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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 4 

NONDIFFERENTIABLE AND QUASIDIFFERENTIABLE 
DUALITY IN VECTOR OPTIMIZATION THEORY 

TRAN QUOC CHIEN 

In the paper two concepts of duality, namely nondifferentiable and quasidifferentiable are 
introduced for a class of vector optimization programs. Weak and partially strong duality are 
established. The obtained results are then applied to define dual programs for vector fractional 
programs. 

0. INTRODUCTION 

Duality theory may be regarded as the most delicate subject in optimization theory 
and its theoretical importance cannot be questioned (e.g. in the theory of prices 
and markets in economics). In vector optimization duality theory has been established 
mostly for linear and convex minimization programs (see [1] — [7]). 

In [8], [9], [10] a unified duality theory has been introduced for a considerably 
wider class of optimization programs. Nevertheless, that theory is, in some concrete 
cases, too abstract to give a satisfying form of dual programs. This paper is concerned 
with a smaller class of optimization programs than those in [8], [9] and [10], but 
dual programs of which have more concrete and analytical form. 

In Section 2 resp. 3 a nondifferentiable resp. quasidifferentiable duality is proposed. 
Weak and partially strong duality are established. Results of Sections 2 and 3 are 
then applied to define dual programs for vector fractional programs in Section 4. 

1. NOTATION AND PRELIMINARIES 

1.1. Throughout this paper X, Y, Z and If denote locally convex spaces. 
Let Vcz X then int V, V, co Vand co V denote the interior, closure, convex hull 

and closed convex hull of Vrespectively. 
Note that X' denotes the dual of X equipped with the weak* topology. 
(-^Xe/t <= X is called a net in X if A is a directed set (see [13,], p. 21). 
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For V a X we denote the following 

V° = {v E X' | v(x) ^ - 1 Vx e V} the polar set of V 

V* = {v e X' | y(x) £ 0 Vx e V} the dual cone of V 

cone (V) = {Ax | X >. 0 & x e V} the cone generated by V. 

For a e X let 

X(a, V) = {x e X | 31 > 0 VO < e < X : a + ex e V) be the tangent cone 

of Vat a . 

1.2. Let Z 0 be a nonempty subset of X. A function / : X0 -> IV is called (wea/c/y) 
directionally differentiate at a EX0 if the limit 

T(a,x) = l im(/(a + Ax)- / (a)) /A 
A.O 

exists for each x e K(a, X0) in the weak topology of W. 

1.3. Let T be a nonempty closed convex cone of Z. A function /; : X0 -* Z is said 
to be T*-quasidifferentiable at a eX0 if h is directionally differentiable at a, and 
if for each t e T* there exists a nonempty, weak* closed convex set d~(th)(a) c X' 
such that 

th'(a, x) = inf u(x) Vx e X 
veS~(th)(a) 

If d~(lh)(a) is weak* compact for each te T* we shall say « is continuously T*-
quasidifferentiable at a since in this case th'(a, x) is continuous. 

1.4. A function a :X0 -> Y is said to be arc-wise directionally differentiable 
at aeX0 if (in the weak topology of Y) 

g'(a, x) = lim (g(a + vv(l)) - g(a))jX 
A»O 

for each continuous arc w : [0, 1] -> X such that vv(0) = 0 and w'(0) = x. 
This strengthing of directional differentiability is possible if the limit defining 

g'(a, x) exists uniformly in x. 

1.5. A function k : X0 -> R, where R is the set of all reals, is called directionally 
pseudoconcave at a e X0 if k is directionally differentiable and 

k(x) > k(a) => k'(a, x - a) > 0 Vx e X 

1.6. Let X0 be a nonempty convex subset of X and S a nonempty closed convex 
cone of W. A function/ : X0 -> JYis S-concave at ae X0 if 

Vx e Z 0 VI e [0, 1] :/(Ax + (1 - X) a) - Xf(x) - (1 - X) f(a) e S 

/ is S-concave on X0 if it is S-concave at a for all a e X0. 
lfW=R and S = R + we say/is concave ataeX0 or on X0. 



A function / is called S-convex at a, S-convex, convex at a or convex if —/ is 
S-concave at a, S-concave, concave at a or concave respectively. 

