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K Y B E R N E T I K A — V O L U M E 21 (1985), N U M B E R 4 

OPTIMAL DISCRETE APPROXIMATION 
OF CONTINUOUS LINEAR OPERATORS 
APPLICABLE TO CONTROL PROBLEMS 

ANTONIN TUZAR 

This article is devoted to some problems of optimal discrete approximation of continuous 
linear operators. It presents continuation of our work [18] and brings a more general theorem 
of approximation (Theorem 2.1), some examples of the form of cardinal spline-functions (in Sec. 3) 
and an example of solution of a simple optimum control problem (Sec. 4), on which we try 
to compare the current and new optimal formulae for derivatives. Some necessary facts and 
notations are introduced in Section 1. Our results are based on a theory which was originally 
developed for purposes of numerical quadratures and cubatures and for the interpolation [11], 
[13], [14], [15]. Bibliographical notes see e.g. in [7], [10]. In the following we deal mostly with 
approximation of derivatives. 

1. THEORETICAL BACKGROUND 

Let if be a real Hilbert space with the scalar product < •, • > and the norm || • | . Let 
(h, •> and (cpx, •>, . . . , <</>,„ •> be some bounded linear functionals on H. We shall 

approximate h by the expression £ c;tp; with c; real in such a way that the norm 
i= t 

of error functional will be minimized: 

(1.1) \\h- f c > ; | | = minllh -Yew!, where c e « " . 
;=i c ;=i 

The coordinates of c° = (c°,..., c°) are called the optimal coefficients. The elements 
(ph i = 1,. . . , n are supposed to be linearly independent. Then they form a natural 
basis of a linear n-dimensional subspace S c H. It is easy to prove the existence 
of the unique set of linearly independent elements CTJES, j = 1, ..., n, for which 
the following conditions hold 

(1.2) <<p;, a.} = $„; i,j= l,...,n. 

Here §tJ is Kronecker's symbol. We call this set {au ..., <7„} the cardinal basis of S. 
Our following concept is based on 
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Theorem 1.1. The real numbers c°, ..., c° are optimal coefficients in the approxim­

ation of bounded linear functional (h, • > on H by means of < £ ct<ph • >, iff 

(1.3) c° = <h,aj>, ; = ] , . . . , „ , 

where au ...,a„ are given as the solution of system (1.2). For he S (IT) is equal 
to zero. 

Proof. The nearest element in S to the given he H is the orthogonal projection 

of h to S. Therefore h — £ c°(p; is orthogonal to all elements a} of the cardinal 
basis t=1 

<<7j,h - £ c > ( > = 0 , j= l,...,n, 
i = l 

which, using the property (1.2), immediately leads to (1.3). • 

2. APPROXIMATION OF DERIVATIVES ON SOBOLEV SPACE 

We shall investigate the optimal coefficients of formulae, which approach the linear 
bounded operators on Sobolev spaces H"(a, b) with integer q S; 2. The elements 
of Hq(a, b) are absolutely continuous functions on [a, b\ with quadratic integrable 
generalized (in sense of theory of distributions) derivatives of order q. The scalar 
product and the corresponding norm are introduced in the following manner (see, 
e.g. [3] or [15], Chapter XIV, § 4). Let be given q arbitrary points 

(2.1) - o o < a < A - 1 < . . . < x 4 < f c < + c o . 

and put 

(2.2) (J, g}H = J > ( * ) «<«>(*) dx + tf(Xi) g(Xl) , 

(2.3) a | | j | | « = < L L V 

This norm is equivalent to the usual norm * 

(2-4) !jp = i (Vwd*. 

