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K Y B E R N E T I K A — V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 6, P A G E S 5 9 7 - 6 0 6 

S T R U C T U R A L P R O P E R T I E S 
O F I N V E R S E L I N E A R S Y S T E M S 

A. C. PUGH, N. P. KARAMPETAKIS, A. I. G. VARDULAKIS AND G. E. HAYTON 

Some of the finite and infinite properties of a square inverse system are related to the 
corresponding properties of the original system. Equivalent invertible systems are seen to 
give rise to inverses which are similarly equivalent. An extension to the case of inverses of 
generalised transfer function matrices is also considered. 

1. INTRODUCTION 

Inverse systems have long held an interest ([9,11]) for the design of linear systems 
since it was noted that a form of polynomial system matrix realisation of the inverse 
of a square invertible transfer function matrix G(s) is directly derivable from a 
polynomial realisation of G(s). The relationship between certain properties of the 
inverse system and the given system could then be easily derived. This relationship 
was described in the case of the finite frequency aspects and Kailath [3] furthered the 
description. Specifically Kailath established that the same form of equivalence which 
relates two given realisations of G(s) is induced between the derived realisations of 
its inverse. In all of this work the focus was on the finite frequency aspects of the 
system's behaviour, typical of the conventional study of linear systems. In this paper 
the extension of these results to the case of the infinite frequency invariants and the 
so-called generalised theory of linear systems will be given. 

2. PRELIMINARIES 

Consider a linear time invariant multivariable system E described by 

A(p)j3(t) = B(p)u(t) (n-AIAf) (2 1) 
3,(0 = C(p)m + D(p)u(t) (l>-d/d<)' (2-1) 

where A(p) G M[p]rXr with \A(p)\ ± 0, B(p) G M[p]TXm, C(p) G jR[p]pxr, D(p) g 
M[p]pxm, f3(t) : (0- ,oo) -> Mr the pseudo state of E,w(<) : (0- ,oo) -+ JRm the 
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control input and y(t) the output of E. The Rosenbrock system matrix of E is 

~ A(s) B(Sy 

[-C(s) D(s)_ 

and its normalized form ([13]) is 

P(s) = Є Щs}(r+rìx(r+m) (2.2) 

V(s) = 

A(s) B(s) 0 

-C(s) D(s) Ip 

0 -Im 0 

0 ' 

0 

Im 

0 0 -Ip 0 

T(s) Ы 

-V 0 
(2.3) 

The transfer function of the system (2.1) or (2.3) is 

G(s) = C(s) A~l(s) B(s) + D(s) = VT~lU. (2.4) 

For the relevant terminology concerning system matrices the reader is referred to 
Rosenbrock [9], Verghese [13] and Kailath [3]. We merely note 

Definition 1. [4] The input (output) dynamical indices of E of (2.1) are the right 
f\T(s)]\ 

(left) minimal indices of the compound matrix [T(s) U} I derived from its 

normalised form (2.3). 

A transformation ([2]) with important system theory implications is 

Definition 2. Two Rosenbrock system matrices P\(s), P2(s) are said to be full 
system equivalent (FSE) if 3 polynomial matrices M(s), N(s), X(s) and Y(s) such 
that 

M(s) 0 

[X(s) I 

Ai(s) ВД 

-Ci(s) J В Д 

A2(s) B2(s) 

-C2(s) D2(s)\ [ 0 

ІV(Í) Y(s) 

where the compound matrices 

M(s) 0 A2(s) B2(s) 

[X(s) I -C2(s) D2(s)\ 
and 

Г A,(s) B^s) 1 

-d(s) Di(«) 

~N(s) -Y(s) 

0 - / J 

(2.5) 

(2.6) 

satisfy the following conditions: 
(i) they have full normal rank (2.7a) 

(ii) they have no finite nor infinite zeros (2.7b) 
(iii) have respective McMillan degrees 6M(P2) and 6M(PI)- (2.7c) 

Some important properties of this transformation are given by Hayton et al. [2] 
and Karampetakis and Vardulakis [4], and we merely note 
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Lemma 1. Under (FSE) the following are invariant: 

(i) generalized order f, the order n and the Rosenbrock degree dp, 

(ii) transfer function and so the finite and infinite transmission poles and zeros, 

(iii) finite and infinite system poles and zeros, 

(iv) finite and infinite invariant zeros, 

(v) sets of finite and infinite input (output) decoupling zeros. 

