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K Y B E R N E T I K A - V O L U M E 17 (1981), N U M B E R 3 

ON DETECTORS WITH INCOMPLETE ANSWERS 

IVAN KRAMOSIL 

The notion of detector is generalized to the case when the answers need not be compatible 
with the posed questions in the sense that an answer does not specify uniquely and unambigously 
one of the possibilities indicated by the posed question. The possible increase of decision risk is 
investigated and an estimate of its upper bound is derived. The maximal likelihood interpretation 
of incomplete answers is proved to be the best when the risk is to be minimized. 

1. INTRODUCTION 

The domain of statistical decision making covers a large scale of problems when 
the subject is to take the best or an appropriate (in a sense) decision starting from 
some data or observations which are of statistical nature. From the theoretical point 
of view decision making can be formalized by the notion of decision function and the 
statistical qualities of a particular decision making process can be expressed by 
appropriate characteristics of the corresponding decision function, e.g. by the mean 
risk or minimax risk. Questionnaires and detectors have been conceived with the 
aim to serve as a tool for a practical realization of decision functions. A short 
explanation of our basic statistical model can be found in Chapter 2 or, in more 
details, in [ l ] . 

In this paper we exceed the framework of the classical theory of sequential question­
naires in the sense that we admit also incomplete answers. Incompleteness of the 
answer consists in the fact that instead of specifying just one element (subset) of the 
posed question (partition) the answer offers a subset which has, in general, non­
empty joints with at least two subsets of the original partition. 

From the point of view of the classical conception mentioned above this danger is 
not so urgent as far as the questionnaire is understood as being sequentially formed 
in the real time with the obtained answers, so the questionnaire is able to take into 
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consideration the fact that a partition different from the posed one has occurred in 
the answer and it is able to react on this situation in the best or an appropriate way. 
Consider, on the other side, a mass questionning action (e.g. a regular census of citi­
zens repeated each ten years) when the questionnaire must be prepared before, can­
not be operatively modified and the only way how to handle the incomplete answers 
is to interprete or approximate them by the answers corresponding to the posed 
question even if it may be connected with a risk which enlarges the risk of the original 
questionnaire. For such a mass decision problem the characteristics can be chosen 
in such a way that they are optimal or appropriate with respect to whole a class of 
objects with a probability distribution on this class. It is why we shall study in this 
paper such interpretation or approximation rules for handling with incomplete 
answers, which are optimal in this average or global sense. I.e., they are optimal 
among all such rules which can be given a priori, before considering a particular 
object and the partial information on this object contained in the (incomplete, resp.) 
answers. This point of view, even if rather special, is supported also by the fact that 
the resulting rules for handling the incomplete answers are very simple and easy to 
apply as they reduce to single tables which can be immediately applied without any 
supplementary calculations. Some more arguments in favour of our approach can 
be found in the end of Chapter 2. 

2. THE CLASSICAL STATISTICAL DECISION PROBLEM 
AND QUASI-DETECTORS 

As the basis for our investigations in this paper we take the classical model 
of statistical decision making with a finite parameter space. This model plays two 
roles in our considerations; first, it lies in the grounds of the theory of question­
naires which are conceived as tools for practical realizations of statistical decision 
functions, second, we shall use the principles and criteria of statistical decision 
making when seeking for an appropriate way how to handle with inprecise answers. 

Let S = {sx, s2,..., sN] be a finite nonempty set, its elements, which are to be 
distinguished, are called states. Denote by Fthe space of observations, equipped by 
a (T-field J. The measurable space <Y J*} is called measurable space of observations 
and corresponds to the measurable sample space in usual statistical models. This 
means that the observed values are considered to be random variables defined on 
a probability space <£2, £f, P> and taking their values in <Y Jr>. Let Z be a finite 
space of decisions (if S = Z, we obtain the simple identification problem). 

We suppose that there exists an a priori probability distribution Ps, i.e. Ps(Sj) ^ 0 
N 

for each i g N, £ Ps(sl) = 1. Moreover, we suppose that there exist probability 
; = i 

measures PY/Si on <Y J) for each i ^ N. 
Now we are able to define the joint probability measure PSXY on the measurable 
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space <S x Y y x J), here S x Y is the Cartesian product of the sets S and Y 
and 5^ x / i s the system of sets defined by 

JV 

(1) <f x f = {C:C c: S x Y, C = {J ({s;} x B,), BteS}, 
j = i 

which can be easily proved to be a a-field. The probability measure PSxY si defined 

as the unique extension to the cr-field Sf x J of the set function Psx Y, defined for each 
subset of S x Y which is of the form {s'} x B', s' e S, B' e J', by the relation 

(2) Psx,({s'} x B') = Ps(s') . PY/S,(B') . 

Decision function is an ./-measurable mapping d which takes yinto the decision 
space Z. In order to be able to classify quantitatively the qualities of particular 
decision functions we suppose to have at our disposal a loss function Q ascribing to 
each pair (s, z} e S x Z a non-negative real number Q(S, Z) which can be understood 
as the loss suffered in case the actual state is s and the taken decision is z. In the case 
of the simple identification problem we take usually Q(S(, SJ) = 0, if i = j , Q(sh s;) = 
= 1, if i 4= j . 

Our decision making will not be based on an immediate observation of a value 
y(co) e Y, but rather on the answers to certain questions concerning these values. In 
the usual theory of questionnaires a question is nothing else than an ./-measurable 
decomposition of the observation space Y i.e. Q = {qk}l=1, qk e J, qk n qk = 0, 

if k 4= k', U qk = Y (only finite decompositions will be taken into account). Particu-
k=l 

lar sets qk e Q are called answers, i.e. the answer to the question Q consists in giving 
the k ^ a for which y(co) e qk e Q. 

