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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 1 

LINEAR TIME-OPTIMAL CONTROL PROBLEM 
WITH INCOMPLETE INFORMATION ABOUT STATE. 
OPTIMIZATION OF GUARANTEED RESULT 

ZDZISLAW WYDERKA 

In the paper we study one problem related to two-point time-optimal control problem called the 
"worst case design problem". The initial state of a linear dynamical system may be an arbitrary 
point of a given ball radius e and may depend on a random factor. Therefore our problem is for­
mulated and solved as a game against the Nature at first in pure, next in mixed strategies. If the 
elements of the matrix A(') are measures our problem may have no solution. 

1. INTRODUCTION 

Optimal control problems under uncertainty or conflict are very interesting. 
The literature on this subject is very extensive — let us mention only [1, 2 — 7, 9, 10]"; 
the greater bibliography may be found in [2, 5, 9]. In these papers uncertain factors 
are, in general, random terms in the right-hand sides of differential equations of 
dynamical systems. There are, in general, ordinary differential equations, linear 
[2 ,3 ,5 ,6 ] , nonlinear [2,5,6] and with delayes [7]. Optimization problems are 
formulated and solved as differential games in which the first player's problem 
is solved and his guaranteed result is optimized. Sometimes, as in [6] all funnel 
of trajectories starting from a given set is controlled. There are problems with fixed 
time duration and with the cost functional of the Mayer or Lagrange type. In [3] 
the linear-quadratic problem is solved. 

In this paper we assume that the initial state (which may be fatally selected) of 
a linear dynamical system may be an arbitrary point of a ball radius e with a given 
center 3c and the random factor may act in a most unfavourable way. The perfor­
mance index is the first instant when the trajectory attains a ball radius e with a given 
center x± and the guaranteed value of this time is minimized. We meet such a problem 
in practice when we solve the classical time-optimal control problem with initial 
state 5c and final state xt when the state x of the system may be observed with the 
accuracy s only but not exactly. This problem is formulated and solved here as 
a two-person, zero-sum game against the Nature, at first — in pure, next — in 
mixed strategies (the first player is called the Engineer). 
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2. FORMULATION OF THE PROBLEM 

Let us consider the following dynamical system: 

(1) x = A(t) x + B(t) u , 

(2) x(t0)eK = {x: [|x - x[| = e} 

where: A^eL1^, T] and B(-)eL2[t0, T] are given n x n and n x m matrices, 
x e 1R" is a given vector, e > 0 is a given real number and T< oo. The admissible 
controls 

u(-) e W = {«(•): [t0, T] -> W; \Uj(t)\ = Cj, c} > 0, 

j = l,...,m, te[t0, T]and«(-)eL2[to, T]} , 

Cj are some given numbers. The target set is 

(3) M ^ {x: |Jx - xx\\ < s} 

where xx is a given vector. 
The Engineer is interested in the shortest time to attain the set M. For the fixed 

initial state this is a usual time-optimal control problem with the target M. But 
we assume that the initial state may depend on random factors and may be an 
arbitrary point of the set K. For the given x0eK and u(') e °U let tx(u(m), x0) denotes 
the first instant tx such that the trajectory x(*) of the system (l) with u = u(') and 
with the initial state x(t0) = x0 satisfies the condition 

x(tx) G M (i.e. x(t) £ M for all t < tx) ; 

if such tx does not exist, we put tx(u('), x0) = + oo . 

The Engineer tends to minimize the function tx(', •) in u(')e°lf, but he has no 
possibilities to select x(t0). Therefore we formulate our problem as the following 
game: 

T = {(Eng. ,Nat) , (%K),tx} 

where: the first player, the Engineer, has °U as the set of pure strategies, the second 
one, which will be the Nature, has K as the set of pure strategies and tx = tx(u('), x0) 
is the payoff for Engineer if he applies his strategy «(•) against x0 of the Nature; 
this function was defined above. The Engineer tends to minimization of the payoff 
function while the Nature have none interest in maximization of this function. 
Hence, this is not a strictly antagonistic game. 