The main advantage of the norm given by (2.2)-(2.3) is connected with the fact 
that we obtain the elements of the linear subspace S in a very simple form. Namely 
we will show that the functionals of the form 

<<?W, j>H = f(p\y), a<y<b, 0<p<q 

are generated by spline functions, i.e. cppy are piecewise polynomials. Introducing 

another norm, e.g. (2.4), this will not be true. 
The following inequalities are well known as the Sobolev imbedding theorem: 

(2.5) \\f™\\c(a»<K\\f\U> P - M , . . . , « - - , 



where q > 1 and K does not depend o n / e Hq(a, b). Therefore the values of function 
and its derivatives of order less then q in given interior points of ]a, b\_ are linear 
bounded functionals on Hq(a, b) and so there is reasonable to find the optimal 
approximations for them using Theorem 1.1. We will find the approximative formulae 
for evaluation of some derivative using the values of function and its derivatives 
of lower order in the points of a given net. Generally, let be given the points 

a < x01 < ... < x0no < b 

(2.6) a < x11 < . . . < xlni < b 

a <xpl < ... < xp,,p < b , 

where 0 ^ p <. q — 1, q > 1. Moreover, suppose that n0 2: q and that the points 
(2.1) are some arbitrary, but fixed of x01,..., x0„0. We introduce the bounded linear 
functionals on Hq(a, b), for which 

(2 7) <<pk„ f>H = f(k\xkl) , VI e H'\a, b), 

k = 0, ..., p ; / = 1, ..., nk. 

Those functionals are linearly independent. Indeed, in Hq(a, b) there evidently 

exist elements ij/kl such that ^ ( x * . ) = 1 and i//f (xsl) = 0 for all remainding ordered 

pairs (s, t) 4= (k, I). Let us suppose 

where not all n0 + n± + ... + np constants Ast are equal to zero. Multiplying the 

left side scalarly in Hq(a, b) by iikX, we obtain 

<^kh X,Ast<ps«>H = Xkl, 

therefore all Xkl = 0 and this contradiction proves the linear independency of (pkl. 
We denote by S the linear subspace spanned on all (pkl defined by (2.7). This subspace 
S is, as we have just prooved, n-dimensional, where 

(2.8) n = n0 + n. + ... + np . 

The set of all elements (pkt is the natural basis of S. The cardinal basis in S consists 
of elements akl with the following properties: 

(2.9) <cpkh asty = 5ks8lt, 

where 

k,s = 0,l,...,p, 

1 = 1, ...,nk, 

t = 1, ...,ns. 

The system of n equations (2.9), where n is given by (2.8), has exactly one solution 
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of the form 

(2.10) as, = __ Xstuv(puv 

where Xstuv are real constants. This fact follows from linear independency of the 

elements <?>„., as the matrix of linear system (2.9) after substitution from (2.10) is the 

Gramm matrix [(,cpkh (pstV\k,i,s,u which is necessarily regular. The elements cpkl with 

properties (2.9) and generally the elements of the linear subspace S can be found 

using the following 

Theorem 2.1. Let the points (2.1) be given, let y e ]a, b[ and let p be an integer 

such that 0 __ p < q, q > 1. Then the unique element \j/ e Hq(a, b), such that 

(2-H) <<A,/>,/=j(p)O0, V/e/f, 

is the solution of the following boundary value problem: 

(2.12) ф™(x) = 0 , x є ]a, b[ - U M - {y} , 
Í = I 

(2.13) ( - iyí-"[iA(2í/-p~1)(y+) - ф^-""1^.)] = J 

1 - tfy) , if p = 0 

and y = x ; for some 

i = \,...,q, 

1 otherwise 

(2.14) (- l)« + 1 [^-«- 1 ) (x» + ) - - A ^ 1 ' ^ - ) ] = ^ ( * . ) , / = ! , . . . , ? , x ; * V , 

(2.15) ^q\a) = ^q)(b) = ^q+i)(a)=^q + 1\b) = ... = ^2q-i)(a) = ^-«-->(_.) = 0, 

(2.16) ijy(-), ...,^2q~P-2\-) are continuous on [a, b] . 

Denoting by (z) + = max (0, z), z e ff1 we can express the function i^(-) in the form 

(2.17) 

*o - *-*» + ( 2 ^ ^ (. - ,*-- +11«_ (, _ r̂1, 
where »74~1(-) is a suitable polynomial of order less than q. 

Proof. According to the Sobolev imbedding theorem (2.5) for an arbitrary ye 

e ]a, b[ and 0 __ p < a, <_ __ 2 the linear functional (2.11) is bounded. The existence 

and uniqueness of \\i in (2.11) follows from the theorem by F. Riesz. 