In this paper we shall investigate a more general case when the answer is not 
compatible, in general, with the question Q. More precisely, the answer is supposed 

H 

to belong to a partition R of Y, R = {rJ}?= u rJ e Jf, rJ n r7" = 0, if j 4= / U rJ = Y, 
J' = I 

such that the possibility that rJ n qk 4= 0 and rJ n qk' 4= 0 for some ;', k, k', k 4= k', 
is not excluded, hence, rJ cannot be immediately and unambigously interpreted as 
an answer to the question Q. For the sake of definiteness we shall use the expression 
primary question (p-question) for Q and primary answer (p-answer) for elements 
of Q; R will be called secondary question and its elements secondary answers. The 
pair <Q, R) will be called a q-pair. A set QD of g-pairs will be called a quasi-detector, 
this set will be always supposed to be finite or at most countable. The notion of 
quasi-detector seems to be a natural generalization of the notion of detector, which is 
defined as an at most countable set of questions. We may suppose, without a sub­
stantial loss of generality, that for all g-pairs < Q, R> E Q D the cardinality of Q is a 
and that of R is /? (in the case of a finite quasi-detector we take the maximal a. and (S 
and enrich the other decompositions by occurences of the empty set, if necessary) 
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When the secondary question R corresponding to Q is not known a priori, i.e. before 
obtaining the secondary answer r c Y, we may always take R as being defined by 
the binary decomposition [r, Y — r). 

There are two principal and controversial points of view from which the problem 
of "inprecise" answers can be judged and handled. First, we may emphasize the 
information-theoretic point of view in order to extract from the obtained sec­
ondary answers the maximum information possible. This approach would bring us 
to a complete resignation to the primary question Q by replacing it by the secondary 
question R offered by the respondent; all the work should to be modified with respect 
to R (decision function, choosing or sampling the question which should be posed 
as the next in the case of a sequential questionnaire, etc.). It is a matter of practice, 
not of a mathematical reasoning, to consider whether all this effort can be devoted 
for a particular handling of each questionnaire. Moreover, the requested decision 
function must be often measurable with respect to the cr-algebra generated by the 
primary questions (the c-algebra JQ below) and cannot be replaced by a c-algebra 
JK generated by the secondary questions even if such an ^-measurable decision 
function were better from the user's point of view (lower expected risk). Such a situ­
ation may occur, e.g., when the decision is derived from or supported by a law 
(juridical norm), i.e., the decision function must be measurable with respect to the 
partition used by the law or norm in question. If a question Q asking for the age 
of the respondent contains three sets (qt: age until 18, q2: age until 60 but above 18, 
q3: age above 60), we are not allowed to replace this partition by another one sup­
posing that the decision concerns the juridical responsibility or the pension age (in 
the case of man) of the respondent. Each secondary answer, not corresponding to 
this partition, e.g. "I am between 15 and 25" must be, somehow, transformed into 
one of the primary answers. 

Other arguments in favour of the solution proposed above can be found when 
considering a mass questionnaire action with a standard questionnaire prepared 
before (citizen census repeated each ten years, for example) and with a standard 
decision function, e.g., in the average the best for the decision problem connected 
with this action (e.g., in the case of a health state testing, to decide, whether the re­
spondent should be sent to a special medical examination and to which specialist). 
The results of such an action can be handled only by a uniform program based on 
the acceptance of the classification (partition) given by the primary questions and the 
case of another (secondary) partition cannot be taken as the case of different question­
naire requesting a corresponding particular handling, but only as the case of a wrongly 
filled questionnaire which must be either previously repaired in the sense of replacing 
secondary answers by the primary ones, or simply left out from the consideration. 
As usual, the number of such misinterpreted answers is not so great that it would be 
useful to consider them as regular answers and to enrich correspondingly the 
detector and the decision function, on the other hand, this number is usually not so 
small that it would be possible to omit them. Hence, a compromise solution con-
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sisting in an "intelligent", "adequate" or "best possible", in a sense, replacing of the 
secondary answers by the primary ones seems to be worth of studying. 

The only information considering the state of the environment and the respondent 
himself is that contained in his secondary answers, hence, each rule for replacing of 
the secondary answers ascribes to each <Q, R> e QD a mapping from the Cartesian 
product X {R : <g, R> s QD} into Q, where QD is the quasi-detector in question. 
The primary and secondary questions can be numbered and theirs numbers are lim­
ited by a or /?, resp., so each replacing rule can be identified with a function from 
{1 ,2 , ...,p}cardQD into { 1 , 2 , . . . , *}cardQD. 

However, to use such a rule in its generality may involve two difficulties. The first 
one is connected with the computational complexity of such a function with many 
variables. Moreover, in order to be able to find such a rule satisfying some natural 
conditions of optimality (the maximal likelihood principle, see below) we would 
be obliged to know or to compute some very complicated conditional probabilities, 
but usually we have not at our disposal a sufficient number of data to compute or at 
least to estimate them within an acceptable confidence interval. 

