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K Y B E R N E T I K A - V O L U M E 17 (1981), N U M B E R 3 

IMPROVEMENT OF EXTRAPOLATION 
IN MULTIVARIATE STATIONARY PROCESSES 

TOMAS CIPRA 

If we are not satisfied with the accuracy of the single-step extrapolation X, in a discrete station­
ary multivariate {Xt} we can try to improve it by means of an additional multivariate proces { Y,}. 
Necessary and sufficient conditions for the case that the knowledge of values Yt + S, Yt + S_l, ... 
do not improve this extrapolation are derived in the paper provided the compound process 
{(Xt, Yt)'} is a process AR(n) or MA(m). These conditions are formulated in terms of (matrix) 
parameters of the corresponding models. Further the problem of uncorrelated processes {Xt} 
and {Yt} in connection with the improvement of extrapolation is solved. 

1. INTRODUCTION AND SUMMARY 

Let {Wt} = {(X'„ Yt)'} be a multivariate discrete stationary process with zero mean 
value and (vector) components {Xt} and {Y,}. Let Xt be the extrapolation of X, 
based on Xt_uXt_2, ... (i.e. the particular scalar components of Xt are the best 
linear approximations of the corresponding components of Xt in the Hilbert space 
generated by all scalar components of all vectors Xt„uXt_2, •••) a n d analogously 
let Xt(a, b) be the extrapolation of Xt based on Xt^a, Xt_a-_,..., Yt_b, Yt_b_ly.... 
The latter extrapolation plays an important role in such cases when particular 
components of a multivariate process are observed through various time periods. 
The following case is also very frequent: provided we are not satisfied with the ac­
curacy of the extrapolation Xt we can try to improve it by means of an additional 
process {YJ. The accuracy of the extrapolations is measured by the matrices 

Ax = E[Xt - X,-] [X, - Xty , Ax(l, b) = ELY. - 1,(1, b)] [Xt - Xt(l, . ) ] ' . 

Obviously, it holds that 

(1.1) Ax £ ... 1 Ax(l, 1) ;> Ax(l, 0) ^ Ax(l, - 1 ) _: ... , 

where e.g. Ax(l, 1) _t Ax(l, 0) denotes that the matrix Ax(l, 1) - Ax(l, 0) is positive 
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semidefinite. If Ax = Ax(l, b) we can say that the process {Yt} does not improve 
the extrapolation for one step in the process {Xt}. 

Provided {Wt} is a process AR(n) or MA(m) the necessary and sufficient conditions 
for particular equalities in (IT) are derived in this paper. These conditions are expres­
sed in the form of certain relations among the (matrix) parameters of the cor­
responding models. Further it is shown that some equalities in (1.1) imply that the 
processes {X,} and {Yt} are uncorrelated. The formulas in the proofs of some as­
sertions in this paper can be applied for the actual construction of the mentioned 
extrapolations ^ , ( 1 , b). 

Andel in [1], [2] and [3] has solved this problem for some equalities in (1.1) for 
models AR(l), MA(1) and partially for ARMA(1, 1). His technique is generalized 
and applied in this paper. The result of Anderson [4] for a model AR(l) is also 
a special case of the results derived in this paper (cf. Theorem 3.1). Finally, it is neces­
sary to mention the concept of the causal relationship (or causality) among time 
series investigated e.g. by Granger [6] or by Pierce and Haugh [7]. A time series {Y,} 
causes (causes instantaneously) another time series {Xt} if a current value of {X,} 
can be extrapolated better by using past values (past and current values) of {Yt} 
than by not doing so. Therefore the investigation of causality is a special case of the 
aim of this paper. 

2. PRELIMINARIES 

A brief survey of the used mathematical tools is given in this section. The proofs 
of the assertions in the paper take advantage mainly of the following two principles. 
The first principle consists in the well-known theorem on the "successive projection": 

Theorem 2.1. Let u, vt and ws (for all integers t and s) be elements of a Hilbert 
space H. Denote H{x, y, ...} the Hilbert space generated by elements x, >',... eH. 
If u is the projection of « on H{{vt}, {ws}}, u the projection of u on H{{vt}}, ws the 
projection of ws on H{{vt}} and u the projection of u on H{{ws — ws}}, then the 
relation 

(2.1) u = u + u 

holds. 

Remark 2.1. In the following text Theorem 2.1 will be used exclusively for the case 
when the series {ws} is finite (this series will be always formed by the scalar compon­
ents of a random vector Y(). It holds that ||w — u\ = \\u — u\\ if and only if u = 0 
(since ||« - « f = ||« - «||2 + ||« - uf = ||« - uf + \\uf). 

