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KYBERNETIKA — VOLUME 33 (1997), NUMBER 5, PAGES 525~-546

ON THE STABILITY IN STOCHASTIC
PROGRAMMING: THE CASE OF INDIVIDUAL
PROBABILITY CONSTRAINTS!

VLASTA KANKOVA

Stochastic programming problems with individual probability constraints belong to a
class of optimization problems depending on a random element only through the corre-
sponding probability measure. Consequently, the probability measure can be treated as a
parameter in these problems.

The aim of the paper is to investigate the stability of the above mentioned problems
with respect to the distribution functions space. The main effort is directed to some special
situations in which stability investigation can be reduced (from the mathematical point of
view to one dimensional case. The Kolmogorov metric is employed to specify the stability
results and, moreover, the achieved stability results are applied to statistical estimates of
the optimal value and the optimal solution.

1. INTRODUCTION

There is not doubt that the stability problem (considered with respect to the prob-
ability measures space) is a serious problem of the stochastic programming theory.
Namely, any responsible application of empirical estimates, parameter estimates as
well as many approximate and numerical methods of solution are based on a pos-
sibility to replace the theoretical distribution function by some approximating one.
In the literature, a great attention has been already paid to the stability of the
stochastic optimization problems (see [1, 5, 7, 9, 13, 21, 22, 23, 24, 26]).

Let (2, S, P) be a probability space, £ = £(w) = [£1(w), &2(w), ..., &(w)] be an
I-dimensional random vector defined on (Q, S, P), F(z), Fi(z), z = (21,...,2),
1=1,2,...,1, z € E; be the joint and the marginal one-dimensional distribution
functions corresponding to the random vector £(w) and to the component &;(w),
4 =2Zr CE,2Zi=2Zp, C E1,i=1,...,1 denote the supports of the probability
measures Pp(-), Pr,(-) corresponding to the distribution functions F(z) and Fj(z;).

!The research was supported by the Grant Agency of the Czech Republic under Grants
402/93/0631 and 402/96/0420.
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Let, moreover, go(z, 2), fi(z), i=1,2,...,1 be real-valued, continuous functions
defined on E, x E; and E,, X C E, be a nonempty set. (E,, n > 1 denotes the
n—dimensional Euclidean space.)

An optimization problem with a random element, in the objective function and
on the right-hand side of the constraints only, can be introduced as the problem:

Find

min{go(z, {w)) |z € X : fi(z) < &(w), i1 =1,2,...,1}. (1)
If the solution z has to be determined without knowing the realization of the random
vector {(w), then mostly a deterministic optimization problem is solved instead of the
original one with a random element. The new problem can depend on the random
element only through the corresponding probability measure. We shall consider it
in the form:

Find
o(F, @) = inf{Epg(z, é(w)) |z € X : Pr, {w: fi(z) <&W)} > ai, i =1,...1}, (2)

where g(z, z) is a real-valued, continuous function defined on E, x Fi, a; € (0,1), i =
1,2,...,1 are parameters. Ep denotes the operator of mathematical expectation cor-
responding to F(-).

In the literature, this type of the deterministic optimization problems has been
investigated many times (see e.g. [4, 10, 20]). The distribution function F(-) can
be considered as a parameter of the problem (2) and, consequently, it is reasonable
to investigate the stability with respect to it. In the general case, it can mean to
determine for a § > 0 a subset F(F, é) of the [-dimensional distribution functions
space and real-valued functions m;(8), m2(6) defined on E; (having the “suitable”
properties) such that

GeF(F, 6) = |pG, a)=p(F, a)
GeF(F, 6 = |G a)—z(F a)l*<

my(8),
z(F, o) =argmin{Erg(z, (W) | 2 € X : Pr{w: fi(z) <&w)} > ai,1=1,...0}

(Il - || denotes the Euclidean norm in E,.)
Of course, the second implication in (3) can be considered only if there exists
unique z(F, ) fulfilling the last equation in the relations (3).