3. SOLUTION OF THE FIRST PLAYER'S PROBLEM 

In the case when all decisions (i.e. selection of the "best" initial state and optimal 
control) falls within Engineer's cognizance, the corresponding problem of minimiza­
tion of tx(', •) under (1) —(3) jointly in «(•) and x0 was solved in [ l , 8]. However 
for our game-theoretical problem those methods are useless. 
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Definition 1. The guaranteed result for the first player who applies his strategy 

" ^ 1 S T(u(-)) & max tx(u(-),x0). 
xoeK 

Hence the first player's problem (called the minimax problem) may be formulated 
as the problem of minimization of the guaranteed result T(w(*)) in w(') e °tt. To find 
the most safe strategy for Engineer, assume that the system (l) satisfies the following 
hypothesis (related to controllability assumption). 

Hypothesis H. g y g ( _ ( j ) e M ) 

«( . ) x0eK i>t0 

where x(-) is the trajectory of the system (l) with initial state x0 which corresponds 
to the control w(-). 

Let us denote by °UX the set of all «(•) e % for which Hypothesis H is true and 
by Xu(t, K) the "attainable set" 

Xu(i, K) = {x: x = x(t) = $(1) x0 + </>(!) ft0 4>~ l(s) B(s) u(s) ds , x0 e K} 

where (/>(•) is the fundamental matrix of the system x = A(t) x, normed at t0 (it 
suffices to consider this set only for w(*) e °UX). 

To solve the minimax problem, let us fix a w(-) e aUx and solve the following 
problem: 

Find x0 e l such that the trajectory x(*) of the system (1) with initial state x(t0) = 
= x0 and with the control u(') satisfies the inclusion x(tx)eM (and x(t)£M for 
t < tx) with maximal as possible (with respect to all x(t0) eK) time tx. 

This way we obtain the value T(u(«)) and the corresponding x0(w). This time 
T(w(*)) is well defined because of continuous dependence of the "attainable set" 
Xu(t, K) on time t and on K in the Hausdorff metric and by compactness of the bail K. 
Moreover, x(t1) e 8M, the boundary of M, and the "worst" initial state x0 may not 
be unique. The function u(') -> T(w(*)) is a continuous one and the set aUx is a closed 
subset of the compact in L2[t0, T] (by the Riesz theorem — see [2]) set %, so <%x 

is also compact. 

Therefore there is a control u'(-) e fy^ such that 

T(w'(')) = min T(w(-)) • 
u( . ) s^ 1 

Then the control u'(-), the corresponding initial state x0 = x0(u') and the corre­

sponding time rrr ,/ w • , / / \ \ 
T{u {•)) = mm max tx(u(-), x0) 

t.(.)e<.V X0EK 

gives the solution of the first player's problem in the game F. 

Remark 1. Hypothesis H is fulfilled, for example, if there is a control «(•) e ^l 
which steers x to xx and if the fundamental matrix $(') has the property: |</>(t)|| ^ 1 
for all t > t0. 
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4. SOLUTION OF THE SECOND PLAYERS PROBLEM 

Now we solve the problem of the second player which is essential in the case of an 
antagonistic game. 

Definition 2. The guaranteed result for the second player who applies his strategy 
x0 is 

S(x0) = min tt(u(-),x0). 
u(.)e"% 

Hence the problem of the second player (called the maximin problem) may be 
formulated as the problem of maximization of the guaranteed result S(x0) in x0 e K. 
To find the best strategy for the Nature assume that the following hypothesis 
(weaker than Hypothesis H) is satisfied. 

Hypothesis G. 

V 3 3 (x(t,)eM) 
x0eK u(.)e<.V f i > t0 

is fulfilled, where x(') is the solution of (l) with the initial state x0 which corresponds 
to the control «(•). 

Let us fix the initial state x0 e K and solve the time-optimal control problem 
for the system (l) with initial state x(t0) = x0 and with the target M. This problem 
may be solved by using the moments problem or by the maximum principle (see 
[1, 6]). We obtain the optimal control uXo(') and the corresponding optimal time 
S(x0). 