(vi) set of input (output) dynamical indices. 

In the sequel we shall examine the properties of a system E in relation to those of 
the inverse system, in the case when the transfer function matrix G(s) of E is square 
and invertible. The finite case has been studied by Rosenbrock and Van Der Weiden 
[11] and Kailath [3], and in what follows we extend these results to encompass the 
infinite frequency aspects of the system's behaviour. 

3. SQUARE INVERSE LINEAR SYSTEMS 

Consider E of (2.1) with p = m and let the transfer function matrix G(s) 6 IR[s]pxp 

of E be invertible. Then a system matrix giving rise to G~1(s) is ([9, p. 172]) 

P'(s) = 

A(s) B(s) 

ш 
o 

-h (3.1) 

The system E' described by (3.1) is the inverse system of E. In the present note the 
finite and infinite frequency behaviour of E' is considered in relation to that of E. 

T h e o r e m 1. E, E' have the same finite and infinite input, output and input-output 
decoupling zeros. Additionally E, E' have the same input and output dynamical 
indices. 

P r o o f . The finite and infinite input decoupling zeros of E' are respectively the 
finite and infinite zeros of the compound matrix 

[T'(s) W] = 

A(s) B(s) 0 

-C(s) D(s) -Ip 
0 -IP 

0 

0 0 -Iv 

0 0 

0 0 

0 

s.e. T(s) U 0 

IP 

0 

0 

s.e. 

0 0 Ipj 

0 Ip. 

(3.2) 

formed from the normalized form system matrix of E'. In (3.2), (s.e.) denotes the 
transformation of strict equivalence which is well known to leave invariant the finite 
and infinite zero structure. Note that the finite and infinite zero structure of the 
final matrix in (3.2) is the finite and infinite input decoupling zero structure of E. 
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Thus £ and £ ' have the same finite and infinite input decoupling zeros. By similar 
arguments the result for the finite and infinite output decoupling zeros follows. 

For the case of the input-output decoupling zeros, notice that removing all the 
finite and infinite input decoupling zeros from £ ' leaves the normalised form of £ ' 

(3.3) 

Removing these same input decoupling zeros from £ leaves its normalised form 

A'{s) B'{s) 

-C'{s) D'{s) 

0 -IP 

0 0 

0 0 

-E'{s) 0 

0 IP 

-h o 

0 

0 

0 

IP 

0 0 0 -IP 0 

A'{s) B'{s) 0 
-C'{s) D'{s) -E'{s) 

0 -L 0 
0 0 -/„ 0 

(3.4) 

Clearly the finite and infinite output decoupling zeros of (3.3) and (3.4) are identical 
which establishes the result concerning the input-output decoupling zeros of £ ' and 
£. 

It can be easily seen from (3.2) that the compound matrices [T'{s) W] and 
[T{s) U] taken from the normalised forms of £ and £ ' are (s.e.) and therefore 
have the same right and left minimal indices. Thus £, £ ' have the same input (and 
similarly output) dynamical indices. 

Lemma 2. [8] If G{s) is square and invertible then the finite (resp. infinite) 
poles of G{s) are the finite (resp. infinite) zeros of G~1{s), and vice versa. A slight 

restatement of this result gives 

Corollary 1. The finite (resp. infinite) transmission zeros of £ ' are the finite 
(resp. infinite) transmission poles of £ and the finite (resp. infinite) transmission 
poles of £ ' are the finite (resp. infinite) transmission zeros of £ . 

This can be extended to system matrix representations of £, £ ' as follows 

Theorem 2. The number of finite (resp. infinite) system zeros of £ ' coincides 
with the number of finite (resp. infinite) system poles of £ and the number of finite 
(resp. infinite) system poles of £ ' coincides with the number of finite (resp. infinite) 
system zeros of £. 