Remark 2.2. Let X and Ybe random vectors of arbitrary finite dimensions with zero 
mean values and finite second moments. Let the variance matrix of Y be regular. 
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Then the extrapolation of X based on Y is given by X = cov (X, Y) (var Y)~l Y. 
Further X = 0 if and only if cov (X, Y) = 0 (the latter assertion holds without the 
assumption of regularity of var Y). 

The second principle consists in a method how to extrapolate in a (multivariate) 
process {Xt} when a model for a compound process {Wt} = {(X't, Y/)'} is only 
known. Andel [3] described a very convenient method for the case that {Wt} is 
a process ARMA(m, n). In this method an explicit ARMA model is constructed such 
that the corresponding process has the same spectral properties (and therefore the 
same extrapolation properties) as the process {X,}. In this paper we use only the 
following assertion derived by means of this method (cf. [3]): 

Let {Wt} = {(X't, Y/)'} be a r-dimensional ARMA(m, n) process defined by 

(2.2) tAkWt-k-t
BjZ,~j, 

k=0 j=0 

where the process {X,} is p-dimensional and {YJ is o-dimensional (p + q = r), {Z,} 
is a r-dimensional white noise (i.e. EZ, = 0, var Z, = I (an unit matrix), cov (Zs, Zt) — 
= 0 for s + t). Denote 

(2 3) VA z« - (K^ L(zA y B z - (P(~)> Q^\ 
(2-3) kAk~ ~ {M(Z),N(Z)I ' h B ^ - {R(z), S(Z)) ' 
(2.4) N0(z) = adj N(z), v(z) = det N(z), 

nq + m 

(2.5) v(z) P(z) - L(z) N0(z) R(z) = V G,z> , 
j = 0 

(2.6) v(z) Q(z) - L(z) N0(z) S(z) =" ' f j j , * ' , 
; = o 

where the blocks K(z) and P(z) are p x p matrices, -/V(z)"1 = (l/v(z)) N0(z) and 
p x p matrices Gj and p *• q matrices Hj do not depend on z. 

Theorem 2.2. Assume that 

(2.7) det ( t Akz
k) + 0 , det ( £ B;z

J) + 0 for \z\ g 1 
k = 0 j ' = 0 

and det JV(z) + 0 for jz| g 1 is fulfilled in the model (2.2). Then the equality Ax = 
= Ax(l, 1) holds if and only if p x p matrices D0 ~ I, Du ..., Dnq + m exist such that 

(2.8) (Gj, Hj) = DJG0, if 0 ) , j = 0,l,...,nq + m. 

In this paper we use these symbols and conventions: {Zt} is a r-dimensional white 
noise (cf. (2.2)), all matrices without upper indices are r x r matrices and we devide 
vectors and matrices into the blocks according to the following patterns: 

"-K: • - I W,Al2)' 

236 



etc., where the vectors X, and Z\ are /.-dimensional, Y, and Z2 are (/-dimensional 
and the block A" is a p x p matrix (p + q = r). 

And finally, the following assertion (cf. [3]) will be also used in this paper: 

Theorem 2.3. Let assumptions (2.7) and det B2
0
2 * 0 hold in the model (2.2) 

where A0 = /. Then the equality Ax(l, 1) = Ax(\, 0) holds if and only if 

(2.9) B^B21' + B0
2B2

0
2' = 0 . 

The proofs of all following assertions will be brief. The details are described in [5]. 

3. MODEL AR(n) 

Consider a /--dimensional AR(n) process {Wt} defined by 

(3.1) Y^AkWt^k = Zt. 
k = 0 

Assume that 

(3.2) d e t ( £ _ _ 4 - * ) * 0 , det ( £ A2V) * 0 for |z| _a 1 , 
k=0 k=0 

(3.3) detA i 1 * 0 . 

Remark 3.L The assumptions (3.2) imply regularity of the matrices A0 and A2,2. 
The first assumption in (3.2) is usual for the process AR(rt). 

Theorem 3.1. Let s S; 0 be a given integer and let the assumptions (3.2) and (3.3) 
be fulfilled in the model (3.1). Then the equality Ax = Ax(l, — s) holds if and only 
if the following conditions are fulfilled simultaneously: 

(3.4) Ufc
12 = 0 , k= _ , . . . , » , 

(3.5) MUM21' + M12M22' = 0, 

(3.6) U21 = 0 , fc= 1,. . . , s , 

where M = AQ l , Uk= —A^A^ k = 1,. . . , n. 