s @), - 3)

The aim of the paper is to deal with special cases in which the stability problem
can be reduced (from the mathematical point of view) to the one~dimensional case.
In particular, the aim of the paper is to introduce several special cases in which it
is possible to determine subsets F;(F;, é;), 6; > 0,i=1, 2,...,1 of one-dimensional
distribution functions space and real-valued functlons ml( ) mg(é) defined on E;
(having “suitable” properties) such that

Gie Fi(Fy, &), 1=12,...,1 = |p(G a)—p(F a)|<m m1 (6 6), (4)
G Efi(Fi,ts,'), i=1,2,...,0 = H(L‘(G, a)—:c(F, O)Hz (5)
Gi(-),7=1,...,1 denote the marginal one-dimensional distribution functions cor-

responding to the /-dimensional distribution function G(-), § = (61, &2, ..., &).

&
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Furthermore, the Kolmogorov metric will be employed to specify the stability re-
sults. The new results (in this direction) will be applied to the statistical estimates
of the optimal value and the optimal solution.

2. PROBLEM ANALYSIS

If we define the sets Xr,(a;), Xr(a), a; € (0,1),i=1,...,, a =(a1,...,a) by

Xr, (a,-) = {1) € X : Pp, {w : f,‘(.’L‘) < E,(w)} > a,-}, (5)
Xr(@) = []Xr(a), : ' (6)

then we can rewrite the problem (2) as the problem:
Find
e(F, ) = inf{Epg(z, {(w)) |z € Xp(a)}. (M)

If G(*) is an arbitrary [~dimensional distribution function, then according to the
triangular inequality we obtain that

lo(F, @) = (G, a)| <

o 900 6= s )

(8)

e U ‘
+ | nf Ecg(z, £(w)) xe;&f(a) Egg(z, £(w))

Consequently, to investigate the stability of the problem (2) it is appropriate to
investigate the stability of the following problems (see also e. g. [14, 16]):

Find

Xipn(fa)go(r) with  go(z) = Egg(z, {(w)). (9)
Find ‘
1)r(1lf Erg(z, {(w)) with X' = Xp(a). ' (10)

It is easy to see that the stability of the problem (9) depends on the properties of
the function go(z) and on the “distance between the values” of the multifunctions
Xr(a) and Xg(a). Consequently, it seems to be reasonable to investigate

AlXp(a), Xa(a)],

where A[-,-] = A,[,] denotes the Hausdorff distance in the space of nonempty,
closed subsets of E, (for the definition see e.g. [25]). To this end we define the
multifunctions

Ki(zi)={e€ X :filz) <z}, zm€k, i=12..1 (11)
and the quantiles

k'Fl(ai):sup{zi :PF‘{UJ:Zz' S&(w)} Zai}, aiE(O, 1),221,,1 (12)
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Since it 1s easy to see that fori =1, 2,...,1,

z € Xp,(a;) < z € X and simultaneously Pp{w : fi(z) < &i(w)} 2‘ o
<=z € X andsimultaneously fi(z) < kp,(a;),

we can obtain that
Xp (@) = Kilkr, (i), @ €(0,1),i=1,2,...,L (13)

If, furthermore, we define K(z), 2z = (21, 22,...,21) by the relation

K(z) = [ Kiz), .. (14)

then
Xr (a) = K(kp(@)), where kp(a)=(kr, (1), kp,(2), ... k5(ar).  (15)

According to the relation (15) it is easy to see that to investigate the stability of
the problem (9) it is suitable to investigate the behaviour of the multifunction £(-).
Furthermore, it is easy to see that the assumptions under which

A[K(2),K(2")] < C||z—2'|| in a neighbourhood of the point kp(a)

(together with the relation (15), the triangular inequality and additional assump-
tions) imply that

i
AlXF(a), Xg(a)] €Y Clkr(o) — ke, (o). (16)

i=1

In general, to investigate the stability of the problem (10) it is necessary to
find F(F, §) and the functions m;(8), m2(6), 6 > 0 fulfilling the relations (3). In
this paper we shall try to introduce some special cases for which there exist also
Fi(Fy, 8),6: > 0,1 =1,2,...,1, 7 (6), m2(8), § = (81, b2,...,68) fulfilling the
relations of the type (4).