1.7. L e t / : X -> [— oo, + co) be a concave function, not identically - oo, and let 
a e X f(a) > — oo then the superdifferential of/ at a is the set 

d-f(a) = {veX' \f(x) -f(a) ^ v(x - a) V X E I } 

I f / is a convex function, not identically +00, then the subdifferential of / at a 
is the set 

._/(«) = - < T ( ~ / ) ( „ ) 

1.8. Proposition. Let / : _ _ - > [ - c o , +00) ( ( - c o , +00]) be a concave (convex) 
function, finite and continuous a t a e l . Then d~f(a) (3 _/(_)) is nonempty, weak* 
compact and convex. 

Proof. See [11], Proposition 5.2, p. 22. 

1.9. It is easy shown that every continuous concave function and every linearly 
Gateaux differentiable function is continuously (R + -) quasidifferentiable. Zalinescu 
[14] has shown that every continuous concave or convex function is arc-wise direc-
tionally differentiable. 

1.10. Let V c X0 cz X, f : X0 -* W a function and W+ a W a closed convex cone 
with int W+ + 0. Consider the program 

/ -* SUp (0>t) 

xeV 

Every x e Vis called a feasible solution of program (SP\). A point we Wis said 
to be a (weak) supremum of program (2P\) if there exists a net (xa) c: V such that 
w = lim/(xa) and 

V x e V : j ( x ) - w$iniW+. 

The set of all suprema of program (_*%) is denoted by SP^i). A point x e Vis called 
and optimal solution of program (3P^) if f(x)eSf(0>

1). A net (xa) c_ V is called 
an asymptotic optimal solution of program (_?:) if limf(x„) exists and l im/(x a )e 
eSf(SP^. 

1.11. Analogously are defined feasible, optimal, asymptotic optimal solutions 

and infimum of program 

. f(x) - inf (^2) 

xeG 

The set of all infima of program (SP-f) is denoted by ^i^i)-
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2. NONDIFFERENTIABLE DUALITY 

2.1. In this section we suppose that Y+ c Y and W+ a W are closed convex 
cones with int Y+ 4= 0 and int W+ 4= 0. Let us have the functions / : X0 -> W and 
g : X0 -> Y, where X0 c X is a nonempty set. We shall considere the following 
program 

f(x) -> sup 1 

9(x)eY+ (P) 

xeX0 J 

2.2. In order to establish a dual program to (P) we assume that there exist a non­
empty set W0 c W, a locally convex space JY with a closed convex cone W+ such 
that int W+ 4= 0 and a function <p : X0 x W0 -> JY such that 

(2.2.1) V(x, iv) e X0 x JY0 : / (x) -we int 1Y+ o «p(x. w) e int 1?+ 

2.3. The following program 

vv -> inf 

(2.3.1) sup (n(q>(x, wj) + n(g(x)) ^ 0 I (D) 

w e 1Y0 & n e W* \ {0} & )? e Y* 

is called a nondifferentiable dual of program (P). 

2.4. Theorem (Weak Duality). Let x and (w, n, n) be feasible solutions of programs 
(P) and (Z>) respectively. Then 

j(x) - w $ int W+ 

Proof. Let x and (w, n, n) be feasible solutions of programs (P) and (D) respectively. 
If f(x) - w e int JY+ then, by (2.2.1), cp(x, w) e int W+ and 

/ ^ ( x , w)) + n(g(x)) ^ (̂<j5(x, w)) > 0 

which contradicts (2.3.1). 

2.5. Theorem (Partially Strong Duality). Suppose X0 is convex cp(',w) is #+-
concave on X0 for all w e W0, g(x) is Y+-concave on X0 and the constraint gr(x) e Y+ 

satisfies the Slater constraint qualification 

(2.5.1) 3 x 0 e X 0 : g ( x 0 ) e i n t Y + 

Then 
£f(P) n W0 <= /(D) . 

Proof. Let w* e cp(P) n W0. Obviously 

f(x) ~ w* £ int W+ Vx e V 
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which implies, by (2.2.1), 

(2.5.2) cp(x, w*) $ int W+ Vx e V 

where 
V={xeX0|a(x)eY+}. 

Put 
U = {(w, y) e W x Y| 3x eX0 : q>(x, w*) - weW+ & g(x) - y e Y+} . 