P r o o f . We have that 

#{system zeros in C U {oo} of £ '} 
= #{zeros of o_1(s) in C U {oo}} + #{decoupling zeros of £ ' in C U {oo}} 
= #{poles of G{s) in C U {oo}} + #{decoupling zeros in C U {oo}} 
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by Theorem 1 and Corollary 1 where #{•} denotes the total number of the elements 
of the specified set, counted according to degree and multiplicity. This latter is 
simply #{system poles in C U {oo}of E}. 

Under the similar arguments we obtain the second result. • 

An extension of this result may obtained. 

L e m m a 3. [12] If G(s) is square and nonsingular then 

#{poles of G(s) in C U {oo}} = #{zeros of G(s) in C U {oo}}. 

T h e o r e m 3. The systems E and £ ' have the same generalized order / , complexity 
c and Rosenbrock degree CJR ([10]). 

P r o o f . For the generalised order we have by Theorem 1, Corollary 1 and Lem­
ma 3 that 

/ s , = #{zeros of T'(s) in C U {oo}} 
= #{system poles of £ ' in C U {oo}} 
= #{poles of G~1(s) in C U {oo}} + #{decoupling zeros of £ ' in C U {oo}} 
= #{zeros of G(s) in C U {oo}} + #{decoupling zeros of E in C U {oo}} 
= #{poles of G(s) in C U {oo}} + #{decoupling zeros of E in C U {oo}} 
= ^{system poles of E in C U {oo}} 
= #{zeros of T(s) in C U {oo}} = / s . 

The results for c and d,R were given by Rosenbrock and Van Der Weiden [11]. • 

While the generalized order of E' coincides with that of E, the order n of E' does 
not. 

Example 1. Let a Rosenbrock system matrix of a system E be 

P(S) = [ s 2 + 5s + 6 | s + l 1 (3 5) 

2s - 5 3s + 2 . 

with order ns = deg |s2 + 5s + 6| = 2. The Rosenbrock system matrix of E' is 

0 
P'(s) = 

s2 + 5s + 6 s + 1 

2s - 5 Зs + 2 

0 1 0 

(3.6) 

with order n ' s = deg |-P(s)| = 3 ^ 2 = n j . However it may easily be verified that 
/_, = 3 = /s in line with Theorem 3. 

Any result concerning the order and the generalized order £ ' , will carry over to 
its least order v(G~1(s)) and generalized least order 6M(G"1(S)). Thus ([11]) G(s) 
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and G_1(s) have the same McMillan degree. Notice however that although G(s) 
and G_1(s) do not have the same least order, it follows from the above results that 
£ ' has least order if and only if £ does. 

It is clear that given two systems Ei , £2 related by (FSE) then they will have 
identical invariants in the manner of Lemma 1. The results above ensure that the 
corresponding inverse systems of £1 and £2 themselves possess identical pole and 
zero structures. This indicates that a deeper relationship exists between the inverse 
systems of such systems £1 and £2. 

T h e o r e m 4. Let £1 , £2 be two linear systems of the form (2.1) and let Ej , E2 be 
their respective inverse systems. Then 

v (FSE) v ^ г" (F S E) Ъi ~ Ъ2 «• ъx ~ £',. 

P r o o f . (=>) Let £1 , £ 2 be (FSE), then 3 polynomial matrices M(s), N(s), X(s), 
Y(s) such that 

M(s) 0 

[X(s) I 

Ai(s) Bx(s) A2(s) B2(s) 

L-Ci(s) oi(s)J [-C2(s) D2(s)\ [ 0 

N(s) Y(s) 
(3.7) 

where (3.7) satisfies the conditions (2.7). Equivalently (3.7) may be written as 

' M 0 

X I 

0" 

0 

0 0 / 

" Åx 5 i 

-Cx Dx 

0 

0 I 0 

A2 B2 

-C2 D2 

0 " 

-I 

0 I 0 

" N Y 

0 I 

0" 

0 

0 0 I 

(3.8) 

where (3.8) satisfies (2.7). Hence (3.8) is a transformation of (FSE) between E'j, £'2. 
(<=) Let E i , £'2 be (FSE), then 3 polynomial matrices M{j(s), Nij(s), X,(s), Y.(s), 

i — 1, 2 such that 

M ц 

M21 

Mj 

M 2 

Xi x2 

Ax Bг 

-Cx E»i 

0 

-I = 
0 / 0 

= 
A2 B2 

-C2 D2 

This may be written in the equivalent form 

" M ц M12 0 A2 B2 0 1 

M 2 i M 2 2 0 -C2 D2 -I 

. Xx X2 I 0 / 0 J 

"Лtц Лti2 

л 2 i лt22 

Yi' 

У2 

0 0 / 

Г Ax Bx 0 ] 

-Cx Dx -I 

0 0 I 

-Л tц -Лtl2 -Yx 

-Лt 2l -лt 2 2 -Y2 

. 0 0 -I . 