On the other hand it is easy to verify that the solution of boundary value problem 

(2.12) •*• (2.16) can be found in the form (2.17). Notice that the unknown q coefficients 

of the polynomial j / 4 _ t and q values iA(x,), i = 1,..., q are determined from the 

equations ^(b) = ^(« + 1)(fr) = ... = \j/(2q~l)(b) = 0 (q independent equations) 

and from the substitution of xu i = 1,..., q into (2.17) (also q independent equations). 

Let [//(•). be the function (2.17). Using integration by parts and denoting a = x0, 

290 



b — x
q-n> We express the scalar product as follows: 

(2-18) <^,/>H = f'+1 r>\x)f\x) dx + l ^(x,.)j(x;) = 
Jxo '=1 

*<•>(*)/<«--1}(*)|2+i - ^(9+1,Wj(^2)W|s+ ' + ••• 
. . . + (_l)t-i>~l |/(C2«-p-l)(x)/(p)(x)j-^ + (_ 1 )«-P-1 ^ ( 2 « - P - D ( X ) , 

./<P)(X)Î . + ... +i(-iy-i^2"-i\x)f(x)\vtv + 
i = 0 

+ (-1)^ T+ 1 ^(2s)(x)/(x) dx + i; «H**)jN • 
J*0

 i=i 

Using properties (2.12) 4- (2.16) the equality (2.11) can be verified. Q 

Remark. From the previous theorem it follows that the elements of linear subspace 
S are spline-functions of order equal or less than 2q — 1. Moreover, in the intervals 
]a, min (xu y)[ and ]max (xq, y), b[ they are equal to polynomials of order r = 

= q — 1. For x e ]a, min (x1; y)[ this assertion follows directly from (2+7) and for 
x e ]max (xq, y), b[ from the conditions (2.15) in b. 

Example. Let be a = 0, b = 1, p = 1, q = 2 and xx = £, x2 = \, y = + In this 
case using expression (2+7) there is 

(2+9) ^(x) = a t x + a0 - i(x - \)\ - i[,A(-{) (x - i)\ + 4>(i) (x - f)3,] . 

Denoting by ?(•) the unit jump and by d(-) the Dirac delta distribution, we express 

r { x ) = _ t ( x _ ,) _ ^ ) ( X _ i )+ _ ^ ) ( x _ | ) + , 

^»(X) - _ ^ ( X _ £) _ ^(1) f(X _ i ) _ ^(3) 7 ( x _ 3) ; 

and applying conditions (2A5) at b = 1, we obtain the solution of equations i^"(l) = 
= t//"(l) = 0 as t̂ (-|r) = —2, (/'(J) = 2. Now it is possible to determine the coefficients 
a0, a t using the substitution x = \ and x = f into (2.19): 

- 2 = £a, + a0 , 

2 = fa . + a0 + i ( | - i ) 2 - §{2(f - *)3} . 

Solving this system, we obtain 

(2.20) « , ) - ^ x - 257 - i (x - i ) + + i[(x - i)3
+ - (x - |)3

+] . 

There is not difficult to verify that for x e ]0, {-[ and for x e ] | , 1[ the function (2.20) 
its equal to a polynomial of order q - 1 = 1. 

Using Theorem 2.1 it is possible in every concrete case to evaluate the correspond­
ing elements of the natural basis. As their linear combinations have obligatory equal 
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structure we can modify this method for computation of elements of cardinal basis. 
According to the previous remark we shall call this elements cardinal splines. 

Let be 0 ^ p < s < q and let y e ] a , ft[. From Theorems 1.1 and 2.1 we can 
compute the optimal approximation of derivative f(s)(y) for arbitrary y e ]a, ft[, 
namely 

(2.2i) f<>\y)±i I.o'iWKxu). 
; = o j=i 

Analogously the optimal quadrature formula f o r / e Hq(a, ft) is of the form 

(2.22) J V ) dx _ £ £ (J<x,,.(x) dx^j / « ( „ „ ) . 