Remark 3.2. The conditions (3.4)-(3.6) refer to the basic form of the model (3.1): 

(3.7) W, = t UkWt„k + MZt, 
k=i 

where M = A0
 1, Uk= -A0

lAk. For s = 0 the condition (3.6) is omitted. To 

simplify the considerations put Uk = 0 and Ak = 0 for k > n and U0 = 0. 

Proof. We shall use the method of induction. For s = 0 it is necessary to show 
that Ax = Ax(\, 1) = Ax(l, 0) if and only if the conditions (3.4) and (3.5) hold. 
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According to Theorem 2.2 the equality Ax = Ax(\, 1) holds if and only if p x p 
matrices D0 = /, Du ..., Dnq exist such that 

v(z)I= D(z)G0, 

-L(z)N0(z) = D(z)H0, 
nq 

where D(z) = £ DjZj and the denotation (2.3)-(2.6) is used (clearly, P(z) = I, 
J = 0 

Q(z) = 0, R(z) = 0, S(z) = / in the model (3.1)). Hence for z = 0 the matrices G0 

and H0 can be calculated so that after some treatments we get 

(3.8) E^v^wr1!:^2-*' 
k = 0 „ = 0 

Since U12 = - [ < - A0
2(A52)-' ^ o 1 ] " 1 [<2 - A0

2(A22)- l Afc
22] (it follows 

from the theorem on the inverse of a matrix devided into blocks which is applied 
for Ufc = - A o 1Ak), the relation (3.8) is equivalent to (3.4). 

Further according to Theorem 2.3 the equality Ax(l, l) = Ax(l, 0) holds if and 
only if (3.5) is fulfilled. 

To finish the proof assume validity of the relations (3.4) —(3.6) for some arbitrary 
fixed s j> 0 and they are supposed to be equivalent to the equality Ax = Ax(l, — s). 
Under these assumptions it will be shown that Ax(l, — s) = Ax(l, — (s + 1)) if and 
only if U2

+1 = 0. According to Theorem 2+ and Remark 2.2 we can write 

(3.9) X,(l,-(s + l))=Xt(l,-s) + y, 

where 

(3.10) y = cov [_£,, Y(+s+1 - Y(+s+1(s + 2, 1)] . 

. {var[Y( + s + 1 - Yt+s+1(s + 2, l)]}"'1 [Y, + s + 1 - Y(+s+1(s + 2, 1)] 

and Yt(a,b) denotes the extrapolation of Y. based on X,_a,Xt_a_1, ..., Yt_b, 
Yt_b_u— Analogously, using successively Theorem 2.\ we get 

(3.11) Y1+s+1 - Y1+s+1(s + 2 , l ) = 

= F 1 + s + 1 - Y(+s+1(s + 2, s + 2) - yx - ... - y s + 1 , 

where for k = 1, . . . , s + 1 

(3.12) yk = cov [Y + 5 + 1 , Y(+s+1_fc- f(+s+1_fc(s + 2 - k, 1)] . 

. (var [Y(+s+1_fc - Y1+s+1_fc(s + 2-k, I ) ] }" 1 . 

. [ Y ( + s + 1 _ f c - Y+s+1_fc(s + 2 - / c , l ) ] . 

The assumption Ax = Ax(l, - s ) implies according to Remarks 2.1 and 2.2 that 
cov [X„ Yt+k - Yt + k(k + 1, 1)] = 0 for k = 1, . . . . s. Hence substituting (3.11) and 
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(3.12) to (3.10) we get after some calculation that Ax(l, - s ) = AX(1, -(s + 1)) if 
and only if 

(3.13) cov [X„ Yt+s+l - ft+s+i(s + 2, 1)] _ 

= cov [X, - 1,(1, 1), Y(+s+1 - Yt+s+1(s + 2, s + 2)] -

- cov [X, - 1,(1, 1), Y, - Y(l, 1)] {var [Y - y,(i, !)]}-- . 

.cov[Y ( + s + 1 ,Y ( -Y ( ( l , l ) ] ' = 0 . 

It can be easily derived for the model (3.1) that 

X, - 1,(1, 1) = MnZ\ + M12Z\ , Yt - Y((l, 1) = M21Z\ + M22Z2 , 

so that according to (3.13) and the assumption (3.5) the equality Ax(l, — s) = 
= Ax(l, - (s + 1)) holds if and only if 

(3.14) cov \MllZ\ + M12Z), Yt+s+i - Y,+S+J(s + 2, s + 2)] = 0 . 