Obviously U is convex and from (2.5.2) it follows 

U n int W+ x int Y+ = 0 

So, by a separation theorem (see Holmes [12] or Ekeland, Temam [11], p. 5 Corollary 
1.1), there exist \x 6 W', rj e Y', (n, >?) # (0, 0) such that 

(2.5.3) n(w) + ri(y) ^ fi(w') + n(y') V(w, y) e U & V(w', / ) e W+ x Y+ . 

Obviously n e W* and /? e Y*. I l> « 0, then /? + 0 and by (2.5.1) 

^(^(A-Q, W*)) + ri(g(x0)) = jy(fif(x0)) > 0 

which contradicts (2.5.3) for (cp(x0, w*), g(x0)) e U and (0, 0) e W+ x Y+. Hence 
JX 4= 0. In view of (2.5.3) the constraint (2.3.1) is fulfilled. So (w*, p., rj) is a feasible 
solution of program (D) and by the weak duality w* eJ(D). 

2.6. Remark. 

2.6.1. The Slater constraint qualification can be replaced by a weakened condition 
the generalized Slater constraint qualification (see Golstein [13], p. 89). 

2.6.2. From the proof we see that (w*, n, ?/) is actually an optimal solution of dual 
(D), so that the direct duality holds. 

2.6.3. Let (x*) be an asymptotic optimal solution of program (P) with w* = 
= \imf(x*). Then, by Theorem 2.5, there exists an optimal solution (w*, ft*, ?/*) 

of dual (D). It is easy to verify that for this pair of optimal solutions the asymptotic 
complementary condition 

lim if(g(x*)) = 0 
holds. a 

3. QUASIDIFFERENTIABLE DUALITY 

3.1. In this section W+ a W, Y+ c Y and T c Z are nonempty closed convex 
cones with int W+ + 0 and int Y+ + 0, X0 is a nonempty subset of X a n d / : X0 -» W, 
g :X0 -> Y and h : X0 ->• Z are functions mapping X0 to W, Y and Z respectively. 
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We shall be concerned with the following program 

f(x) - sup 

g(x)eY+ 

h(x) e T 

x eX0 

3.2. Similarly as in Section 2 we suppose that there exist a nonempty subset W0 

of Wand a function <p : X0 x W0 -> If such that 

(3.2.1) j(x) - w e int Jf+ <=> cp(x, w) e int W+ V(x, vv) e X 0 x W0 

and 

(3.2.2) /(x) = w o cp(x, vv) = 0 

3.3. Supposing cp(-, w) (w e W0), g(x) and h(x) are W*-, Y*- and T*-quasidifferent-

iable respectively, the following program 

vv -> inf 

(3.3.1) fi <p(x, w) + >/ g(x) + z h(x) ^ 0 

(3.3.2) Oed~(fup)(x,w) + d~(rig)(x) + d~(Th)(x) \ (®) 

x e l 0 & i v e W0 

fteW*\{0}&rieY*&TeT* 

is called a quasidifferentiable dual of program (SP). 

3.4. Theorem (Weak Duality). Let (x, vv, p., >y, T) be a feasible solution of program 

(S>). If function fc(x') = fi <p(x', vv) + ^ fl(x') + T h(x') is directionally pseudo-

concave at x then for any feasible solution x of program (8?) 

f(x') - vv ^ int W+ . 

Proof. Let, on the contrary,/(x') —we int W+ for feasible solution x' of program 

(0>). Then, by (3.2.1), <p(x', w) e int W+ which implies 

k(x') = // cp(x', vv) + J7 a(x') + T /;(x') > /i <p(x', vv) > 0 3; 

> /i cp(x, w) + ^ g(x) + T /t(x) = /c(x). 

The inequality fc(x') > k(x) implies, by directional pseudoconcavity of function 

k(x') at x, k'(x, x' — x) > 0 which contradicts constraint (3.3.2). 

3.5. The constraint h(x) (or simply h) is locally solvable at a eX0 if h(a) e T 

and whenever deX satisfies h(a) + h'(a, d) e T there exists a solution x = a + 

+ Xd + 0(X) to h(x) e T valid for all sufficiently small X > 0 (note 0(A)/A - > 0 a s 

X 1 0 ) . 