From continuity of the function x0 -> S(x0) (see [1], p. 185) and from compactness 
of the set K it follows that there exists an x' e K such that 

S(x') = max S(x0) , 
x0eK 

so the initial state x', the corresponding control ux,(') and the corresponding time 

S(x') = max min t^u('), x0) 
x0eK u(.)e<& 

give the solution of the second player's problem in the game T. 

5. EXAMPLE 

In general, the solutions of both problems discussed in Sections 3 and 4 are different 
what we illustrate by the following example. Let us consider the following one-
dimensional system 

x = x + u , x — 0, %i = 3 , |w| _ 1 , s > 0 , t > 0 . 

For fixed x0 e [ —e, s] the emission zone of the point x0 is bounded from below 
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by the curve x(t) = ef(x0 — 1) + 1 and from above by x(t) = e'(x0 + l) — 1 
while the emission zone of the whole initial interval [ — s, s] is bounded from below 
by the curve x(t) = 1 — e'(l + s) and from above by x(t) = e'(l + e) — 1. 

The first p l ayer ' s p rob lem. 

From the fact that the target is xx = 3 we fix a positive control u('), i.e. u(t) = 0 
for all t. Then the "attainable set" 

Xu(i, K) = [e? J0 e~s u(s) ds - & e f , ef fa e~s u(s) ds + & ef] . 

The worst for the Engineer is x0 = s. Then the guaranteed time T(u(')) is the solution 
t of the equation 

(4) el $le~su(s)ds + se* = 3 - s. 

To minimize this time we must select u(t) = 1 and from (4) we obtain that the 
minimal value of the guaranteed time is 

. 4 - e 
lopt = In . 

1 + s 

The second p l aye r ' s p rob lem. 

If the Nature fixed an x0 e K then the corresponding attainable set at time t is 

X(t, x0, m) = \e(x0 - 1) + 1, e'(x0 + 1) - 1] . 

The guaranteed value of the time for Nature we compute if the Engineer selects 
u(t) = 1 and the corresponding time iS(x0) is the solution \ of the equation 

e?(x0 + 1) - 1 = 3 - s , 
i.e. 

S(x0) = In 
1 + x0 

The maximal value of this guaranteed time we obtain if the Nature selects x0 = — e 
and the corresponding optimal time is 

4 - s 
lopt = In 

1 - & 
It is shown that topt > topt. 

6. MIXED EXTENSION OF THE GAME T 

From the last example it follows that, in general, the game T has no saddle point 
in pure strategies. Hence let us consider the mixed extension of this game. From 
non-antagonicity it follows that the unique mixed strategy v(-) of the Nature is the 
uniform probability distribution on the setK. (If Vi(*) is another but known prob-
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ability distribution of error of the state observation for system (l), then vt(-) is 
the unique mixed strategy of Nature.) 

The mixed strategies of the Engineer are all probability measures on the set <%. 
Let us denote the set of these measures by Ji and let pi(') e Jl be an arbitrary me­
asure. Let m(s) denotes the measure generated by n on the Borel subsets of the 

m 

parallelepiped V = X [ — cJ} cj\ by the following formula: 
j=i 

V jt
todtjvdm(t) = Ukt„tlM') 

t i > t 0 

where dt is the usual Lebesgue measure on [t0, T] and ^|[(0 j t l ] denotes the set 
of restrictions of all admissible controls to the interval [t0, tj. 

Then the dynamics of our system will be described by the following measure-
differential equation 

(1') x(t) = A(t) x + jV B(t) u(s) dm(s) . 

The initial condition for this equation will be now the mean value of the probability 
measure v(') (resp. vx(')): 

(2') x(t0) - jK x dv(x) (resp. $K x dvx(x)) 

and from the fact that v(*) is the uniform probability distribution it follows that 

(2") x(t0) = x . 

The initial-value problem (T), (2") may be also written as the following integral 
equation 

(5) x(t) = x + #0 [A(s) x(s) + JK B(s) u(z) dm(r)] ds . 

