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KYBERNETIKA — V O L U M E 14 (1978), N U M B E R 1 

A Boolean-Valued Probability Theory 

IVAN KRAMOSIL 

New foundations for probability theory are suggested and investigated, derived from the for­
malized systems theory and using also some other branches of mathematical logic. The probabili­
ty measures are supposed to take their values not in the unit interval of reals, but in a special 
kind of Boolean algebras. Some analogies as well as differences of this approach with respect to 
the classical Kolmogorov probability theory are investigated. 

1. INTRODUCTION AND MOTIVATION 

A brief and meta-mathematically oriented discussion of some aspects of Kolmo­
gorov probability theory seems to be an adequate introduction to this paper. We 
suppose the reader to be familiar with the axiomatic foundations of this theory, 
however, no more detailed knowledge of probability theory is necessary in order 
to be able to understand what follows. 

Kolmogorov conceived the probability theory as a special case of measure theory 
and measurable functions theory. Probability is nothing else than a set function sa­
tisfying certain axioms, random events are defined as measurable subsets of a uni­
verse, random variables are reduced to measurable functions. The technical advant­
ages of such an approach are obvious — measure theory and real functions theory are 
developed and rich theories having at their disposal a powerful mathematical appar­
atus together with a number of important results and all this can be used in order 
to develop a powerful and rich probability theory. 

Another aspect of Kolmogorov probability theory, usually also presented as its 
positive feature, its logical consistency, deserves a more detailed analysis. A number 
of older probability theories (geometric probability, von Miscs probability etc.) have 
failed because of violating the consistency meta-principle when trying to define what 
the probability of a random event is. Kolmogorov avoided this problem by leaving 
it and replacing it by another one: what theprobability of a random event may be. 



Really, Kolmogorov gives a number of conditions which a mapping from the field 
of random events into the unit interval is to satisfy in order to be admitted as a pos­
sible candidate to play the role of probability. 

Even if acknowledging the advantages of this approach and the merits of this 
conception as far as a further development of probability theory is concerned, we are 
not allowed to hid or neglect some weak points of Kolmogorov probability theory. 
When applied to a practical problem, the probability theory is confronted again with 
the question about the actual value of such and such probability and in this context 
the elimination of this question from the theory is of no worth. Hence, this question 
must be answered by the means, methods or a priori assumptions the correctness, 
preciseness and justification of which lie outside the probability theory and continue 
in influencing all the results, no matter how sophisticated they may be, obtained by 
the means of probability theory from these premises. E.g., considering a sequence of 
random events consisting in throwing a coin the Kolmogorov probability theory is 
able to derive the implication "if the probability of any side of the coin is 1/2 and if 
the different throws are statistically independent, then the probability of a triple 
occuring of the head-side in three following each other throws is 1/8". Clearly, to 
derive the unconditioned assertion "the probability of a triple occuring .. . is 1/8" is 
beyond the power of the theory in question, however, just such assertions are re­
quested when probability theory is applied. 

The basic idea of this paper consists in the following suggestion: let us abandon 
the assumption (common to all probability theories known until now) that the value 
of a probability measure must be a real number and suppose that probability measures 
take their values in a more general structure. As far as the author knows in probability 
theory this approach is original, however, in the theory of fuzzy-sets a similar ap­
proach exists, see [1], involved by a similar way of reasoning, so the idea to apply 
this point of view also to probability theory occurs almost immediately. 

It is a matter of fact that the assumption ascribing to random events just reals as 
their probabilities is not based on some principal reasons and is rather a matter of 
convenience and an analogy with relative frequencies introduced and investigated in 
statistics. The unit interval of reals is a so rich and powerful structure that the 
advantages of easy manipulations with probability values offered in this case has been 
always considered as great enough to dominate the meta-theoretical (von Mises) 
or identification (Kolmogorov) difficulties. In this paper we shall follow another 
way of reasoning: to admit worse possibilities of manipulation with probability values 
in favor of a more easy identification of these evalues. 

Supposing that probability is a mapping defined on a certain structure S" of random 
events and taking its values in another structure Z£ and leaving the assumption that 
Jz? = <0, 1> immediately the problem arises which structure should be chosen to 
play the role of S£. A discussion concerning this problem can be found in [1], 
however, it deals with fuzzy-sets and some arguments are only to a degree justified 
in our field of reasoning. It is not our aim to enrich this discussion here, we should 



rather suggest and defend one possibility, namely, we propose to take as Z£ a Boolean 
algebra of a special kind. 