The other difficulty connected with the complete replacing rule arises from the fact 
that we need to have at our disposal the secondary answers to all the a-pairs from 
the quasi-detector in question in order to be able to replace even a particular second­
ary answer by the corresponding primary one. Very often, however, detectors serve 
as a basis for the so called sequential questionnaires, when the questions are not 
posed a priori, but, having posed a question, we decide about the next one 
with respect to the obtained answer and with the aim to minimize the ave­
rage length or cost of the questionnaire necessary for solving the original 
decision problem. However, in the case of a mass questionning action, this 
branching structure of the questionnaire must be given a priori and cannot 
be derived in the real time during the questionning process. But this gives, that 
because of the reasons mentioned above this branching must be coherent to the parti­
tion generated by the primary questions. I.e., we need to replace the secondary 
answer by a primary one immediately after having obtained this secondary answer, 
in order to be able to use this corresponding primary answer if necessary, for taking 
the decision which primary question should be posed as the next one. Combining 
this reasoning with the fact that using a sequential questionnaire we do not know, 
a priori and in general, which questions will precede to a particular question, we 
can come to the conclusion, that the secondary answer is the only fact which we may 
be sure to have at hand when trying to replace it by a primary answer. Describing 
this condition in the term of replacing rules, we can say that we shall limit ourselves 
to mapping from {1,2, ...,/?} into {1,2, . . . , a } , ascribed to each q-pair from the 
considered quasi-detector. Such a mapping will be denoted by l(Q, R), <g, R> £ QD, 
and will be called an interpretation of the secondary answer to R in the terms of 
the primary question Q (interpretation of R in Q, abbreviately). Sometimes we 
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shall use the expression "interpretation" also for the function / ascribing l(Q, R) 
to each <g, R> e QD. 

Tn practice, the limitations involved by taking into consideration only the unary 
replacing rules (i.e. rules with one argument), can be crossed when considering, 
instead of particular questions, sets (say, finite) of questions which must be answered 
simultaneously and only after having known answers to all of them we can choose 
the next set of questions (not necessarily disjoint with the former one). Taking into 
consideration the known or supposed statistical dependence or independence of 
particular questions, we may significantly improve the statistical quality of the de­
cision process generated by the questionnaire, however, from the theoretical point 
of view we may cover this case by our model with unary, replacement rules. We can 
simply replace the original quasi-detector QD = {<£>!, Ri>, <62 , K2>> • ••} by a new 
quasi-detector QD = {<Qi> ^i>> <Q2> -i*2>> •••}> where each <g ; , R;> is a Cartesian 
product of a finite set {<8a> #u>> <6/2> #;2>> •••> <Q»«(j)> Rik(i)}} of original <?-pairs 
(i.e., Qi is the partition of Yt(,) or Y" generated by the partitions QtJ, j ;£ k(i), of 
the original observation space Y). Clearly, each replacing rule depending on all the 
secondary answers within a group of (original) g-pairs can be now described as the 
interpretation of an appropriate new R; into Q{. Hence, in what follows we shall 
study only interpretations in the sense defined above, i.e. the unary replacing rules 
for g-pairs. 

3. THE DECISION RISK AND THE CASE OF A SINGLE 
QUASI-DETECTOR 

Each quasi-detector QD generates two er-fields JQ and JR over the space Y. Name­
ly, JQ is the minimal <7-fieJd generated by the system 3§Q = {{q'j}k=i}(Qj,Rj)eQD^ 
JR is generated analogously by the corresponding secondary questions. Clearly, 
as $IQ c J, also JQ c J, if, moreover, MR <= J, then also JR <=- J. 

As an appropriate criterion, how to measure the quality of a decision function with 
respect to a decision problem we may and shall consider the expected risk R defined 
as follows: 

(3) Rk(d) = ips(Si)\e(shd(y))dPY/Si. 
;=i JT 

In the theory of questionnaires the quality of a detector is classified with respect to 
the minimal value 

(4) RkQ = inf {R(d) : d is an ^-measurable decision function} , 

which is called the Bayes risk of the detector Q. Because of the finiteness of our de­
cision model we can prove (cf. Theorem 1 in [1]), that for each detector Q there is 
an J^g-measurable decision function d0 for which Rk(d0) = RkQ. 

Because of the reasons and intentions explained above we shall limit ourselves to 
J^Q-measurable decision functions. Also in the case when detectors are replaced 
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by quasi-detectors and when, theoretically, also sets from JR are at our disposal, 
as we want to interprete each observation y e Y immediately by the mean of a set 
from BQ and then to forget the observed value as well as the set from 38 R in which 
we have found it. 

Hence, having ./^-measurable decision function and a quasi-detector QD and sup­
posing that 3SR c ./, the risk Rk(d, QD) connected with such a combined decision 
problem can be written in the form 

(5) Rk*(d, QD) = £ Ps(Si) f Q(sh d'(y)) dPY/Si, 
(=1 J r 

where d' is the ./^-measurable decision function defined as the superposition of d 
and ./. More precisely, let QD = {{Qh R;>}f=1, let y e Ybe such that y e r)l e Ru 

y e r]2 e R2,..., ye rfK e RK. Consider the primary answers ascribed to these 
secondary ones by the corresponding l(Qk, Rk), k ^ K, i.e. the sets qi(QllRl)Ul) s S i , 
9/<e2,R.)tW e 62, •••, 1HQK,RK)UK) e QK a n d t a k e t n e i r intersection 