The payoff function for the Engineer is now the first instant t1 when the trajectory 
of (5) attains the set M, so he must minimize in n(') e Jl the function 

(6) tx - $% tt(u(-), x) dfi(-) 

where the integrand was defined in Section 2. 
This is a time-optimal control problem for the system (5) in the class of measures 

as admissible controls. By using the methods given in [11] we obtain the existence 
of an optimal measure, necessary conditions of optimality and we obtain also that 
the minimum time of (6) in the class Ji is smaller than that given by the minimax 
solution. 

7. SPECIAL CASE 

Finally let us consider one interesting case when the elements a,•_/(•) of the matrix 
A(') are measures (i.e. the Stieltjes measures generated by some right-continuous 
functions of bounded variation). As it is illustrated below, in this case the problem 
of minimization of the time under (1) —(3) may have no solution. 
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Let 
A(t) = Â(t) + X Ckð(t - tk) 

fc=l 

where: A(') is the continuous part of the measure A('), Ck are given n x n real 
matrices, the product Ck 5(t — tk) is the matrix with elements ck

u d(t — tk), d(') 
is the Dirac measure and the sequence {tk} is — by assumption — ordered: t0 < 
< tx < ... < tB < ... and such that the unique accumulation point of this sequence 
may be +00. Moreover, assume that det (E — Ck) =f= 0 for k = 1, 2, ... where E 
is the unit matrix. 

Under these assumptions (see [12—14]) for every x0 e W there exists the unique 
solution x(') of equation (l) with the initial condition x(t0) = x0 which is a right-
continuous, locally bounded variation function. At every instant th this solution 
has a jump equal to sk = (E — Ck)~

l Ck x(tk — ) . So, it is possible that the problem 
(1) —(3), min tu has no solution, what we illustrate by the following one-dimensional 
example. 

Example. Let us consider the following one-dimensional system 

x = 0-8 d(t — 1) x + u , x = 1 , xt = 3 and let e = 0-1 . 

The admissible controls are all integrable functions defined on [0, T] such that 
u(t) e [0, 1] for all t. 

10 J 

5-I 

3= x f 

x =1 

boundary of the erùss ю n 

zone o£ the state :•: 1 

Ьounđary of thє e-ÌĽG ion 

гone of the set к 

attainaЫe set at iпs tan 

t = 1 from the set к 

Fig. 1. 
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Then the emission zone of the point x is bounded from below (respectively from 
above) by the graph of the function 

fl for r e [0.1) (iesvx(t)_U+l for t e [0, 1 ) 
X[t) \5 for te[l, oo) \ r * W " \t + 9 for te[l,oo) 

while the emission zone of the initial set K — {x:\x — l | ^0-1} is bounded by the 
curves: 

fO-9 for te[0,l) / ft + M for r e [ 0 , 1 ) 
X{t) [4-5 for te[l, oo) \TQSp-X[t) \t + 9-5 for te[l, oo) 

from below and from above respectively (see Fig. 1 below). It is easy to see that Hypo­
thesis H is not fulfilled and that the problem have no solution. 

In the original problem such a situation was impossible because under the as­
sumptions given in Section 2 all solutions of the equation (1) are continuous functions 
while in the present case the attainable set varies discontinuously in time in Haus-
dorfT metric in the neighbourhood of every point tk (see [13]). 

8. CONCLUSIONS 

In this paper the time-optimal control problem for non-autonomous linear system 
with fixed ends was studied. By assumption, the state of the system is known with 
a given accuracy £ > 0 only, but not exactly. Therefore the original problem was 
formulated as a non-antagonistic, two-person game E against the Nature in which 
the sets of pure strategies are: the set of all admissible controls for the time-optimal 
problem for the first player and the closed ^neighbourhood of the initial state for 
the Nature. 

The existence of solutions of the corresponding minimax and maximin problems 
was proved. One example illustrated the usual fact that the lower value of the game 
r is strictly smaller than the upper one is presented. 

Next the mixed extension of the game E was studied. By non-antagonicity it 
reduces to the usual time-optimal control problem for some system described by 
an integral equation with probability measures as admissible controls. 

At the end we consider the original problem in the case when the elements of the 
matrix A(-) of the state equation are measures, i.e. the solutions of this equations 
are piecewise-continuous functions. As it is illustrated by an example, in this case 
the problem may have no solution. 

(Received November 5, 1987.) 
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