3. STABILITY RESULTS .

Before presenting the first assertions we introduce several systems of the assump-
tions. Let Z; C Ey1, =1, 2,...1 be nonempty, convex sets, Z:H::1 Zi; Z(g), e>0
denote the e-neighbourhood of the set Z.

1.1 there exists € > 0 such that

a) fi(z),i=1,2,...,1 are linear functions, X = Ey;
without loss of generality, we can consider in this case the constraints in (1)
to be in the form of equations,

b) for every z € Z(¢), K(z) is a nonempty, compact set,



On the Stability in Stochastic Programming ‘ 529

¢) if the matrix A of the type (I x n), [ < n fulfils for z € Z(¢) the relation
K(z)={zeX: Az = 2}

then all its submatrices of the type (I x 1), A(1), A(2),..., A(m) are nonsin-
gular,

1.2 there exists € > 0 such that
a) X is a convex, compact set,
b) fi(z),i=1,2,...,1 are convex functions on X,

c) for every z € Z(€), K(z) is a nonempty set.

1.3 there exist real-valued constants dj, v, € > 0 such that

a) ifr € X, z=(z1,...,21), 2 € Z(€) fulfil the relations f;(z) < 2z, i=1,2,...,1
and simultaneously fj(z) = z; for at least one j € {1, 2,...,1}, then there
exists a vector z(0) € Ey, (generally depending on z) such that

lz(@ll =1, z+dz(0)€ X, fi(z)~ fi(z+dz(0)) > 72d
forevery d € (0,d1),i=1,2,...,1,
b) for every z € Z(¢), K(2) is a nonempty, compact set.

The introduced systems of the assumptions i.1, 1.2 cover both linear and convex
functions on the left-hand side of the constraints in (1). These special cases were
investigated in the literature many times (mostly in a connection with parametric
linear or quadratic programming, see e. g. [2]). They appear also in the connection
with the stochastic programming problems (see e.g. [17]). To justify the system of
the assumptions 1.3 (in more details) we introduce a simple example. Let n = 2,

=2, X =(1.5,4) x (1.5, 4) and, moreover,
fi(z) = ziza,  fa(z) =log(zy +22), = (21, z2).

It is easy to see that (in this case) the system i.3 is fulfilled, while the systems of
the assumptions i.1 and i.2 are not fulfilled.

To introduce assertions concerning stability results we define the constant C by
the following relations.

C = min(Cy, Cs, Cs), (17)
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where
Cy = lmax|a;r(s)] if the system of the assumptions i.1 is fulfilled,
Bne air(s), i, r=1,2,... lfor s € {1,2,...,m}
denote elements of the inverse matrix to A(s),
= 400 otherwise,
M, . . e
Cy, = — if the system of the assumptions 1.2 is fulfilled,
€o 0 €(0,€), My =sup,1 z2¢x ||zt — 2],
= 400 otherwise,
1
Cs = — if the system of the assumptions 1.3 is fulfilled,
72
= 4o otherwise.

(In (17) we calculate min(c, ¢, +00) = min(c, ¢’), min(c, +00, +00) = ¢ for every
c, c € El)
If we consider a special case of the function g(z, z) when

Al a)g(e,2) =7(z), =€ E,, z € F;, where §(z) is a real-valued, Lipschitz

function on X with the Lipschitz constant f/, *

then we can already introduce the first assertion.