K 

Y(y, I) = n qI(Qk,Rk)Uk) • 
k=\ 

This set is either an atom of the c-field i#Q, on which the decision function d is 
constant, we may denote its corresponding value by d(Y(y, I)), or Y(y, I) 4= 0. We 
enlarge the space of decisions by a new value Inc and define somehow the loss 
g(sh Inc), i <. N (e.g., we may set Q(S{, Inc) = max max Q(S, Z) or elsewhere). Now, 

s z 
we define d'(y) by d(Y(y,I)), if Y(y, I) 4= 0, d'(y) = Inc otherwise. The value of 
Rk*(d, QD) cannot be, in general, compared neither with Rk(d) nor with RkQ. 
Clearly, if d0 is an ./Q-measurable decision function such that Rk(d0) = RkQ and 
if RkR > RkQ, then Rk*(d0, QD) > Rk(d0). On the other hand, for the same d0 consider 
the case when there is a positive real c0 such that Rk(dx) > Rk(d0) + c0 for each 
decision function dx 4= d0. Let (Q, R} be such that a = fi and Pyis^j'^ij) < e 

for each J <. a, i <. N, let <Q, R> e gD, let the loss function e be majorized by an M, 
0 < M < 00. This situation corresponds to the case when the differences between Q 
and R are caused, e.g., by random errors or unpreciseness. Then, evidently, 
Rk*(d0, QD) < Rk(d0) + c^Ms for an appropriate cu 0 < c± < 00, hence, 
Rk*(d0, QD) < Rk(dJ, dv 4= 4 , taking the simplest interpretation I(Q, R) (1) = i 
for each i < a = p, {Q, R) e QD, and supposing that the detector Q = {Q : <Q, R>e 
e OD} realizes the optimal decision function c?0. Finally, the possibility Rk*(d0, QD) < 
< RkQ is not excluded because of the fact that maybe, RkR < RkQ and that the 
induced ./^-measurable decision function d' realizes RkR. In what follows we shall 
mainly consider the case when RkK ^ RkQ = Rk(d0), i.e. the case when the original 
detector and decision function are optimal for the decision problem in question and 
when the use of a quasi-detector instead of this optimal original detector is an inevi­
table evil caused by reasons or circumstances which are beyond our powers. In such 
cases, of course, the original risk increases; our aim will be to express or estimate 
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explicitly this increase and to find the ways, namely the optimal interpretation func­
tion, how to minimize this increase. In the rest of this chapter we shall limit ourselves 
to the case of a single quasi-detector QD, when QD contains just one g-pair <g, R>. 

Theorem 1. Consider a single quasi-detector QD = {<g, R>} with an interpreta­
tion I(Q, R). Let JR c •/, let d0 be an J^-measurable decision function such that 
Rk(d0) = RkQ and let d0 be measurable with respect to the decomposition generated 
by the single detector {Q}. Let Q(S{, d(y)) S. M < oo for all i <; N, y e Y. Define, 
for each ./-measurable set Yt c Y 

(6) P(r1) = £p s(*«)- fV/,(ri)-
i = l 

Then 

(7) Rk*(d0, QD) <_ RfcQ + M(l - P( U (rj n qm))) . 
J = I 

Proof. Due to (3) and (5) we can write 

(8) Rfce = Rk(d0) = X Ps(Si) . Rk{d0), 
i= 1 

Rk*(d0, QD) = £ Ps(5,.). Rk*(d0, QD), 
;= i 

Rk,(d0)= [<>(sbd0(y))dPT/St, 

Rk*(d0, QD) = !e(Si, d'0(y)) dPY/Si . 

Now, 

(9) Rk*(d0, QD) = £ T f Q(SU d'0(y)) dPY/Si + f Q(sh d'Q(y)) dPYJ, 

as {r,, r2, ..., rp} is an ./-measurable partition of Y Clearly, d'0(y) can be taken as 
p 

identical with d0(y) for y e f) (?j n qIU)) and Q can be majorized by M. Hence, 
J = I 

Rk*(d0, QD) < £ ( f (s, d0 W) dPy/Sj) + £ ( f M dPy/S() ^ 
J'=l \JrJ"9J(J) / J=l Xjfj-quji / 

^ £ ( f e(-«, doW) dPr /sr) + M ( f e dPy/Si) = 
J = 1 \ J ' J / \ J u ( ' J - « 0 ) ) / 

= f tfa* doW) dPy/Si + M . Py/S,(Y - U (rj n « I0))) = 
J r J=l 

= Rk{d0) + M(l - PY/Si (j (ry n « , , , ) ) . 
J = I 
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From this inequality easily follows: 

Rk*(d„ QD) <, i Ps(Si) lRkt(d0) + M(l - PY/Si U (rj n qHj)))] = 
1 = 1 j = i 

= Rk(d0) + M[i Ps(s,.) - £ Ps(Si) Py,,,( IJ (r,. n g/0,))] = 
i = i i = i j=i 

= RfcQ + M(l - P( U (o n <7i0,))), 
y = i 

which proves the result. D 

Definition 1. Let Ps and Py/S(, i ^ IV, have the sense as above, let <Q, R> be a g-pair. 
Let MLJ = ML7(Q, R, Ps, {Py/S(}f=i) be a mapping of the set {1, 2, ..., /?} of integers 
into the set {l, 2, ..., a} of integers satisfying the condition that for all other map­
pings J of {1, 2, ...,/?} into {1,2, ..., a} and ally" ^ /? 

(10) p ( W o - ) / o ) = p(«/a)/'0) 

supposing that the conditional probabilities 

N 

P(a _ r ^ I ps(sO • py/S,(^/(/) n o ) 
(in p(^>/o) = ^ ^ = ^ -„ -~ - . ; = /*, 

i = 1 

as well as P(qMuu)lrj) a r e defined. The mapping MLI is called the maximal likeli­
hood interpretation (with respect to Ps and {Pr/s,}^=i) for the g-pair <Q, R>. 