= 0. 

(3.9) 

(3.10) 
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where (3.10) satisfies the conditions (2.7a,b,c) of (FSE). From the McMillan degree 
conditions (2.7c) it follows that the matrices Xx, X2 and Yx, Y2 are at most constant 
and that the following matrices are inverses of one another 

/ 0 0 0 0 0 

0 / 0 0 0 0 

0 0 / 0 0 0 

0 Yx 0 / 0 0 

-Xx -x2 
0 0 / 0 

0 0 0 0 0 / . 

and 

Consider then the equations taken from (3+0) 

/ 0 0 0 0 0 

0 / 0 0 0 0 

0 0 I 0 0 0 

0 -Yx 0 / 0 0 

Xx -У 2 0 0 / 0 

0 0 0 0 0 / . 

(3.11) 

(1,3) 
(2,3) 
(3,1) 
(3,2) 
(3,3) 

-Лíia - A2Yx + B2Y2 = 0 
- M 2 2 + C2Yi - D2Y2 + 1 = 0 
XxAx - X2Cx -N21=0 
XxBx + X2Dx + I - N22 = 0 
-X2-Y2 = 0. 

(3.12) 

In view of (3.12), internally recoordinating ([2]) the transformation (3.10) by means 
of the matrices (3.11) yields 

M ц - B2XX 0 0 A2 в2 

M21-D2Xx I 0 -C2 
-D 

0 0 / 0 I 

0 

-/ 
0 J 

.4i Bx 0 -

- d -Dx -I 

0 I 0 

У i d - І V Ц -YxDг - N12 
0 

0 -I 0 

0 0 -I. 

= 0. 

(3.13) 
Since the matrices (3.11) are constant and nonsingular, the compound matrices in 
(3.13) still satisfy all the requirements of Definition 3. Hence by restriction 

'-YxCx + Nxx YxDx + Nn 

0 / 
(3.14) 

is a transformation satisfying conditions (2.7a,b,c) and so £1 and S 2 are (FSE). D 

Mn-B2Xx 0" ' Ax Bx' ' A2 в2 

M21-D2Xx /_ -Cx DK -c2 
D2 

4. THE GENERALISED TRANSFER FUNCTION MATRIX AND ITS IN­
VERSE 

Taking Laplace transforms in (2.1) gives 

A(s)f3(s) = B(s)u(s) + a0(s) 

y(s) = C(s)!3(s) + D(s)u(s) + p0(s) 
(4.1) 
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where O,Q(S), /?O(S) are polynomial vectors, whose coefficients are determined by the 
initial values of {/?(•), u(-)} and their derivatives. In connection with (4.1) it is 
possible to introduce ([6,3]) a generalized transfer function matrix H(s) 

(4.2) 

-У(s)l •ßo(sУ •Ip (ľ(s)A(s)-1 G(s) 

ß(s) = H(s) а0(s) ; H(s) = 0 A(s)-1 A(s)~lB(s) 

lu(s). . u(s) . . 0 0 Im 

Interestingly H(s) is invertible and its inverse is the polynomial matrix 

Pм(s) = 

Г 7 P -C(s) -D(s) 

0 A(s) -B(s) 

L0 0 Im 

(4.3) 

Morf [6] proposed an equivalence for such matrices based on strict system equiva­
lence ([1,5]) established its identity as regards strict system equivalence. We propose 
a generalisation of Morf's transformation based on (FSE). 