Proposition 1. Let a; € (0, 1),7=1,2,...,L. If

1. the assumption A.la is fulfilled,

2. G(z) is an arbitrary {-dimensional distribution function,

3. Z; = (min(kr,(a;), kg, (), max(kr,(a:), kg, (@), i=1,2,...,1,

4. at least one of the systems of the assumptions 1.1, 1.2, 1.3 is fulfilled,
then )

-
lp(F,a) = (G, 0)| < CL"Y_ |kp,(ai) — kg, (i),

, i=1
Proof. First, by a little modification of Lemma 1 [18] (see also [2]) we can
obtain that

A[K(2(1)), K(2(2))] < C||z(1)~2(2)|| for every z(1), 2(2) € Z(¢) and some € > 0,

whenever the assumption 4 is fulfilled. The assertion of Proposition 1 follows from
the last inequality, the relation (15), the triangular inequality and the fact that
(under the assumptions) Xp(a), Xg(@) are nonempty, compact sets. 0O

It follows from Proposition 1 that a dependence of the changes of the optimal
value (in the case A.l) on the perturbations of the underlying probability measure
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can be estimated (of course, under some additional assumptions) by the distance of
the corresponding one-dimensional quantiles.

To introduce the next assertion we define for 6 > 0, i = 1,...,] the one-
dimensional distribution functions F; 4.(zi), Fi, s,(zi) by the relations

Ez’éi(zi):Fi(zi_éi)y Fz §; (Z;)-—- (Zz+6), z; € By (18)
We introduce the following assumptions.

ii. X is a convex set and, moreover, fi(z),7i =1, 2,...,! are quasi convex func-
tions on X,

A1 D) g(z) is a strongly convex function on X with the parameter p > 0 (for
the definition of strongly convex functions see e.g. [19, 28]). '

The assumptions A.1b, ii. guarantee just unique z(F, «) fulfilling the last equation
in the relations (3). In [11] the assumption on strongly convex property is replaced
by a little more general assumption on uniformly convex property. These both
assumptions give possibility to employ the results on the stability of the optimal
value (by a rather simple manner) to the investigation of the stability of the optimal
soluticn. The investigation of the optimal solution set is (generally in optimization
problems) rather more complicated (see e.g. [2, 23]). ‘

Proposition 2. Let fori=1,2,...,1, 6 >0, o; € (0, 1) be given, Z; = (kr,(a;)
—26;, ]Cp'.(a,‘) + 26i)~ If

1. the assumption A.la is fulfilled,

2. at least one of the systems of the assumptions 1.1, 1.2, 1.3 is fulfilled,

3. G(z) 1s an arbitrary I-dimensional distribution function such that for i €

{1,2,...,1}
Gi(zi) € (F; 5,(2i), Fi5.(z)), 2 € (kp,(ai) = 6 — €, kp, (i) + 6 + ),
then i
lp(F,a) — p(G, )| <T'CY 6. (19)
i=1

If, moreover,

4. the assumpticns A.1b and ii. are fulfilled,

then also
12 '
lz(F, a) — z(G, o)||* < —-f'cz¢s ‘ (20)
The proof of Proposition 2 is given in the Appendix.

To consider another special case of the function g(z, z),let 6§ >0,:=1,2,...,1
We introduce the new system of assumptions.
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1
A2 a)g(z,2)=> gi(z, z), € E,, z=(21, 22,...,2) € Ey, where
=1
gi(z, z),1=1, 2,...,1 are real-valued functions defined on E, x Fi,

b) forevery z € X, gi(z, 2;), i = 1, 2, ..., are Lipschitz functions on Zp,(6;)
with the Lipschitz constants L; not depending on z € X,

c) for every z; € Zp,(6:), gi(z, z;),i =1, 2,...,1 are Lipschitz functions on
X with the Lipschitz constants L} not depending on z; € Zp,(6;),

d) for every z € X, i € {1, 2,...,1} there exists a finite EF,g;(z, &(w)),

e) for every z; € Zp,(8;),1 € {1,2,...,1}, gi(z, z) is a convex function on
E,, and simultaneously there exists j € {1, 2,...,1} such that g;(z, 2;) is
a strongly convex function on E, with a parameter p > 0.