Definition 2. Let J t and J2 be two interpretations of a q-pair (Q, R). Il is called 
minimax better than I2 (J t ^ (MM) J2, in symbols) with respect to Ps and {Pr/Si}f=i, 
if 

(12) RTcQ(M, J,) ^ RfeQ(M, J 2 ) , 

where 

(13) RkQ(M, I) = RkQ + M ( I - P(y7(e, R))), 

(14) M = sup {g(Si, z):i^N, zeZ} , 

(15) Y1(Q,R) = [)(rJnqIU)). 
i = l 

Theorem 2. Let <Q, R> be a g-pair, then for a fixed system Ps,{Pr/S(}f=1 of probabil­
ity measures and each interpretation l(Q, R) 

(16) ML1(Q, R, Ps, {PY/Sl}U) S (MM) l(Q, R) 
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i.e., the maximal likelihood interpretation is the minimax best among all possible 
interpretations of the secondary answers. 

Proof. Using (12) and (13) we can see that the assertion holds iff P(YMU(Q, R)) ^ 
^ P(Yt(Q,R)). In fact, 

P(YMU(Q, R)) = P( U (rjnqMLIU>)) = I P(rl ^ QMLHD) = 
l=i l=i 

I P(>-J).P(qMUJ>-i) = ip(>-i)-K^i>lrJ) = 
}=*l,P(rj)*0 1=1 

=--P((j(rjngl(j))) = P(YI(Q,R)), O 
. /= i 

Theorem 3. Let the conditions of Theorems 1 and 2 hold, then the maximal likeli­
hood interpretation is the minimax best one in the case of an identification problem, 
moreover, 

(17) Rk*(d0, QD) g i Ps(s,) . PY/St({y : y e Y d0(y) + s/}) + 
j=i 

+ (1 - P(YML1(Q, R))) • 

Proof. A simple consequence of Theorems 1 and 2, when setting M = 1, S = Z, 
and g(sh s,) = 0, g(sh Sj) = 1 for each i,jeN, i 4= j • 

The fact that the maximal likelihood interpretation is the best one in the statistical 
sense cannot be seen as something surprising, but rather as a theoretical justification 
of our intuitive feelings. In the next chapter we shall see that this principle of maximal 
likelihood remains to be the best even in the case of a quasi-detector with more 
questions interpreted independently. Let us recall that we shall take into considera­
tion only the unary replacing rules which can be given a priori and which are quali­
tatively and quantitatively compared in average, i.e. over the space S of the states 
and with respect to the a priori distribution Ps on this state space. 

4. THE DECISON RISK AND THE CASE OF A COMPLEX 
QUASI-DETECTOR 

Let us consider a quasi-detector QD = {<g1, Rt>, <Q2, R2>, ..., <QK, RK>}, 
K > 1. Having an interpretation l(Qk, Rk) for each k ^ K and an observation y = 
= y(ai) e Y we shall use QD in the sequential way. First of all we use the primary 
question Qi and obtain a secondary answer rh e Ru i.e. y e rh e Rt, then we find 
and note <li<,Ql,Rl)(h)e Qu anc* f° rg e t Or *n t n i s w a y w e P roceed also later, using 
sequentially Qi, S3 , etc. Clearly, each branch in a sequential questionnaire generated 
by a quasi-detector can be seen as a sequential interpretation of primary answers of 
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a new quasi-detector given by an appropriately ordered subset of the original quasi-
detector. Finally, we have at our disposal the finite sequence 

(18) (QI(QLRI)UI)> 4l(Q2,R2)Ui)> • ' • ' 1I(QK,RK)UK)) 

of sets, 1i(Qk,Rk)(jk) £ Qk, k = -K> and we ascribe to y the decision d(y) corresponding 
K 

to the set Y(y, I) = f] 1i(Qk,Rk)uk)
 G Ie- Under the conditions that this set is not empty 

fc=i 

and that the used decision function d is ,/Q-measurable the decision d(y) is defined 
unambigously (the considered intersection Y(y, I) is an atom of the <r-field JQ and 
each j^Q-measurable function must be of constant values on atomic sets of JQ). 

The problem is that in this case the possibility that the set Y(y, I) may be empty 
is not excluded if K > 1, in other words said, various interpretations l(Qk, Rk) (jk), 
y e rjk, may be inconsistent. It is why we must joint to the set Z of decisions a new 
value, say Inc (inconsistent), i.e. we replace Z by Z' = Z u {Inc}, and we set d(y) = 
- Inc iff Y(y, /) = 0. Of course, such a decision should be taken as an error, but it 
is an error of another type than that occurring in the case when y $ qi(Qk,Rk)Uk) f ° r 

some k ^ K and Y(y, I) 4= 0. Or, in the first case we know that an error has occurred 
simply by observing the fact that d(y) = Inc, in the other case the error is hidden. 
It is why we shall use the terms explicit error (Y(y, I) = 0 and implicit error 
y £ Y(y, I) 4= 0). Since this first use of these two terms we should keep in mind that 
the adjectives "potentially explicit" and "potentially implicit" would better express 
the difference between these two types of error. Classical questionnaires rely on the 
supposed consistency of answers and use it for the most possible shortening. In the 
more general case investigated here we may consider also the opposite approach — 
to prolong some branches of the questionnaire beyond the shortest limits, i.e. to pose 
some more "checking" questions than inevitably necessary for decision making with 
the aim to discover a possible interpretation error. The difference between the two 
kinds of error consists in the fact that the explicit error can be discovered in this way, 
in the worst case by using all the g-pairs from QD, but this is not the case for the 
implicit error. In what follows, we suppose that the questionnaire using the quasi-
detector QD is not necessarily the shortest one, hence, the difference between the two 
kinds of error has a reasonable sense. 