Definition 3. Two systems S i , T,2 of the form (2.1) are said to be Generalized 
Morf System Equivalent (GMSE) if 3 polynomial matrices X(s), Y(s), K(s),L(s) 
such that 

I 0 
PMI = PM2 _ , . (4.4) 

K(s) 0 

[X(s) I\ [Y(s) L(s)\ 

where F M ; , » = 1,2 is defined in (4.3) and where the compound matrices 

K(s) 0 

Pм2 
and 

PMг 
-I 

l-Y(s 

0 

-L(s) 

(4.5) 

X(s) I 

satisfy the conditions of (FSE). 

The connection between the equivalence classes of (FSE) and (GMSE) is as follows 

T h e o r e m 5. Let T,\ and E2 be of the form (2.1) then 

(FSE) (GMSE) 
ZJI ~ i,2 <v ZJI ~ ZJ2-

P r o o f . ( ^ L e t X a , E 2 be (FSE), then 3 polynomial matrices M(s), N(s), X(s), 
Y(s) such that 

M(s) 0 Aг(s) ß i (s) 

[X(s) l\ [-dis) £>!(«)] 

A2(s) B2(s) 

l-C2(s) D2(s)\ 

N(s) Y(s) 

0 / 
(4.6) 
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where (4.6) satisfies the conditions (2.7). In the manner of the proof of Theorem 4, 
the relationship (4.6) may be written in the alternative form 

" I X o" 
0 

•I 

0 

.0 

-C l 

Ax 

0 

-LV 

-Яi 

I . 

= 

•I 

0 

.0 

- C 2 

A2 

0 

-D2-

- в 2 

I . 

' I 0 0 

0 M 

o" 
0 

•I 

0 

.0 

-C l 

Ax 

0 

-LV 

-Яi 

I . 

= 

•I 

0 

.0 

- C 2 

A2 

0 

-D2-

- в 2 

I . 

0 

0 

N 

0 

-У 

0 0 I 

•I 

0 

.0 

-C l 

Ax 

0 

-LV 

-Яi 

I . 

= 

•I 

0 

.0 

- C 2 

A2 

0 

-D2-

- в 2 

I . 

0 

0 

N 

0 I 

(4.7) 

which can be seen to be a (FSE) transformation. Thus Ei and E2 are (GMSE). 
(<=) Let Ei, E'2 be (FSE), then 3 polynomial matrices M{j(s), JVtJ(s), Z.(s), Y,(s) 

i — 1,2 such that 

r M n Mi 2 0 7 - C 2 -£>2 

M2 i M22 0 0 A2 -B2 

L Xi X2 / 0 0 / J 

• / -Ci -Dx-

0 Aг -ői 

0 0 I 

-1 0 0 

-Yx -Nn -!v1 2 

.-Yi -N21 - І V
2 2
. 

= 0, (4.8) 

where (4.8) satisfies the conditions (2.7a,b,c) of (FSE). Again in the manner of 
Theorem 4 this may be reduced to 

• Y i d + iVii -YxDi-Nn 

0 / 
(4.9) 

which can be shown to satisfy the conditions (2.7 a, b, c) and so Ej,, E 2 are (FSE). 

M
2 2
 + S

2
^2 0" r Ai Bx ' A2 

B2 

M
12
 + o2^2 I. -d 

°i -C2 Dг 

Thus (FSE) coincides with (GMSE) and the invariants of (GMSE) are as in 
Lemma 1. 

5. CONCLUSIONS 

It has been shown that the results of Rosenbrock and Van Der Weiden [11] concerning 
the relationship between certain invariants of a square invertible system and its 
inverse system can be extended to include the infinite frequency aspects. Kailath [3] 
has established in the finite case that the same form of equivalence (i. e. strict system 
equivalence) which relates two polynomial realisations of a given G(s) is induced 
between the derived polynomial realisations of the inverse of G(s). It is established 
here that this relationship extends to the notion of (FSE) ([2]) which has been 
established ([7]) as the basic underlying notion of equivalence for the generalised 
study of well formed linear systems. Thus a more complete explanation of the 
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rela t ionship between t h e invar iants of a square invert ible sys t em and those of i t s 

cor responding inverse emerges . These observat ions further ex tend to the generalised 

transfer funct ion m a t r i x inverse of Morf ([6]) as revealed in Section 4. 

(Received November 8, 1993.) 
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