Proposition 3. Letfori=1,2,...,[,6 >0, a; € (0, 1) be given, Z; = (kp, (o)~
26;, kp, (o) + 26;). If

1. the assumptions A.2a, A.2b, A.2c and A.2d are fulfilled,
2. at least one of the systems of the assumptions 1.1, 1.2, 1.3 is fulfilled,

3. G(z) is an arbitrary [-dimensional distribution function such that

Gi(z:) € (F; 5,(2:), Fi 5,(2:)) forevery zy € Ey,i=1,2,...,,
then

1} i
lp(F,e) = (G, )| < D> |Li+C Y Lj| 6. (21)
i=1 i=1

If, moreover,

4. the assumptions A.2e and ii. are fulfilled,
then also

.

1 l
12
llz(F, @) — z(G, o)||* < ?Z Li+CY Lj| 6. (22)
j=1

i=1

The proof of Proposition 3 is given in the Appendix.

To deal with the last special case, let &; > 0,7 = 1, 2,...,]. We introduce the
following system of assumptions.

A.3 a) the components of the random vector {(w) = (£1(w), €2(w), . .., &1(w)) are
stochastically independent,
b) for every z € X, § = maxé;, g(z, z) is a Lipschitz function on Zp(6) with
k3
the Lipschitz constant L not depending on z € X,

c) forevery z € Zp(6), g(x, 2) is a Lipschitz function on X with the Lipschitz
constant L’ not depending on z € Zr($),

d) for every = € X there exists a finite Erg(z, £(w)),

e) for every z € Zp, g(x, z) is a strongly convex function on E, with a
parameter p > 0.



On the Stability in Stochastic Programming _ 533

Proposition 4. Letfori=1,2,...,1, 6 >0, o; € (0, 1) be given, Z; = (kr,(c:)
—26;, k'pl(a;) + 251‘). If

1. the assumptions A.3a, A.3b, A.3c and A.3d are fulfilied,

2. at least one of the systems of assumptions i.1, 1.2, 1.3 is fulfilled,

3. G(z) is an arbitrary {-dimensional distribution function such that

G,‘(Z,’) c <E2~15‘(Z,'), —Fiya'(zi» for every z; € El, i = 1, 2, . ..,1,

and simultaneously
!

G(z) = HGi(Zi), z=(z1, 22,...,21),

) i=1
then 1
lp(F,a) — o(G,a)| <[IL+C L' Z (23)

If, moreover,

4. the assumptions 1. and A.3e are fulfilled,

then also

I .
lz(F, @) — (G, a)|j* < 13 [[L+CL Z 8. (24)

The proof of Proposition 4 is given in the Appendix.

4. KOLMOGOROV METRIC AND STABILITY

In the sequel we employ the Kolmogorov metric to specify the stability results. To
this end let a; € (0, 1), 6; > 0, ¢ =1,...,1. We define the intervals Z;(a;, é;) by the

relations

Zi(ag, 6) = <max( ki(a;) — 26;) ,min (Z}, ki(eq) +26;)), (25)

z) = sup{z : Fi(z;) = 0}, 7} = inf{z : Fi(z) =1}
(where we calculate max( z,) =2 if 7 = —c0, z; € EI, min('z'}, zi) = z if
7l =400,z €E,i=1,2,...,1) and, moreover, we introduce the following system

of the assumptions.

B.1 a) fori=1,2,...,! the probability measures Pp,(-) are absolutely continu-
ous with respect to the Lebesgue measure in Fjy,

b) fori =1, 2,...,l and an ¢ > 0 there exist constants ¥; > 0 such that
hi(z;) > 9; for every z; € Zi(a;, b + €),
¢) for i=1,2,...,1 there exist a;, b; € E1, a; < bj, 9; > 0 such that
Zp, = (a3, b)), hi(z;) >V; forevery z; € Zp,.