Further it follows from (3.7) that 

(3.15) Wt = MZt + fj £ X Uh...UiuMZt_v 
u = l u = l i i + . . . + i„ = u 

and hence 
^ ( + s + 1 - tf'(+s+1(s + 2, s + 2) = MZ(+J+1 + 

+ " l Z I Uil...UiMZ( + s+1_t;. 
u = l 11=1 ii + ... + iM=c 

Therefore for the process {Yt} we can write 

(3.16) Y(+s+1 - Y(+5+1(s + 2, s + 2) = j(Z ( + s + . . . . . . Z(+1) + 

+ (l I <f, ••• t l j 2 1 (M%1Zl, + M12Z2) + 
u = l ii + ...+ i„ = s + l 

+ (l I Uh...Uiu)
22(M21Z\ +M22Z2), 

u = l i, + ... + iu = s + l 

where j is a (vector) linear function. Substituting (3.16) to (3.14) and using (3.5) 
and (3.6) we have that Ax(l, -s) = Ax(l, - (s + 1)) if and only if 

(3.17) (M^M11' + M12M12 '){(£ £ C/,., ... t/.J21}' = 
u = l ii + ...+ iu = s + l 

= (M^M11' + M12M12') U2
sl\ = 0 . 

Since the matrix M^M11' + M12M12' is regular it follows from (3.17) finally that 
Ax(l, - s ) = Ax(l, - (s + 1)) holds if and only if Us

2
+1 = 0 and the theorem is 

proved. D 
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The following assertion follows easily from Theorem 3.1: 

Corollary 3.2. In the model from Theorem 3.1 the following implication holds: 

(3.18) [Ax = AA(1, - « ) ] => [Ax = Ax(l, b) for all integers b] . 

Remark 3.3. Corollary 3.2 has an important practical meaning: provided the proc­
ess { Y,} observed till the moment t + n does not improve the extrapolation X, it is 
useless for this purpose to consider the process {YJ at all. 

Now the problem of the uncorrelated processes {X,} and {YJ can be solved as 
follows: 

Theorem 3.3. Let the assumptions (3.2) and (3.3) hold in the model (3.1). Then the 
equality Ax = Ax(l, —n) holds if and only if the processes {X,} and {Yt} are uncor­
related, i.e. cov (Xs, Yr) = 0 for all integers s, t. 

Proof. If the processes {X,} and {Y,} are uncorrelated then the equality Ax = 
= Ax(l, -n) is obvious. 

Therefore assume that Ax = Av(l, — n). According to Theorem 3.1 this equality 
implies relations (3.4), (3.5) and moreover 

(3.19) Uil = 0 , k = 1, . . . , « . 

Denote R(s) = EW,+sWt the covariance function of the process {W,}. Then using 
(3.15) we get for all integers s: 

(3.20) (R(s)) ,2 = 0 , ( R ( s ) ) 2 1 = 0 , 

because the product of block-diagonal matrices is again a block-diagonal matrix. 
In other words, the processes {X,} and {Yt} are uncorrelated. • 

4. MODEL MA(m) 

In this section we shall investigate a r-dimensional process MA(m) defined by 

(4.1) W.^tBjZ.-j. 
J = O 

Assume that 

(4.2) det ( J BjZ
J) 4= 0 for \z\ = 1 , 

J = 0 

(4.3) detRo1 * 0 , detRg2 + 0 . 

Remark 4.1. According to the assumption (4.2) the model (4.1) is invertible. This 
assumption also guarantees regularity of the matrix B0. 
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The following assertion is analogous to Theorem 3.1: 

Theorem 4.1. Let s 2: 0 be a given integer and let the assumptions (4.2) and (4.3) 
be fulfilled in the model (4.1). Then the equality Ax = Ax(l, - s ) holds if and only 
if the following conditions are fulfilled simultaneously: 

(4.4) B)l-B)1(Bc.
1)-lBl

0
2 = 0, ; = l , . . . , m , 

(4.5) B\lBJ1' + Bl
0
2B22' = 0 , ; = 0, 1,. . . , s 

(we put Bj = 0 for j > m). 

Proof. The method of the proof will be similar to that of Theorem 3.L The proof 
will be again carried out by induction. For s = 0 it will be shown that Ax = 
= AA(1, 1) = Ax(l, 0) if and only if (4.4) and 

(4.6) B0
lBl" + B\2B2

0
2' = 0 

hold simultaneously. 
Similarly as in the proof of Theorem 3.1 the equality Ax = Ax(l, 1) holds if and 

only if p x p matrices D0 = I, Du...,Dm exist such that 

(4.7) E^-(ZV)Go. 
j=o j=0 

(4.8) ZB)2
Zs = (tDjz3)H0, 

j=0 j=0 

where G0 and H0 are defined in (2.5) and (2.6) (we took advantage of the fact that 
K(z) = I, L(z) = 0, M(z) = 0, N(z) = I, v(z) = 1 for the model (4.1)). Obviously, 
the conditions (4.7) and (4.8) are equivalent to 

(4.9) B)1 = DjB0
{ , B)2 = DjB0

2 , j = l,...,m, 

which are further equivalent to (4.4) when regularity of the matrix B0
l is used. 

