained 
matrices A~, B~ are exact for systems whose matrices are A + e|A||, B + e||B[|, 
where E is a matrix with elements small multiple of the order of the relative machine 
precision in the floating point arithmetic of the computer used. Hence the above 
computational algorithm is numerically stable. 

In the single-input case the reduction of LS into OSCF can be done also by 
a sequence of Householder reflections. First the vector B is transformed by one 
elementary reflection Px and then the matrix PiAP^ is reduced to upper Hessenberg 
form by n — 2 reflections. This can be realized, for example, using the subroutine 
ORTHES from EISPACK [18]. To accumulate the successive transformation 
matrices the subroutine ORTRAN [18] can be utilized. This reduction is also 
numerically stable. 

In this way the computational algorithms for finding the OSCF have very good 
numerical properties and may be realized on the basis of the modern numerical linear 
algebra algorithms. 

5. CONCLUSIONS 

The paper is devoted to the study and construction of invariants and canonical 
forms for linear multivariable systems under the action of orthogonal transformation 
groups. This is motivated by the fact that the canonical forms relative to general 
transformation groups can not be obtained in a numerically stable way. On the other 
hand the problem of determining invariants and canonical forms for the action of 
various transformation groups is of independent theoretical interest. 

Up to this moment, however, there are no rigorous investigations on orthogonal 
invariants and canonical forms in spite of the fact that the members of orthogonal 
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groups are most favorable for computations. Moreover, the orthogonal canonical 

forms have the same advantages in the analysis and synthesis of linear systems as 

the canonical forms relative to the general groups. 

In the present paper complete independent invariants of linear multivariate 

systems are determined for the action of orthogonal transformation groups. The 

corresponding orthogonal canonical forms are defined and stable computational 

algorithms for their construction are developed. The program realization of these 

algorithms involves the modern numerical linear algebra software. 

The number of independent rational orthogonal invariants is given, and explicit 

expression for the number of independent rational invariants relative to the general 

linear group is presented. 
(Received October 6, 1980.) 
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