(hi(z;) denotes the probability density corresponding to Fy(z),i=1,2,...,1.)
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Lemma 1. Let fori=1,2,...,1, a; € (0, 1), § > 0 be arbitrary. Let, moreover,
G(z) be an arbitrary {-dimensional distribution function. If

1. B.la and B.1b are fulfilled, then for every i = {1, 2,...,1}
|Fi(zi) — Gi(zi)| < 695, 2z € Zi(ai, 6 +¢) and simultaneously either
Zg, C ZF,((S,') or Fg‘(kp,(ozi) - 6; — 6) > 0, Fg‘.(lcpl(a,-) +6; + E) <l=
== Gi(zi) € (F; 95,(2i), Fi25.(2:)), 2 € (kp, () — & — €, kp, (i) + 6 +¢€),

2. B.1a and B.1c are fulfilled, then for every i = {1, 2,...,1}

|Fi(2i) — Gi(zi)| £ 695, 2z € Zp,, Zg, C Zp,(6;) =
= Gi(zi) € (F; 45,(2i), Fi 25.(2)), z € Ey.

Proof. First we consider the case 1. Let 1€ {1, 2,...,1}, z; € (kp,(o;) — & — &,
kp,(e;) + 6; +€) be arbitrary. Two cases can happen.

a) z € (F) +6;, 7} = &),
b) z & (20 + 6, Z} - &;).
If the case a) happens, then since (in this case)
Fi(zi = 8;) < Fi(zi) = 9:6; < Fi(2:) < Fi(zi) + 956 < Fi(z + 6;)

and simultaneously
|Fi(zi) — Gi(2)] < 9:6;

we can see that Gi(z;) € (I; 5,(2i), Fi 6,(2:)) in the case a).

If the case b) happens, then either Fi(z; — 6;) = 0 or Fy(z; + 6;) = 1. Without
loss of generality we can consider only the case Fi(z; — é;) = 0. However, then for
2l € (z0 — 6;, 70 + 6;) we can see that
0= F,(Z{ — 5,') < Fi(z:-) < Fi(ZZ/- + 5,‘) +3;6; < Fi(zz{ + 2(5{), IFZ'(Z{) - Gl(z:)| < ¥;6;

K3

and simultaneously
Gi(zi —28) =0, Gi(z}) <¥ibi, 20:6 < Fi(3] +26).

Consequently, we can see that also in this case Gi(z;) € (E; 5,(zi), Fi, s5,(z1)).

i

The proof of the Assertion 2 is very similar and consequently it can be omitted.
O
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Theorem 1. Let fori=1,2,...,], o; € (0, 1), 6; > 0 be arbitrary, Z; = (kp, ()
—26;, kp..(ai) —+ 25,‘). If

1. the assumptions B.1a and B.1b are fulfilled,

2. G(z) is an arbitrary [-dimensional distribution function such that for z €
Zi(ei, 6 +€), | Fi(z:) — Gi(z:)| < 6;9; and simultaneously either Zg, C ZF;(6])
or F,'(kpl(ai)—é;—é') > 0, Fi(kp,(a;)+8i+¢) < 1, 6 = 19% SUP 3;(a,, 6:+¢) ]F,(Z,)
—-G,‘(Z,’)l, 1= 1, 2, .. ,,l,

3. the assumptions A.la is fulfilled,
4. at least one of th‘e systems of the assumptions i.1, 1.2, 1.3 is fulfilled,
then

sup IF,'(Z{) - Gi(Zi)I- (26)

I

1

—_ < / —
[P(F0) = p(G, ) S 2CY 5
1=1 x(aly6x+5)

If, moreover,
5. the assumptions A.1b, and ii. are fulfilled
then also
N7 S |
le(F, @) = 2(G, )P < —L'CY = sup  |Fi(z)=Gi(z)l.  (27)
P — J; 5
i=1 Zi(ay, bi+¢)

Proof. To verify the assertion of Theorem 1 we employ Lemma 1 and we
substitute 6; =: 26, ¢ € {1,...,!{} in Proposition 2. a

The assumption 2 of Theorem 1 can seem rather badly understandable. However
this complicated form gives possibility to include the cases when G(-) is “closed” to
F(-) only in a neighbourhood of the point kr(c).