3.6. Theorem (Strict Duality). Suppose X is a Banach space, X0 is a nonempty 

convex and open set and x* is an optimal solution of program (3?). Let (p(-, vv*) 

(vv* = /(x*)), g(x) and /i(x) be continuously W*-, Y*- and T*-quasidifferentiable 
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at x* respectively. Let fc(x) = \i (p(x, w) + ^ g(x) + r h(x) be directionally pseudo-
concave on X0 for any w e W0, fxeW*\ {0}, ^ e Y* and T e T*. If h is nonlinear 
let cp(-, w*) and g be arc-wise directionally differentiable at x*. Let h be locally 
solvable at x* with 

(3.6.1) h'(x*, X) + cone (h(x*)) + T=Z 

and the constraint g(x) e Y+ satisfy the Slater constraint qualification 

(3.6.2) 3x0 e X0 : g(x0) e int Y+ & h(x0) e T. 

Then there exist ft* eW*\ {0}, »?* e Y* and T* e T* such that (x*, w*, /**, tf, T*) 
is an optimal solution of program (<2>). 

Proof. From (3.2.1) it is easy seen that cp(-,w*) reaches (weak) maximum on 
V = {x eX0 | g(x) e Y+ & h(x) e T} at x*. Hence there exist, by [15] Theorem 4 
and Corollary 2, (jt*, if) e W* x Y* (fx*, rf) + (0, 0) and T* e T* such that 

(3.6.3) 0 e d~(fi*(p) (x*, w*) + c~(ii*g) (x*) + 5~(T*h) (x*) 

and 

(3.6.4) 0 = if g(x*) + x* h(x*) 

In view of assumption (3.2.2) we have (p(x*, w*) = 0 which, together with equality 
(3.6.4), gives 

(3.6.5) LI* cp(x*, w*) + if g(x*) + x* h(x*) = 0 

If ix* = 0 then if + 0 for (fx*, ??*) + (0, 0). So for x0 e V with g(x0) e int Y+ 

(existence of such an x0 is guaranteed by assumption (3.6.2)). We have 

fc(x0) = n* (p(x0, w*) + if g(x0) + T* h(x0) ^ if g(x0) > 0 = 

ix* <p(x*, w*) + >7* g(x*) + T* h(x*) = k(x*) 

which implies, by directional pseudoconcavity of function k(x) at x*, k' . 
. (x*, x0 - x*) > 0, a contradiction with (3.6.3). Hence /x* + 0. We have thus 
proved, by (3.6.3), (3.6.5) and /x* + 0, that (x*, w*, (i*, ?/*, T*) is a feasible solution 
of program (3l). Optimality of (x*, w*, ft*, >/*, T*) is then derived from the weak 
duality 3.4. The proof is complete. 

3.7. Remark. In case T = Rp
+ x {0} and h(x) is Gateaux differentiable at x* 

local solvability of function /;(x) at x* and (3.6.1) are equivalent to the Kuhn-Tucker 
constraint qualification and they hold, in particular, if the gradients of active con­
straints at x* (i.e. components ht of h with ht(x*) = 0) are linearly independent (see 
[16] Craven p. 666). The Mangasarian constraint qualification in [17] Martos 
p. 127 yields, after some transformations, the local solvability, assumption (3.6.1) 
and the Slater constraint qualification required in our theorem. 

3.8. Corollary. Suppose X is a Banach space, X0 is an open, convex set and x* 
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is an optimal solution of program (&>). Let <p(-, w) (w e W0), g(x) and h(x) be conti­
nuous and concave on X0. Let h be locally solvable at x*. Let assumptions (3.6.1) 
and (3.6.2) hold. Then there exist n*eW*\ {0}, >/* e Y* and T* e T* such that 
(x*, w*, ii*, /?*, T*), where w* = f(x*), is an optimal solution of program (&). 

Proof. Obviously directional pseudoconcavity of function 

k(x) = ji cp(x, w) + )1 g(x) + T h(x) 

for all w e W0, fi e W* \ {0}, 11 e Y* and T e T* is guaranteed by concavity of functions 
(p(-,w), g(x) and h(x). Remark 1.9 shows that other assumptions required for 
Theorem 3.6 are also fulfilled. The assertion is then a consequence of Theorem 3.6. 