The equivalence of the equality Ax(l, l) = Ax(l, 0) with (4.6) follows from Theo­
rem 2.3 immediately. 

Assume now that conditions (4.4) and (4.5) are fulfilled for some s ^ 0 and they 
are supposed to be equivalent to the equality Ax = Ax(l, - s ) . Then we shall prove 
that A2(l, - s ) = Ax(l, - ( s + 1)) if and only if 

(4.10) B^B'W + Bl
0
2B22

1' = 0. 

According to the proof of Theorem 3.1 the equality Ax(l, — s) = Ax(l, — (s + l)) 
is fulfilled if and only if (3.13) holds (this part of the proof of Theorem 3.1 is ap­
plicable without any changes also to the process MA(m)). Since the model (4.1) is 
invertible it can be easily derived that 

(4.11) Xt - Xt(l, 1) = Bl
0
xZ\ + Bl

0
2Z2, 

(4.12) Y, - Y,(l, 1) = Bl"Z\ + BfZ1, 
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(4.13) Yr+S+1 - Yr+s+1(s + 2, s + 2) = B21Z\+S+1 + B2
0
2Z2

+S+1 + ... 

... + B2l1Z) + B22
+1Z

2
t. 

Substituting (4.11) —(4.13) to (3.13) and using (4.6) we get 

cov[X r , Yr+S+1 - Yr+s + 1(s + 2, 1)] = 

= co\ \B\lZ\ + B12Z2,B2
0
1Z\+S+1 + B2

0
2Z2

+S+1 + ... + &£& + B22^2] -

- (B^B21' + B0
2B22') {var [Yt - Y(l, 1 ) ]}- ' . 

. {cov [Yr+S+1, Yr - ?,(1, 1)]}' = B^Bll', + Bl2B2l\ . 

Hence Ax(l, — s) = Ax(l, —(s + 1)) if and only if (4.10) holds so that the proof is 
finished. • 

Corollary 4.2. For the model from Theorem 4.1 the following implication holds: 

(4.14) [Ax = Ax(l, - m ) ] => [Ax = Ax(\, b) for all integers b\ . 

Theorem 4.3. Let the assumptions (4.2) and (4.3) hold in the model (4.1). Then the 
equality Ax = Ax(\, — n) holds if and only if the processes {X,} and {Yr} are un-
correlated. 

Proof. It is again sufficient to assume that Ax = AA:(1, — m) is fulfilled because 
the opposite implication is obvious. Therefore according to Theorem 4.1 the condi­
tions 

(4.15) B12-B)1(B1
0
iY1B1

0
2=0, j = 0 , 1 , . . . , 

(4.16) B^B21' + B12B22' = 0 , j = 0, 1 , . . . 

hold. Obviously the covariance function R(s) has the following form in the model 

(4-1): 

(4.17) R(s) = BSB'0 + BS+1B[ + ..., s = 0, 1 , . . . . 

The proof will be completed if we show that 

(4.18) BlUB21' + BlliB22' = 0 , 

(4.19) B2iiBlu + B2
sliB

12' = 0 

for all nonnegative integers i and s. To verify (4.18) write 

BHiB21' + Bl^B22' = BlUB21' + BHiW1)-1 B12B22' = 

= BHi(B
11)-1(B0

1B21' + B12B22') = 0 

where we used (4.15) for j = s + i and (4.16) for / = i. The verification of (4.19) 
is analogous. fj 
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5. CONCLUSION 

The problem of improvement of extrapolation in the models AR(rc) and MA(m) 

was solved in this paper. As far as the model ARMA(m, n) is concerned the author 

of this paper has dealt also with this case. The assertions analogous to Theorems 

3.1,4.1, 3.3 and 4.3 have been proved for this model but they are much more complic­

ated and demand further auxiliary assertions of the matrix calculus. These assertions 

and their proofs are given in [5]. Moreover, there is not such a straightforward 

solution of the problem of the uncorrelated processes in the model ARMA(m, n) 

as in the model AR(n) and MA(m). 

Another problem consists in improvement of the extrapolation Xt(a) for a > 1 

(i.e. the extrapolation of Xt based on X,^a, Xt_a_u ...). The author has solved the 

problem of equality Ax(a) = Ax(a, a) in the model ARMA(m, n) but it is only a small 

part of the whole problem. 

(Received October 1, 1980.) 
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