3. CARDINAL SPLINES FOR EQUIDISTANT PARTITION 

Since now we shall consider the simplest case p = 0 and 

(3.1) <<P„f>H-f{x,), i~l,...,n, VfeHq(a,b), 

where n ^ q > 1 and 

(3.2) Xi = a + — l — ( b ~ a ) , i - 0, 1, . . . , n + 1 . 
n + 1 

Especially, x0 = a, x„+i = ft. S is the linear subspace of Hq(a, ft) spanned on 

{«_, •••, ¥>»}• 

From Theorem 2.1 it follows 

Proposition 3.1. The cardinal splines <r; e S, where S is the linear subspace 
in Hq(a, ft) consisting of elements (ph i — 1, ..., n, with properties (3.1), are the 
functions of the form 

(3-3) ф) = 

9 - l n-\ 

I -y*' + I *./* - *y)2

+*~' , * e [x0, x„[ 
j = 0 j=\ 
q-\ 

yZbux
J, xe[x„,x„+i] 

J--0 

with the properties 

(3.4) ai(xj) = dtj, i,j=l,...,n. 

There is cr; e C(2q~2>(a, ft) and the2q + » — 1 coefficients a 1 0 , ..., a ; ?, A ;1,..., l ; , , ^ , 
ft;0,..., ft,-9 are the (unique) solution of the linear system of independent n equations 
(3.4) and 2q — \ equations 

(3.5) °?\x„-) = o?\x„+) , k = 0, 1, ..., 2a - 2 . 

Remark. The assertion about the independency of equations (3.4), (3.5) can be 
verified ([2]) also directly, if we analyse the matrix of the corresponding linear 
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system. We present here some numerical results, based on Proposition 3.L In our 
examples we suppose the interval [a, b\ transformed to the special form [0, (n + 1) h~\ 
In the tables there are values of coefficients in the expression (3.3). 

Example 3.] n = 3, .7=2 

i j Û Í 0 ű ; i л ; i "ia Ь,o *n 

9 5 1 2 3 1 

1 j 

! 
4 ~4Л 4/ľ3 

~4Л 3 4 4Л 

3 3 1 2 9 3 
2 -

- 2 

1 

2Л 

1 

" 2 Л 3 

1 

2Л 3 

2 

2 

11 

~2Ã 

5 
3 

4 ~4Л 4Л3 ~ 4 Л 3 __ 4Л 

Example 3.2 и = 4, .7=2 

' «,0 

84 

— 
ö ; i ~п Л-2 

9 6 

^ІO t-11 «,0 

84 

— 
19 4 

Л-2 

9 6 4 1 
1 

15 ~І5Л 15A3 ~ Í 5 Л 3 І5Ã5 
Í5 ~15Л 

8 8 3 8 7 8 2 

2 
5 5~ ~ 5 * 3 5Л3 ~5j3 5 5/ï 

2 2 2 7 8 32 8 
3 

5 

1 

~ 5 ~ 

1 

5Л 3 

1 

" 5 Л 3 

6 

5Л3 

9 

5 

61 

~5Л 

19 
4 

~ 1 5 Ш ~Ï5/ ľ 3 І 5 Л 3 " 15Л3 ~ 1 5 15A 

Example З.C 1. n = 5, .7-2 

j « ( 0 
an ~ i l Л-2 

1 
127 

56" 