4. DUALITY IN VECTOR FRACTIONAL PROGRAMMING 

4.1. Introduction. Some decision problems in management science as well as other 
extremum problems gives rise to the optimization of ratios. Constrained ratio 
optimization problems are commonly called fractional programs. They may involve 
more than one ratio in the objective function. Many works (about 500 according 
to Schaible [18]) have already appeared in this field. One may find a relatively 
complete survey on fractional programming in Schaible [18], [19]. We shall now 
develop a duality theory for vector fractional programming (V. F.P.), which is still 
les investigated. For the scalar fractional programming there are several approaches 
to define duals, see [18] —[25], and the most known of them is the transformation 
one. On the basis of this method one can transform a fractional program, under 
certain conditions, to a concave maximization program and then apply the known 
duality theory for concave maximization. As regards V. F. P., these approaches 
are not applicable, since it is not generally possible to reduce simultaneously all 
components of objective function to a concave or convex function. That is why 
one should find a new method to define dual programs for V. F. P. In [10] the author 
has presented a dual concept for vector quadratic-affine and vector quadratic frac­
tional programs. In the present paper, on the basis of the duality theory developed 
in Sections 2 and 3 we shall define dual programs for a widely class of V. F. P. 

It should be stressed that the results given in this paper are valid for an arbitrary 
Banach space, whereas the results concerning this problem, which have been published 
up to this time, were proved only for finite dimensional spaces. 

4.2. Definitions. Suppose X is a locally convex space, fh gt (i = 1, . . . , p) and 
hk (k = 1, . . . , m) are real valued functions, which are defined on a nonempty subset 
X0 c X. We consider the ratio 

(4.2.1) qi(x)=fi(x)jgi(x) i=l,...,P 

over the set 

(4.2.2) D = {x e X0 | hk(x) 2: 0 Vfe = 1, . . . , m} 

305 



We assume that gt(x), i = 1, . . . , p, are positive on X0. If g;(x) is negative then 
qt(x) = (-fi(x))l(-g,{x)) may be used instead. Put 

(4.2.3) Q(x)=(qi(x),...,qp(x)y 

where T indicates transposed matrix. 
The program 

(4.2.4) Q{x) -> sup 
xeD (p) 

is called a vector fractional program (V. F. P.). 
In some applications more than one ratio appear in components of objective 

function. Here we consider the following program. Suppose, in addition, L/(x), 
gij(x) (i = 1, ..., p;j = 1,... , PJ) are real valued functions on XQ such that gf./x) 
are positive on X0. 

Put 

(4.2.5) q;(x) = min/7(x)/a, . /x) 

and 

(4.2.6) Q(x) = (qi'x),...,qv(x)Y . 

Then program 

(4.2.7) Q(x) - sup 

x e D (p) 

is sometimes referred to as a generalized vector fractional program (G. V. F. P.). 
The focus in fractional programming has been directed to the objective.function 

and not to the constraint set D. As far as D is concerned, in most of the references D 
is assumed to be a convex set. Accordingly, we will require in this paper that the 
domain X0 of all functions in programs (p) and (p) is a nonempty convex set and the 
constraints hk (k = 1, ..., m) are concave on X0. This implies convexity of the 
feasible region D. In many applications the ratios q(x) = f(x)jg(x) satisfy the 
the following assumption. 

4.2.8. Concavity-Convexity Assumption: 
(i) / is concave and g is convex 

(ii) / i s positive if g is not affine (linear plus constant). 

4.2.9. Program (p) resp. (p) are called vector concave fractional program 
(V. C F. P.) resp. generalized vector concave fractional program (G. V. C. F. P.) 
if all the ratios appearing in the objective function satisfies the concavity-convexity 
assumption. 

In the following we shall establish a nondifferentiable dual for a G. V. C F. P. 
and a quasidifferentiable dual for a V. C. F. P., in particular for vector quadratic 
fractional programs. 
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4.3. Nondifferentiable dual 

Consider G. V. C. F. P. (p). Put 

— co if gtj are affine for all 7 = I , . . . , p, 
0 otherwise 

and W= Rs, W0 = ((ru +00) x ... x (rp, +00)) u {0}, where s = f /?,• and 0 
indicates the zero element of R". , = l 

We define the function cp : X0 x W0 -> W as follows 

(4-3.1) (p(x, w) = [fn(x) - w, o,,(x), . . . , / ,„,(*) - w, glpi), ... 

—./«(*) - W i J i i ^ " - / ^ ) ~ wtgtpi(x),... 