There are many definitions of Boolean algebras, some of them can be found in the 
second chapter of [3] or in [4]. Here we define a Boolean algebra si as the structure 
<A, = , A , v , ', 0, 1>, where A is a nonempty (and usually at least two-elemented) 
set, v(supremum) and A(infimum) are binary operations on A, '(complement) 
is a unary operation on A, = is an equivalence relation on A and 0 (zero) and l(unit) 
are two special elements of A. Of course, the structure si is to obey certain axioms to 
be really a Boolean algebra, we do not write these axioms explicitly referring the 
reader to [3], [4] or to another source. In si we define, in the usual way, a partial 
ordering relation g such that, for any x, y e A, x :g y iff (x A y) = x, or, equiva-
lently, iff (x v y) = y. 

Besides the most elementary properties of Boolean algebras with which the reader 
is supposed to be familiar let us consider a possibility of a relativization of the 
notion of Boolean algebra. 

Lemma 1. Let si be a Boolean algebra, let a e. A. Denote by A(a) c A the subset 
of all elements of A of the form a v x, x e A and define binary operations A (a), 
v(a) on A: 

(a v x) v (a) (a v y) = (df) a v (x v y), 

(a v x) A (a) (a v y) = (df) a v (x A y) . 

Define also unary operation '(a) on A: 

(a v x)' (a) = (df) a v x ' . 

Then si(a) = <A(a), = , A (a), v(a), '(a), a, 1> is a Boolean algebra. 

Proof. A simple verification of axioms of Boolean algebras. Q.E.D. 
Consider, now, a formalized language 3$ based on the first-order predicate calculus, 

i.e., roughly speaking, 'M is the set of all well-formed formulas of a first-order predicate 
calculus based theory together with a structure on this set. Suppose that the preposi­
tional connectives A (conjunction), v (alternative), 1 (negation) and o(equivalence) 
are primitive connectives of 3$ or that they have been defined in 3$ (the identity of 
these symbols with those of Boolean algebras will not be misleading). Choose an 
element a e \3§\ and consider a deducibility relation 1- defined on 3$ on the base of 
the first-order predicate calculus axioms, maybe some other axioms, and the usual 
predicate calculus deducibility rules. Define an equivalence relation = on \3S\ in 
such a way that x = y\S[-xoy. A well-known theorem (see [3], e.g.) then sounds 
that 

£?(3$) = <\@\, = , A , v , 1 , a A la, a v la) 

is a Boolean algebra, usually called the Lindenbaum or Lindenbaum-Tarski algebra 
over the formalized theory (38, l->. And they are just the Lindenbaum algebras over 



first-order formalized theories which will be taken as the structures in which proba­
bility measures should take their values. We are ready to formalize the principal 
definition of this paper. 

Definition 1. Let Q be a non-empty set, let (:W, h-> be a formalized theory based 
on the first-order predicate calculus. Then the triple <i2,i#,-h> is called Boolean 
probability space. Suppose that Q is the support of a semantical structure with 
relations and functions corresponding to the relational and functional constants of 38, 
then A c: 12 is called Boolean random event, if there is a formula VA e \3S\ defining A 
in <i#, I—> in the usual semantical sense. Let A c Q be a Boolean random event, 
then any formula VA e \@l\ defining A is called the Boolean probability of A and 
will be denoted by BP[A), i.e. Boolean probabilities are formulas defining certain 
subsets of Q. 

As it can be easily seen the difference between a Boolean random event and its 
Boolean probability is very narrow and can be neglected on the formalized level. 
No Boolean random event can be given in the language 3S without defining, at the 
same time;its probability by the same formula. 

If compared with the way in which Kolmogorov probability has been constructed 
a similarity between that and our approaches can be found. We have used, again, 
another branch of mathematics and try to embed probability theory in this field. 
Instead of measure and measurable functions theory used by Kolmogorov we try 
to use mathematical logic and metamathematics, i.e. theory of formalized mathe­
matical theories, to the same goal. The reason for this effort is, roughly speaking, 
the adequacy of mathematical logic for the purposes of artificial intelligence and 
robotics. A discussion can be found in the closing part of this paper. 