As the observation y = y(co) is the value taken by a random variable defined on 
a probability space (Q, £f, P) the set Y(y, I) can be taken also as a random variable 
defined on <£2, £?, P) and taking its values in the set containing all atoms of JQ 

and the empty set. Hence, the fact whether l(y, I) = 0 or not or whether y e Y(y, I) 
or not can be taken as random events. The upper bound (8) derived in Theorem 1 
is based on the assumption that the occurrence of an implicit error (only this type of 
error is possible if K = 1) causes the maximal loss M. We try to extend this result 
when K > 1 considering, for the sake of simplification, both the types of error as 
equally important and causing the maximal loss M; a separate discussion of both 
the types of error will be given later. 
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Theorem 4. Let the conditions and notations of Theorem 1 hold with the single 
generalization that QD = {{Qk, Rt>}f=1, K ^ 1. Then 

(19) Rk*(d0, QD) = Rke + M £ (1 - P(Y(Q*, **))) , 
* = i 

e = {c2i,ea,...,G*}. 

Proof. Using (8) and denoting 

(20) YJ(Q, D) = n y(e*, **) = n u (>•$ ^ qk
HQk,Rkm), 

*=l l - U - l 
we may write 

(21) Rk{d0, QD) = f Q(si, d0(y)) dPY/Ui + [ Q(sb d0(y)) dPy /S j . 
jYiiQD) J y-y HQD) 

Each interpretation l(Qk, Rk), k :g K can be generated by a mapping of Yinto itself 
which is constant on the sets r,. e Rt and identical on Y,(QD), hence, also d'0(y) can 
be taken as identical with d0(y) on Y,(<21>), moreover, g can be majorized by M. 
So (21) yields 

(22) Rk{d0, QD) = f e(s„ i0(y)) dPy/s, + f M . dPy/Si = 

Jri(C/>) Jr-yj(QD) 

^ f e(s„ doW) dPy/sl + M . py/Si(y - y(e!>)) = 

= Rfe;(d0) + M . py/f((y - n Yj(ok, Rk)) = 
k=l 

= Rk;(d0) + M . py/Si( n (y - y(e*, **))) ^ 
* = i 

rg R/c;(d0) + M X (1 - Py/siUQ,, Rk))). 
k=l 

Taking the expected value (with respect to Ps) of the right side in (22) in the same 
way as in the proof of Theorem 1 and using (8) we obtain: 

Rk*(d0, QD) = RkQ + M X (1 - P(Yj(Qk, Rk))) , 
* = i 

which proves the assertion. • 

Theorem 5. Let the notations and conditions of Theorem 5 hold, let Ps, {Py/J5i}f=i 
be fixed probability measures on <S, 2 s > and <Y J}, resp. Then the maximal likeli­
hood interpretation of the quasi-detector QD, i.e. the system of mappings {MLI(Qk, 
Rk, ps> {pr/s,}f=i)}f=i of the set {1, 2, ..., /?} into {1, 2, ..., a} is the minimax best 
interpretation in the sense that it minimizes the right side of the inequality (19). 
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Proof. Theorem 2 gives that taking l(Qk, Rk) = MLl(Qk, Rk, Ps, {Py/Sl.}f=1) we 
minimize the summand (1 - P(Y,(Qk, Rk))) in (19), hence, the maximal likelihood 
interpretation of the quasi-detector as a whole minimizes the upper bound for 
Rk*(d0, QD) in (19). • 

Hence, we can see that even in the case of a quasi-detector containing more than 
one g-pair the simple rule "replace r,- by the most probable qt with respect to the joint 
probability measure P" is the best one, in the natural sense of minimax reasoning, 
among all a priori given interpretation rules. It is again possible, at least theoretically, 
to modify the interpretation in such a way that we take into consideration the 
information contained in the secondary answers to the previously posed questions. 

The upper bounds for the average risk derived in Theorems 1 and 4 are based on 
a rather pesimistic point of view that for the observations belonging to the set 
Y - Y,(QD) the risk connected with decision making equals zero when the original 
decision function d is used, and equals the maximum loss M when the new decision 
function d' (defined by the interpretation) is used. Let us modify our results by adop­
ting the assumption that the average risk is independent of the set Y,(QD) in the sense 
that the average risks taken with respect to the set Y,(QD) (Y - Y,(QD), resp.) are 
equal, formally 

(23) (P(Yl(QDW1lPs(sl)\ (Si,d(y))dPr/St = 
i=l jYi(QD) 

= (1 - (P(YI(QD))))-> l Ps(s.) [ e(sh d(y)) dPY/Si. 
i = l JY-Y,(QD) 

This situation may occur very often in the case when the differencies or discrepancies 
between Q and R are caused by inaccuracies of measuring and observations which can 
be taken as independent of the losses connected with decision making. Under such 
circumstances we may improve the inequality (19) as follows. 

Theorem 6. Under the notations and conditions of Theorem 4 and under the con­
dition (23) holding for d = d0, 

(24) Rk*(d0, QD) ^ RkQ . P(Y,(QD)) + M £ (1 - P(Y,(Qk, Rk))). 
fc=i 

Moreover, even in this case the maximal likelihood interpretation of the quasi-
detector QD is the minimax best in the sense that it minimizes the right side of (24). 

Proof. Using (21) and (3) we may write 

(25) RkQ = Rk(d0, QD) = £ Ps(
s.) [ <?(-.. d0(y)) dPr/si + 

i = l jYi(QD) 

+ I p
SO0 [ <&. d0(y)) dPYhi. 