. . . , /„.(*) - w,«,,(J)« •••'/«>(*) - H 'p5PP„W]T 

for all x eX0 and w = (w l 5 . . . , wp) e W0. 
Obviously the function <p(x, w) satisfies condition (2.2.1). So according to Section 2 

the following program 

(4.3.2) w -* inf 

suP ( i I « . , / . /*) + i vk hk(x) - i w, i utj gtJ(x)) = 0 
xnXo i = 1 j = 1 k = 1 ( = 1 y = I 

w = - ( = (- , , . . . ,rp)T) ^ ^ (3) 

u„ = 0 V/ = l , . . . ,p; / = l , . . . ,p , i f « 5 >0 
; = 1 7 = 1 

i't > 0 V/t = 1, ..., m . 

is a nondifferentiable dual of G. V. C. F. P. (p). 

As a consequence of Theorem 2.4 and 2.5 we have 

4.3.3. Theorem. For the dual pair (p) and (d) the weak duality holds. If constraints 
hk(x) _• 0, fe = 1, . . . , m, satisfy Slater's constraint qualification then the partially 
strong duality holds i.e. 

9>(p) nW0<= /(d) 

4.3.4. Remark. The dual program (d) is a generalization of the dual for one-object­
ive fractional program established in Schaible [18], p. 48. Indeed, if p = 1 then 
program (p) becomes 

sup { mnft(x)lgi(x) \ xeX0&hk(x) = 0 Vfc = 1, . . . , m} (p.) 
i = ; = p 

and its dual, as a particular case of (d), is 

inf { sup ( i uJix) + fvk hk(x))l i ut gt(x) \ uh vk > 0 & i u] > 0} («?,) 
xeX0 i=l k=l i = l i = 2 

From Theorem 4.3.3 it follows that if the Slater constraint qualification holds 
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then 
sup(pj) = inf(<3.) 

where sup (jjj) and inf(rf1) are supremum of (pt) and infimum of (3t) respectively. 
Note that in Schaible [18] in order to vanish the dual gap, instead of the Slater 
constraint qualification, lower semicontinuity of functions/,-, g;, hk and compactness 
of the set X0 are required to be satisfied. 

4.4. Quasidifferentiable duality 

Consider the V. C. F. P. (p). Suppose X is a Banach space, X0 is a nonempty convex 
and open set,/,-, g; and hk(\/i, k) are continuous. 

Put 
— oo if a ; is affine 
0 if g; is not affine 

W = Rp and W0 = (r,, +oo) x ... x (rp, +oo) u {0}, where 0 is the zero element 
ofR". 

Define the function <p : X0 x W0 -> R" as follows 

(4.4.1) <p(x, w) = (/j(x) - w, 9l(x), .. .,/p(x) - wp gp(x))T 

for all xeX0 and w = (w,, ..., wp)e JF0. 
Obviously the function cp(x, w) satisfies conditions (3.2A) and (3.2.2). So applying 

results of Section 3 we obtain a quasidifferentiable dual of program (p) in the follow­
ing form 

(4.4.2) w -» inf 

£ UJ{X) + £ Vk hk(X) - £ W;M; fl;(x) =2 0 
/ = l k = 1 

0 e £ Mj a-L(x) + tvk d-hk(x) - £ w;l(; d-g;(x) 
/ = i t = i / = i 

x e X0 & w e R" : w ^ r 
p 

u,-, yk g 0 Vi = 1 p ; /c = 1, ..., m& £ u? > 0 
i = l 

If//. 5; and hk are differentiable for all i, k the dual (d) becomes 

w -+ inf 

(d) 

(4.4.3) 

(0 

(ü) 

É uifІx) + ï Чk M*) - É И;/"І Øitø = ° 
; = i fc = ì ; = ì 

0 = £ Щ V/;(X) + £ V, Vlф) - £ W;U; Vfl^) 
; = i k = ì í = i 

x є X 0 & w є Rp : w ^ r 
p 

м г , tft = 0 V; = 1, ..., p; k = 1,..., m&^uf > 0 

(ď) 
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As consequences of Theorem 3.4 and 3.5 one obtains 

4.4.4. Theorem (Weak Duality). For any feasible solutions x' and (x, w, u, v) of 
programs (p) and (d) ((df) in differentiable cases) we have 

j(x') - w $ int R"+ . 