2. SOME PROPERTIES OF BOOLEAN PROBABILITIES 

A well-known assertion of the Boolean algebras theory sounds that only those 
Boolean algebras can be complete the cardinality of which equals to 2", i.e. the car­
dinality of which is either finite or at least continuum. Lindenbaum algebras are, 
with the exception of the most trivial finite cases, countable, hence, they are not com­
plete. This gives that union and intersection of a sequence of random events are not, 
in general, random events. It would be possible to embed a Lindenbaum algebra 
into its minimal complete extension defined on the base of Stone structure associated 
with this algebra (the construction itself as well as some necessary assertions and their 
proofs can be found in [3]). However, in such a case random events would become 
more complex mathematical entities not reducible on definable subsets of the basic 
space Q. As the effectivity of random events in the sense of their definability in the 
given language is the basic principle of our way of handling with probabilities we 
abandon the demand of completeness and-we do not consider these extended algebras. 



It is clear, now, that the c-aditivity axiom of Kolmogorov probability theory has 9 
no reasonable counterpart in our theory. A much more weak assertion can be proved. 
Consider a Boolean probability space <Q, ;#,!->. 

Theorem 1. Let Au A2,... be a sequence of Boolean random events, then for any n 

n n + 1 B ' 

BP( U At) >= BP{Aj), j ^ n , BP( U A;) > BP( U Ai) • 
i = l i = l i = l 

If, moreover, At < ~\Aj for any i,j, i =f=j, (in such a case the Boolean random 
events are called mutually disjoint) and if A, =fe A (i.e. B A ~]B for any B e \3S\), 
then 

BP( \JAt) >BP(AI), j g n , BP(U A;) > 5P( U A,) -
; = i ; = i ; = i 

Proof. The first two inequalities are trivial. Let Ax, A2, ... be mutually disjoint 
and non-zero. The propositional tautology ((B v A) -> B) = (A -* B) gives that 
n+1 n n 

V A i ^ V - 4 ; holds iff A„+1 -> V ^ i - However, A„+1 -> A,, / g n, so An+1 -» 
; = i ; = i ; = i 

->A( _ lA i ) , A„+i -* _ l (A / l i ) - immediately follows that A„+l -> A (~l^i) A 

i = l i = l i = l 

A V Ai, hence, A„+\ -> A. Q.E.D. 
; = i . . . 

Definition 2. Let <£2, £ ,̂ H> be a Boolean probability space, let A, B be Boolean 
random events. Then the conditional Boolean probability BP(AJB) of A under the 
condition B is defined as B -> A. ' 

Theorem 2. Let A, B be Boolean random events, then 

(a) conditional Boolean probability BP(-|B) is a mapping of the Lindenbaum algebra 
S£(3&, h ) into the Boolean algebra ^(iB) (see Lemma 1), 

(b) BP(A|B) = BP(y4), . . . 

(c) if A, = A2, then BP(B|A,) = BP(B|A2), A,, A2-e J^|, 

(d) BP(A|V) = 5P(^), V = (df) HA, 

(e) BP(A|A) = HA , i.e. the zero element of ^(~\A)', 

(f) if h B -> A, then BP(A|B) = V, if f-B -» n A , then BP(A|B) = HB, i.e. the 

zero element of SC(~\B). "[ • 

Proof. All the assertions are either trivial or follow immediately from some well-
known propositional tautologies. ,;, , ; ' ; . / 

We must admit that the assertion (b) contradicts the properties of classical con­
ditional probabilities as BP(A) serves as a lower:bound for all BP(A|B). If A and B 



exclude each other, then BP(A\B) = BP(A), if B implies A, then BP(A\B) = V. 
On the other hand take into consideration the fact, that conditional probability 
BP(-\B) is defined to take its values not in SC itself, but in Sf(~lB) and any com­
paring of BP(A) and BP(A\B) can be done only after the embedding of Sf^lB) 
into Se and in the framework of Sf. In Sf(~]B) the values of BP(-\B) vary from 
A(Jz?(~lJ3)) to V according to the classical demands. There is still another reason 
worth of mentioning. The paradoxal inequality (b) is an immediate and inevitable 
consequence of the so called "paradoxon of classical implication" and cannot be 
avoided in the framework of classical propositional calculus as the following assertion 
shows. 

Theorem 3. There exists no binary classical propositional functor/ such that the 
conditional Boolean probability BP(A\B) defined by / (A , B) would satisfy simul­
taneously: if h-B -* A, then BP(A\B) = V, if \~B-* ~\A, then BP(A\B) = A. 