;=i JY-Y,(QD) 
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Denote the left side of (23) by ax and the right one by a2, then immediately follows 
that 

(26) Rk(d0, QD) = a, . P(YS(QD)) + a2(\ - P(Y1(QD))), 

which gives, together with the assumption (23) that ax = a2, that 

(27) RkQ = Rk(d0, QD) = RkQ. P(Y1(QD)) + £ Ps(s) \ Q(sh d0(y))dPY/Si. 
i = l Jy-Yi{QD) 

K 

The last summand in the right side of (27) can be majorized by M £ (1 - P(Y(<2„ R,))) 
; = i 

in the same way as in the proof of Theorem 4, so (24) is proved. As RkQ < M by 
definition, the theory of Lagrange multipliers yields that the minimization of the 

K 

coefficient M £ (1 — P(Yj(Qk, Rk))) multiplied by the smaller item RkQ assures the 
k=i 

minimization of the right side in (24) as a whole. However, as the proof of Theorem 5 
K 

shows, the minimal value of M £ (1 — P(Y,(Qk, Rk))) is achieved just when the maxi-
fc=i 

mal likelihood interpretation of QD is applied. • 
Above, we mentioned two types of error and the difference between them. The 

probability of the explicit error can be defined by 

(28) PE(exp) = P({y : y e Y, d(y) = Inc}) = £ PS(S;) . 
; = i 

. Py/Si({y :yeY, d(y) - Inc}). 

Clearly, PE(exp) rg 1 - P(Y/(QD)), as for )> e Y,(QD) we may be sure that y is 
interpreted correctly for each k <K and each a-pair (Qk, Rk}, so y e f] q'r(Qk,Rk)(jk) 
for some j k < P, k <, K. Hence, d(y) is identical with the decision ascribed to an 
atom of J'Q, SO d(y) =}= Inc. As the following example shows, no lower and generally 
valid upper bound for PE(exp) can be given. 

Take K = a = p = 2, Qt = {q[, q2), Rt = {r[, r\], i = 1, 2. Let P(q\\r\) = 
= P(q\lr{) = P(«i/rl) = P(q\jr\) = 1/2, P(«j) = P(r)) = 1/2, ; = 1, 2, i.e., the 
secondary answers r\, r\ are absolutely irrelevant with respect to the primary 
questions q\, q\. Then we may define MLl(Qt, Rx) as the identity mapping of the 
set {1,2} into itself. Let R2 = Rlt let 0 < P(q\ + q\) < e, 0 < P(q] + ql) < e, 
0 < 6 < | 1, i.e., Q2 can be seen as a slight "shift" of Qv Let this small difference 
between Qt and Q2 be of such a kind that MLI(Q2, R2) (1) = 2, MLI(Q2, R2) (2) = 
= 1, hence, r\ is interpreted as q\, r\ as q\. Only when y e ((o} n .22) u (q\ n <?i)) n 

2 

nr\ (when j ; e ((cjj n a!) u (g | n q\)) n r2, resp.), then ft qk
MLHqk,rky.i) * 0 

2 4=1 

( fl flML/(ok,Rk)(2) * 0. resp.) and, following, rf(y) 4= Inc. But, P((gJ n q\) u 
fc= 1 

u (fl2 n gj)) < 2e so PE(exp) > 1 — 2e >̂ 0. This example is interesting because 
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of the fact that we have used the maximal likelihood interpretation MLI. On the other 
hand, even if this example can be considered as one among the worst when considering 
the minimax approximation of the risk, practically, it is not so bad as the error will 
be discovered with a probability close to one. 

Until now, we have studied only the interpretations which can be given a priori 
because of some reasons mentioned above. Sometimes, in particular cases, it may 
be possible to take profit of the secondary answers or their interpretations to the 
primary questions Qx, Q2, ..., Qk-U when searching for an appropriate or the best 
interpretation of the secondary answer obtained after having posed the primary 
question Qk. Let us mention, very briefly, such a possibility. 

Take QD = {<Qt, R;>}f=!, let r j e i , i S K, j £ /., let us know the secondary 
answers (or at least their interpretations) to Qj, j _= k — 1. If we knew immediately 

k- 1 

. j ( i ) for all i g k — 1, we could take r*_x = f] and replace the system {Py/s,}f_i 
i = I 

by system {Py/Si('/r*-i)}f=i of conditional probability measures, where 

(29) P. / s , (AK-i) = PY/Si(A n r*_i) . ( P ^ K - i ) ) - 1 

for all AeJ, when Py/S,(>*_i) > 0. Using {Py/Si(-/r*-i)}f_i and Ps we can define 
the maximal likelihood interpretation MLl(Qk, Rk, r*_ t) in the same way as before. 
MLl(Qk, Rk, r*_i) is optimal in the sense that it is optimal from the point of view 
of the minimax criterion used above and applied to the reduced decision problem 
and reduced quasi-detector arising from the original ones when replacing Y by r*_ t ; 
all other sets are replaced by their intersections with r*_u Py/s. by PY/Si('lrt-i)-

Let us modify this approach to the case when instead of secondary answers only 
their interpretations, say, the maximal likelihood ones, are at our disposal. Set 

k- 1 

<_*-i = fl QMLI(Q,,R,)U,) a n d define the conditional probabilities Py/Sj("/g*-i). Due 
; = i 

to the possibility that q*_t = 0 (the explicit error), these conditional probabilities 
are not always defined but in such a case we may complete the definition arbitrarily. 
In general, we cannot assert that this solution is optimal in the sense as above for r*_ lf 

moreover, it may be even worse than the a priori maximal likelihood interpretation. 
Taking into consideration the reduced space Yn g*_i and the conditional probability 
measures Py/S((-/g*_ j) may be of an importance namely in the case when the sec­
ondary answers R; do not differ too much from the primary questions Qt. Or, in this 
case, the better decision making (the lower risk) resulting when we use the information 
contained in qt-i, dominates the possible increase of the risk resulting from an even­
tual misinterpretation. This situation may happen, e.g., when the difference between 
Qi and Rt is not caused, say, by a principally different classification of observations 
or events by the respondent, but when this difference is caused, e.g., by incorrectnesses 
of the observation process which can be, in a degree, minimized even if not fully 
avoided. 
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5. A NON-STATISTICAL APPROXIMATION OF THE MAXIMAL 
LIKELIHOOD INTERPRETATION 