4.4.5. Theorem (Strict Duality). Let x* be an optimal solution of program (p). Let 
the constraint h(x) > 0, where h(x) = (hx(x), ..., hm(x))r, have the following form 

h\x) >, 0&/)2(x) = 0 

where h' :X0 -> R"", i = 1, 2, m1 + m2 = m. Suppose hl(x) satisfies the Slater 
constraint qualification and h2(x) is locally solvable with 

(h2)' (x*, X) = R- . 

p 

Then there exist u* = («*, . . . , M*)T, £ M*2 > 0 and v* = (v*, ..., v*)T such that 
i= 1 

(x*, iv*, u*, i>*), where vv* = Q(x*), is an optimal solution of program (d) (respect­
ively of (d') if the concerned functions are differentiable on X0). 

4.4.6. Remark. Obviously the above assertion is still valid if Mangasarian's 
constraint qualification (see [17] Martos, p. 127) is required instead. 

If p = i and concerned functions are differentiable then dual program (d') reduces 
to the dual (Dt) of Schaible [20]. There, in order to get strong duality, Schaible 
has required some constraint qualification to be fulfilled. It is easy seen that our 
dual (d') is a generalization of Schaible's one. 

4.4.7. Vector quadratic fractional program 

Suppose C; and D„ i = 1, ..., p, are real symmetric n x n matrices negatively 
and positively semidefinite respectively, ct, dx e R" and af, /3; e R for i = 1, ..., p, 
A is an m x n matrix and b e R'". Let X0 t R" be a nonempty open and convex 
set, on which xT£>;x + d]x + /?, are positive for all i = 1, ..., p. Put 

f.(x) = xTC,x + c]x + a., 

0;(X) = XT£);X + dTX + /?; 

and 
q(x) =(fi(x)jgx(x),...,fp(x)lgp(x)f 

Program 
a(x) -> sup 

xeX08cAx ^ b (qp) 

is called a vector quadratic fractional program (V. Q. F. P.). 
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Since program (qp) is evidently a vector concave fractional program, one can apply 
the differentiable dual (d1) for (qp). 

We have 
Vj;(x) = 2C;x + c; i a 1, ...,p 

Vfl;(x) = 2Dtx + dt i = 1 p 
and 

Vhk(x)= -ak k = l , . . . , m 

where afc is the /cth row of the matrix A and hk(x) = b,c — a7x. 

Constraint (ii) of program (cV) becomes 

00 0 = É 2ukci - wiDd x + t. uici - widi) -1- ATV 

where v — (v,..., v,„) e Rm. 

Constraint (i) of (d1) becomes 

0 ^ X Ui[(xTCiX + cjx + a,) - w;(x
7'£>;x + cljx + 0,)] + (£> - Ax)T v 

; = i 

and after replacing 
V p 

ATv = £ 2M,.(C; - W;D,.) x + X Ut(Ci ~ w(d ;), 
; = i ; = i 

what follows from (ii), we obtain 

(i) 0 ^ - £ M ; X
T (C ; - w;D;) x + JT M ;(« ; - w,./?,.) + fcT,, . 

i = i ; = i 

So a differentiable dual of program (qp) is 

w -» inf 

£ 2w;(C; - w;£>;) x + £ M;(C; - wtdi) - ATv = 0 
i = 1 ^ = 1 

- £ M ;X
T(C ; - wtDi) x + £ «((<*( - w;J8;) + bTv S 0 

i = l ; = i 

xeX0, weR" w; ^ 0 if D, + 0 

M = ( M 1 ; . . . , M p ) e R p
+ \ { 0 } , » . - ( » ! . . . . , » , ) e J i ; 

Since h(x) = b — Ax is affine all constraints qualifications required in Theorem 
4.4.5 are fulfilled. Hence we have 

4.4.8. Theorem (Strict Duality). If x* is an optimal solution of program (qp) then 
there exist u*, v* such that (x*, w*, M*, V*), where w* = q(x*), is an optimal solution 
of program (qd). 

(qd) 
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4.4.9. Remark. Our differentiable dual (qd) is a generalization of the scalar one 
given in Schaible [20], Indeed, if p = 1, program (qd) is reduced to program (10) 
of Schaible [20]. Schaible has there assumed that 

{x e R" | Ax g b} c X0 

in order to guarantee existence of an optimal solution of the primal program. 

(Received May 14. 1984.) 
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