Proof. If B = A, then \-B -> A, \-B -* ~]A. However, if the theory (&, h-> 
is consistent, the simultaneous validity of/(A , B) = A and/(A , B) = V is excluded. 
Q.E.D. 

Multiple conditional probabilities can be defined by the relation BP(A\B, C) = 
- (df)J3P(A|B)|C). As 

BP(BP(A|B)|C) = BP(B -> A|C) = C -* (B -* A) s (B A C) -> A = 

= BP(A\B A C), 

the possibility of elimination of multiple conditional probabilities is conserved as 
well as the way in which this elimination is performed. 

Definition 3. Boolean random events A,,A2, . . . , A B are mutually independent, 
if no among the meta-assertions 

h / A , A A2 A .. . A A,--. A Aj-+i A . . . A A„) —> Aj , j f± n , 

h- " l (A , A A2 A . . . A A,) , 

h-A l V A2 V .. . V A„ 

is valid. The Boolean random events A,,A2, . . . ,A„ are pairwise independent, 
if any pair <Af, A;>, I, j ^ n, i 4= / , is mutually independent. Boolean random events 
A,,A2,... are mutually independent, if any finite subsequence of A,,A2,... is 
mutually independent. 

Theorem 4. If Boolean random events A,, A2,..., A„ are mutually independent, 
they are also pairwise independent the inverse implication not being generally valid 
(agrees with the classical probability theory). 



Proof. The non-validity of h-(Aj A ... A A J _ 1 A Aj + 1 A .. . A A„) -> A,-, 
h- ~l(Aj A .. . A A„), h-A, v ... v A„ immediately gives the non-validity of 
h-Ai -» Aj, h-n(A i A AJ, h-A; v Ay As a counter-example showing the non-
validity of the inverse implication consider the theory (38, h-> resulting from the 
first order predicate calculus by its enriching by five unary predicate constants 
P j , P 2 , . . . , P 5 and by axioms 

(Vx)(Pj(x) vP_(x) v ... v P5(x)), 

(3x)P ((x), i = 1,2, . . . , 5 , 

(Vx) [P((x) -> -](P{(x) v P2(x) v ... v P,_.(x) v P , + J(x) v ... v P5(x))] , 

i = 1,2,..., 5 . 

Then the Boolean random events P,(x) v P2(x) v P3(x), P2(x) v P3(x) v P4(x), 
P3(x) v P4(x) v P5(x) are pairwise independent, but not mutually independent, 
as h-Pj(x) v P,(x) v ... v P5(x). 

The following theorem gives, without proofs, some more and easily verifiable 
properties of mutually independent Boolean random events. 

Theorem 5. (a) Any of the pairs <A, A>, <A, V>, <V, V> of Boolean random events 
is neither mutually nor pairwise independent. 

(b) If Boolean random events A, B are independent, then none among the Boolean 
probabilities BP(A\B), BP(A\~[B), BP(B\A), BP(B\1A) is equivalent to V or A. 

(c) If Boolean random A, B are not independent, then at least one among the 
Boolean probabilities given in (b) is equivalent to V. 

3. CONVERGENCE OF BOOLEAN PROBABILITIES 

The assertions of limit kind play an important role in the classical Kolmogorov 
probability theory. Let us examine a possibility how to express at least some of 
these assertions in our formalism. 

Definition 4. Consider a formalized theory <£#, h- > and its Lindenbaum algebra if'. 
Let {A,}i"j be a sequence of Boolean random events, then this sequence tends to 
a Boolean random event A0, or A0 is the limit of {A;} j_, u in symbols {AJ ?L t /" A0, if 

(a) there is an n0 such that for all i > n0, A,- __ Ai+1 S Ao> 

(b) if A* is another Boolean random event satisfying (a), then A0 ^ A*. 

I.e., limit is the same as the least upper bound of a monotonous non-decreasing 
sequence of Boolean random events. As can be easily seen, if the limit of a sequence 
exists, it is unique up to equivalence = . 



Having a formalized theory <^, I— >, suppose to have also an enumeration E 
of elementary formulas of this theory ascribing different naturals to different elemen­
tary formulas. Denote, for any Ae\3i\, by Ap the prepositional formula resulting 
when every elementary formula e in A is replaced by the prepositional indetermi­
nate pE(e) and all quantifiers are erased. 