Until now, we have based all our considerations on the assumption that we have 
at our disposal the probability measures Ps and Py/Sj, /' = 1, 2, ..., N, or at least the 
joint probability measure P. These probabilities can be obtained either on the ground 
of some a priori knowledge concerning the investigated particular model or from 
a statistical experience in the form of corresponding relative frequencies. Hence, 
the probabilities in question are often hardly to obtain or it may be even theoretically 
doubtful whether they exist (the a priori distribution Ps). It is why it may be of some 
interest to suggest a way how to replace the decision model explained until now in 
the case when the probabilities in question are not at our disposal. 

Consider a g-pair <g, R> = ({ql, ..., qx}, {/-,,..., rfi}y. Let S£ be a formal 
language based on the first-order predicate calculus (cf. e.g., [2] for all the notions 
and notations from the domain of mathematical logic used below). Consider an 
axiomatic system (set of axioms) six in S£ and the usual deducibility meta-relation 
Y defining the subset ST <= S£ of theorems derivable from s4-.c. The axioms express 
our a priori knowledge concerning the particular model as well as the general relations 
and logical truths. 

Suppose that for each set rs, j :£ fi, there is a formula Fr. e S£, containing just one 
indeterminate which ranges over Y such that jtfx h Fr(y) (i.e. Fr.(y) e 2T), iff y 
is the name of an observation from rs, and sJ-.r. Y lFr.(y) (negation of Fr.(y)), ify 
is the name of an observation from Y - rs. The formulas Fr. and those obtained 
from them by propositional connectives and quantifiers in the usual way are called 
observational formulas. Besides then we suppose to have in S£ also the two 
— sorted formulas of the form A(s, y) with s ranging over S and y ranging 
over Y The intuitive meaning of such a formula is that if the actual situation 
(state of the environment) is s, then the observation y satisfies A. A typical case may be 

(30) (Vs)((s = Sl)->(yeB)), 

where B c Yis definable in S£. (30) says, that if y G Y — B, we may definitely elimi­
nate sx from the possible candidates to the actual state supposing we observed y. 

Let y e rs, for a j ^ ft, let 

(31) s*vu{Frj(s,y)}Y -|(s-s.) 

for some i ̂  N. Denote 

(32) T*(y) = T*(y, R, s4a>) = {sf : i eN, dec u {Fr.(s, y)} M ( j = s;)} , 

S*(y) = S - T*(y). 

So T*(>') contains the states which can be ultimately eliminated from consideration 
when an observation y e rs was made, S*(.y) contains the states which cannot be 
eliminated in this case (admissible states). For B e Y set S*(B) = (J S*(y). 

yeB 
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Define a mapping OPT of the set {1, 2, ..., /?} into {1, 2, ..., a} satisfying 

(33) card(S*(q0PW)) n S*/r;)) > card(S*(qj) n S*(r;)) 

for all j ^ a. Generally, for an interpretation /, two kinds of error may occur, 

namely: 

(1) choosing q^) we eliminate from consideration a state s e S which has not been 
eliminated by the original observation y e r;, denote by n t(/) = nt(I,N, Q, R) the 
number of such wrongly eliminated states in S. 

(2) Choosing <j/(;) we admit as possible a state s e S which has been eliminated by 
y e rh denote by n2(I) = n2(l, N, Q, R) the number of such wrongly admitted 
states in S. 

Theorem 7. The interpretation OPT is optimal in the sense that it minimizes the 
value p = N~1{nl(l) + n2(l)), which can be taken as an analogy of the probability 
of error in the case of zero-one loss function. 

Proof. The union of both the sets of states with which an error is connected 
corresponds to the symmetric difference S*(qni)) 4- S*(i\), hence, 

(34) p = (card S)"'1 . card (S*(qm) + S*(r;)) . 

The mapping OPT minimizes the cardinality of the symmetric difference in (34), 
so it minimizes also the value of p. • 

This approach can be immediately generalized by taking into consideration the 
possible losses connected with the wrongly eliminated or admitted states instead of 
their cardinalities. As can be seen, this non-statistical approach can be considered as 
a special case of the statistical one, when the a posteriori conditional probabilities 
Ps/y on S, generated by Ps, {Py/s.}f= i and the random variable y = y(co) e Y(the actual 
observation) are of a special type, namely, 

(35) Ps/y(s) = (card{s':Ps/y(s')>0})-i, if Ps/y(s) > 0 , 

I.e., observing y e Y we may avoid some states from consideration as impossible, 
but no one among the non-eliminated ones is statistically preferred to another non-
eliminated state. 

With the exception of some basic notions of mathematical logic which have been 
used in the last chapter and which can be found in [2] or elsewhere, the paper should 
be self-explanatory. In [1], the reader may find some basic conceptions, notions and 
results concerning the theory of sequential questionnaires, including the detectors. 
Even if the notion of sequential questionnaire has not been immediately used here, 
this theory serves as a background for the way of reasoning and argumentation used 
in this paper. 

(Received July 9, J 980.) 
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