71 

56Л 

15 

56/ľ3 

34 

~ 5 6 Л 3 

2 
45 

~28 

45 

28Л 

17 

~2~8Ã3 

46 

2iЗЛ3 

3 
3 

7 

3 

~7Л 

3 

7Л3 

11 

" 7 Л 3 

4 
3 

28 

3 

28Л 

3 

~28я3 

18 

28/ľ3 

5 
1 

56 

1 

56Л 

1 

5~Л3 

6 

~ 5 6 Л 3 

ь» 
24 6 5 1 

56Л 3 ~56/ľ 3 ~56 56Л 

44 18 15 3 

28Л 3 28Л 3 28 ~28Л 

16 11 15 3 

7Л3 ~77г3 _ 7Л 

44 46 225 45 

28Л 3 28Л3 ~І" ~28Л 

24 34 355 71 

56Л 3 ~56Л 3 56 56A 

293 



Example 3.4. и = 4, 9 = 3 

/ в(0 an Щi 'п -u "«э 'ю bц ba 

l 
448 

T 2 
409 

~Ì32Л 

93 

Í 2Л2 

2 

" Ï 2Л5 

6 

132A5 

6 

" Г 2Л 5 

332 

" T 2 
191 

132Л 

27 

" Ï 3 2 Л 2 

2 
187 

44 

255 

44Л 

- 7 1 

44Л2 

2 

44/;5 

6 

~44Л5 

6 

44Л5 

596 

44 

345 

~44h 

49 

44Л2 

3 
96 

44 

145 

~44~ 

49 

44Л2 

2 

" 4 4 Л 5 

6 

44/? 

6 

" 4 4 Л 5 

684 

" " " 
445 

44Л 

71 

"~4Л 2 

4 
52 

132 

79 

vm 
27 

"шл 2 

2 

Ì 2Л5 

6 

" l 3 2 Л 5 

6 

шл5 
728 

132 

521 

" Ì 2Л 

93 

132/;2 

This concrete cardinal bases can be used as in (2.21), (2.22) for determining of optimal formu­
lae for different linear operators. 

4. EXAMPLE OF NUMERICAL SOLUTION OF OPTIMUM CONTROL 
PROBLEM 

Let us minimize the integral cost function 

f(u)-^\x\t) + u\t))át, 

where T > 0 is given and 

x(t) = -a x(t) + u(t), a > 0 , 

x{0) = x0 . 

Using the Pontrjagin principle, the Hamilton function is 

Jfty, x, u) = # 0 ( x 2 + u2) + i /_(-ax + K) , 

where we can put i//0 = — 1. 

The optimal control is therefore 

u*(t)-Ut). 

The function t/_(f) is the solution of the following boundary value problem: 

x(t) = -ax(t) + u(t), x(0) = x 0 , 

</_(/) = xtf + a^t), ti(T) = 0, 

which solved can be analytically and there is 

».(')• *o, ~° , __, W ( - 2 + -) 

X - a + (X + a) e2,l / 
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This boundary value problem was discretized by means of the following formulae: 

(1) Optimal formula f o r / e H2, using the values of/(-) in 3 points with h — xi+1 — 
- x;, x = 0 , 1 , . . . . n + 1 

f'(xj) * ^ [ "5 j (x ; ) + 6 / (x , + 1 ) - / ( * ; « ) ] , i = 1, .... n - 1 , 

/'(*,) -- ^ [j(*J+i) - / ( * , - , ) ] . ; = L - , « , 
2« 

/ ' (*,) = ~ U(xj~2) ~ 6 / (x ,_ . ) + 5/(*,-)] , j = 2, ..., n . 
Ah 

This formula was derived using the cardinal splines from Example 3.L It is 
precise for polynomials of order 1. 

(2) Classical three-points formula derived using the Lagrange interpolation, precise 
for polynomials of order 2 

f'(*j) = ~ [ " 3 j f e ) + 4 / ( x , + 1) - j(x, + 2)] , j = 1, ..., n - 1 , 
In 

A*.0 = ^ tf(*>+1)-/(*>-»)]. ; = i . - . « . 

/'(*y) = 7^ [ / ( ^ - 2 ) - 4 j (x y _0 + 3/(x,)] , j =2, ..., n . 

(3) The common Euler method. 

The results of computation (due by Z. Beran in [2]) for T = 1, a = 1, x0 = 1 
with the step h = 0, 2 on [0, l ] are given in the following table, where e(-) is 
the error in comparison with the analytic solution. For u* = i//li we used the 
first, for X; the third formula in (l) and (2). As the conditions for x, are given 
at the initial point and those for u* at the final point of the interval, this choice 
seems to be the simplest one, although evidently not the only possible way of 
application of discretization formulas. 

(Received April 13, 1984.) 
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