Definition 5. Let (8§, I—> be a formalized theory with the Lindenbaum algebra £C, 
let Ae |i£|, A propositional variable p occuring in Ap is called substantial in Ap, 
if there is no propositional formula At containing only the indeterminates occuring 
in Ap but with the exception of p and such that I—A, — Ap. The set of all indeter­
minates substantial in Ap is denoted by Var(A). Boolean random events A,, A,, ... 
from Jz? are called mutually strongly independent, if A -£ Af -£ V, i — 1, 2, .. 
and the sets Var(A,) are mutually disjoint. 

Theorem 6. Let \88, h ) be a formalized theory, let Boolean random events 

A,, A2, ... be mutually strongly independent. Then { V ^f}T=i ? V. 
i = i 

Proof. The assumption A ^ Af gives that there is, for any i, such a mapping p, 
from the set of all indeterminates occuring in Af into {V, A} that \-pjAh where 
PiAi is the formula resulting from the substitution given by pt and applied to Af. 
Having at our disposal only n propositional indeterminates we can construct just 22" 
non-equivalent formulas. This fact and the strong independence of At imply that 
the set |J Var(At) is not finite. Suppose, to come to a contradiction, that there is 

;=i i ;• { 
A0e \i%\, Ao ^ V, such that (V^f) <: A0 for all i ^ i0, Immediately follows^that 

J'=I 

there is an il ^ i0 such that Var(Ah) n Var(A0) = 0. Ap
u ^ A, A0 =j= V, so there 

exists a mapping p0 of the type described above such that p0Ah = pilA,l = V, 
p0A0 = A. This gives that p0(\/ Aj) = A, hence, h - ( V ^ ; ) -* Ao does not hold, 

n j = l j=l 

so { V A H ^ i •* V. Q.E.D. 
; = i 

In fact, the strong mutual independence represents a sufficient but not necessary 

condition for the convergence of V Af to V. 

4. NUMERICAL REPRESENTATION OF BOOLEAN PROBABILITIES 

Introducing the idea of Boolean probabilities we have mentioned some arguments 
in favour of our point of view that the classical numerical-valued probability theory 
suffers from some disadvantages of applicational character. However, its undoubtable 
priority consists in a very rich structure of the unit interval, enabling to, handle easily 



the probabilities and to derive rather complicated constructions over them. In this 
chapter we propose an idea, how to use the reals from the unit interval also in our 
Boolean-valued probability theory, even if in other way than the classical probability 
does. 

Consider a finite set Sf c S£ of formulas (i.e. Boolean random events from the 
Lindenbaum algebra over a formalized theory <^, |->), denote by \S£\ the cardinal 
number of Sf. In fact, Sf is not precisely a set as we admit the possibility that some 
formulas are contained more than once in Sf (sometimes the term bag instead of .set 
is used in this case). Formally this situation can be described by defining Sf as a set 
of pair of the type <A, n>, A e S£, n being the arity of A in Sf. However, we think 
that the more intuitive sense of the following definitions and reasonings justifies 
our way of considering Sf to be immediately a subset of S£. Besides the demands 
Sf 4= 0, Ij^l < oo, we suppose, till the end of this paper, that 

{x :xeS£, x = A} n Sf = 0 , 

i.e. Sf does not contain a contradictory formula. On the other hand, a "global" 
inconsistency of Sf, i.e. the possibility that Sf \- A, is not excluded. 

De'finition 6. Let % be the mapping of the Cartesian product S£ x S£ x 9>fin(S£) 
into.the real line defined, for any A,BeS£, Sf e 0>fin(S£), as 

n(A\B,y)J^Xe^^X^AABM 
V ' \\{x:xeS", ! - x - » B } | | 

supposing the set {x:xeSf, Y-x -4 B) is not empty, n(AJB, Sf) is not defined 
otherwise. The real number %(A\B, Sf) is then called the numerical image of the 
Boolean conditional probability BP(A\B) with respect to Sf. The numerical values 
of the unconditioned Boolean probabilities are defined by setting B = V, im­
mediately follows, as Sf 4= 0, that these images are always defined. 

Theorem 7. For every A, B e S£, Sf <-. S£, if u(A\B, Sf) is defined, then 0 ^ 
^ n(A\B, Sf) <, 1. Let A,, A1,...,BeS£, Sf c $£, let there be at least one x e Sf 
such that Y-x -> B, let Y-At -> ~\Aj for any Lj = 1, 2, ..., i #= j . Then there exists 
an n such that 

n(\/Ai\B,$*)^f:n{A1\B,S'). 

•; t. . , . , : , i = i ; = i 

Proof. The first assertion follows immediately from the fact that 

\x : x e Sf, Y-x -» A A B} C {X : xe Sf, Y-x -• B} . 

Let Y-x -> Ah then Y-x -> 1AP hence, not Y-x -» A;. This gives that 
\x : x eSf, Y-x-> A;} n{x:xeSf, Y-x -> Aj] = 0 , i * j . 



14 &" is finite, so there is the maximal index n such that {x :xeSe, h-x -> A„} 4= 0. 

I—x —> A;, i :g n, implies h-x -> V ^i» hence, {x : x e S/', h-x -> (• V ^.) A B) D 
i = l i = l 

3 U {x : x e y , h-x -> (A; A B)}, ||{x : x e y , h-x -> ( V ^ ) A B}|| = f |{x : x e 
i = l i = l i = l 

e Se, h-x -> (A,- A B)}|| and the assumption {x : x e S", h-x -» B} 4= 0 gives im­
mediately the assertion. Q.E.D. 

The mapping n has the same properties as the so called inner measures sometimes 
studied in measure theory, see [2]. The super-aditivity of n can be replaced by the 
usual (T-aditivity when the meta-relation h- of provability is replaced by the intui-
tionistic provability (I) h-. 

Theorem 8. Let jr. be defined in the same way as h just with h- replaced by (I) h-, 
let the other condition of Theorem 7 be satisfied. Then, for the same n as in the 
assertion of Theorem 7, 

7t1(VA , . |B,y) = f n^AjB,*). 
i = l i = l 

ft 
Proof. The properties of intuitionistic provability give that (I) h-x -» ( V ^.) 

i= l 
implies that (I) h-x -» Aj for at least one j ^ k. The other conditions give, as in the 
proof of Theorem 7, that there is just one j ^ n with this property, so 

\\{x:xeSe, ( / ) h - x - ( \ M . ) A B } | | = 
i = l 

= I | | { x : x e ^ , ( / ) f - x - . ( A i A B ) } | | 
i = l 

which implies the assertion. Q.E.D. 

Let us mention some other properties of the mapping n, rather trivial but interest­
ing enough when compared with the classical probability. 

Theorem 9. (a) Let A, B, C e S£, Sf <= ££, \-A -> C, let {x : x e .9", h-x -> B} 4= 0, 
then 7t(A|B, $») = n(C\B, Sf), n(A\B, Sf) = 0, 7t(V|B, Sf) = 1. 

(b) Let A, B e JSP, ST -* S£, {x : x e Se, h-x -> B} 4= 0. If \-B -> A, then 
n(A\B,\Sf) = 1, if h-B -» ~\A, then 7t(A|B, ^ ) = 0. 

Proof. All the assertions follow from the definition of n after an easy calculation. 
Q.E.D. 

Hence, 7t(A|B, $") varies from 0 to 1 in the same way as the classical probability 
does and the paradoxon of classical implication does not influence the behaviour of n. 



Theorem 10. Let A, Be S£, Sf, 9", &>u Sf2,... c Se, 0 < \ST\, \9"\, \Srt\ < oo, 15 

let there exist, for any n, an x e U Sf {such that h-x -* B, let 5^ n Sf) = 0, / 4= j 
then, for n -* oo, , _ 1 

|7t(A|B, 5" u U ̂ j ) -- 7t(A|B, ^ ' u U ̂ f ) | - 0 . 
i = l i = l 

Proof. The assumptions assure, that for any n 3; n0 the values 7r(A|B, y u 

u U ̂ i ) , t(A |B, / u U ^f) are defined. Moreover, |{x : x e \J Sf {, \-x -» B}\\ -> 
; = i ; = i i = i 

-> oo, » —> oo. The fact that 

\K(A\B, ^ U U ^ , ) - 7t(A|B, 7 u U SP,)}\ < 
i = i i = i 

^ | { x : x e ^ u ^ , H x - > ( A A B ) } | >Q 

\\{x:xe\JSrt, Hx~»B}| | 
i = i 

implies the desired assertion. Q.E.D. 

Corollary. Let A e S£, Sf, 9", Sf x, Sf2,... c S£, 0 < \<f\, \<f'\, \y\ < oo 
Sfi n 6fj = 0, / 4= j , then, for n -* oo, 

|7t(A, ̂  U U « î) - <A , ^ U U ^ , ) | -> 0 . 
i = l i = l 

Proof. Set V s B in Theorem 10. Q.E.D. 

5. SOME DISCUSSION AND CONCLUSIVE REMARKS 

Having started from the idea of non-numerical-valued probability measure we 
have come back to the numerical-valued mapping n of the field of random events 
taking its values in the unit interval and similar, to a degree, with a classical proba­
bility measure on a finite probability space. However, the ontological level of n 
is different from that taken by a classical probability measure. Formally, the difference 
is expressed by the presence of the argument S" when defined. To illustrate this matter 
let us personify the set Sf of formulas by calling it as an observer, i.e. Sf describe 
the knowledge and experience of an observer who uses the theory <^ , 1- > in order 
to describe the environment in which he is situated and about which he wants to 
derive conclusions of stochastic character. The multiplied occurence of some formulas 
in Se expresses the multiple experience causing the result of this multiple experience 
to play more important role, i.e. to influence more significantly the values it(-, Sf), 
than an individual and never more repeated experience. 



16 Now, consider two observers 9,9", i.e. 9', 9' e '3?fin(S£). Having a Boolean 
random event A, its Boolean probability BP(A) is objective in the sense that it is 
common for 9 and 9" (up to logical equivalence) under the condition that 91 and 9" 
use the same theory <J%, f-> when describing the environment, in another words, 
if 9 and 9" "speak in the same language". On the other hand, the values %(A, 9) 
and Tt(A, 9') may differ, they are subjective, and the question "which of the values 
7t(A, 9), n(A, 9") is correct or which is better?" cannot be answered not because 
of some technical difficulties, but because this question has no sense in our way 
of understanding the probability theory. Only if I -A -> B for Boolean random 
events A, B and, at the same time, 7i(A, 9") > n(B, 9'), then 9 is justified, if speak­
ing in the same language as 9', to say to his colleague that he, i.e. 9", is wrong, 
that 9" has made an error and, moreover, 9 is able to prove to 9" this error and to 
persuade him about it. And again, if HA -* B and, say, 7r(A, 9) = 0-21, %(B, 9) = 
= 0-29, n(A, 9') = 0-12, 7i(B, 9') = 0-74, then both the images of the Boolean 
probabilities BP(A), BP(B) are to the same degree "true" or "false" and the question 
"which is better?" is not answerable as all such questions are beyond any sense. 

The probabilitistic approach to many problems of artificial intelligence is forced 
by the increasing descriptional and computational complexity of various problems 
the automated solution of which is the desired goal in automatic problem solving-
perhaps the key branch of artificial intelligence. Considering robotics as the principal 
applicational branch for automatic problem solving we can immediately see that 
"from the robot's point of view" Boolean probabilities are much more useful than the 
classical ones because of the two following reasons. 

First, at least at the present level of automatic problem solving, any robot "in­
telligent" enough to solve more difficult problems must be able to handle, at least 
partially, with formulas of an appropriate logical calculus and deducibility relation 
among them, as the most important problem solving methods are based on such 
a conversion (situation calculus). So the idea to use this apparatus and these robot's 
abilities also in order to take some statistically based decisions and to use some 
statistical estimation or testing methods is quite natural and justified. On the other 
hand, as,classical probabilities of random events are not immediately given by their 
formalized descriptions, the use of classical probability theory in automatic problem 
solving would request either to implement the necessary probability values im­
mediately or to implement some computing rules enabling to compute these values 
using some other data. In the case of Boolean probabilities the situation is much 
more simple, even if robot must replace some Boolean probabilities by their numerical 
images, e.g., being forced to compare some probabilities not comparable in the 
Boolean sense, such a calculation is an easy matter of a rather universal routine. 
Here we do not consider, of course, the difficulties arising from the possible 
large cardinality of the set 9 and from the fact that the deducibility relation 1— is, 
in general, undecidable. There are some possibilities how to make the handling 
with Boolean probabilities more effective, e.g., to replace 91 by some its represen-



tative subset (by a random sample, say)'or to replace I— by an effective immediate 

consequence relation and such modifications would be of great practical importance. 

However, these problems are still open and their more detailed investigation would 

bring us beyond the intended framework of this paper. 5 ; 

(Received April 18, 1977.) 
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