Theorem 2. Let fori=1,2,...,1, a; € (0, 1), & > 0 be arbitrary, Z; = (kr, ()
—26;, k‘p‘.(ai) + 251) If

1. the assumptions B.1a and B.1c are fulfilled,

2. G(z) is an arbitrary {~dimensional distribution function such that

6;9; > sup{]Fi(zi) — Gi(zi)| Lz € Zp‘}, 1=1, 2,,..,1,

and simultaneously

Ze. C Zn. (sup |Fi(z;) — Gi(Zi)I) i=l2. 1

9,

3. the assumptions A.2a, A.2b, A.2¢c, A.2d are fulfilled,

4. at least one of the systems of the assumptions i.1, 1.2, 1.3 is fulfilled,
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then

sup |Fi(z) — Gi(zi)l‘

19,'

! )
lo(F ) = ¢(G, ) <23 | L+ Y 1 (28)
i=1 j=1
If, moreover,
5. the assumptions A.2e and ii. are fulfilled,
then also

i 1 '
”J)(F, a) _ SL‘(G, a)llz < %Z[Li + CZLHSUP IFi(Zigi_ Gz(Zz)l (29)

=1 j=1

Proof. To verify the assertion of Theorem 2 we employ Lemma 1 and we
substitute 8; =: QM‘—;,ﬂiﬂ, 1 €{1,...,{} in Proposition 3. i o

Theorem 3. Letfori=1,2,...,], & € (0, 1), & > 0 be arbitrary, Z; = (kp,(a;)
—26;, k'p,.(oz,-) +261) If

1. the assumptions B.la and B.1c are fulfilled,
2. G(z) is an arbitrary /~dimensional distribution function such that

6;0; > sup{|Fi(zi) - G,(Z,)l Lz € Zpl}, 1=1,2,...,1,

Ze. C 7n, <SuplFi(Zig.“ Gi(Zi)I) i=l2. 1

and simultaneously

I .
G(2) =[] Gi(z), z2=(2,22,...,2),
i=1

3. the assumptions A.3a, A.3b, A.3c and A.3d are fulfilled,
4. at least one of the systems of the assumptions i.1, 1.2, 1.3 is fulfilled,

then 1
lo(F,a) — p(G,a)| < 21 L+ CL]Y 2P |Fi(z:) = Gizi)|

30
' 5, (30)
=1
If, moreover,
5. the assumptions A.3e and (ii.) are fulfilled
then also
.7 1
Fi(zi) — Gi(z
le(F, @) - 2(G, P s gz +opyy) MRIBEZGEL )

i=1

Proof. To verify the assertion of Theorem 3 we employ Lemma 1 and we
substitute é; =: Mz—é_tg'—gﬁﬂ, i€ {1,...,1} in Proposition 4. o
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5. APPLICATION TO ESTIMATES

If statistical estimates replace the theoretical distribution functions F; (zz) i=1,...
.., 1, then it is possible to employ the assertions of Theorems 1, 2 and 3 to investigate
the properties of the corresponding estimates of the optimal value and the optimal
solution. Evidently, if the case A.1 happens, then the behaviour of these estimates
iollows from the behaviour of the estimates of the quantiles (see e.g. [6])
To investigate the cases A.2 and A.3 let {€F(W)}_,i = 1,2,..
quences of random values defined on (2, S, P) such that for every £ = ..., -1, 0,
1,...the random value £f (w) has the same distribution function as the random value
&i(w). Fori=1,2,...,l, N; = 1,... we denote by the symbol FiN‘(zi) = FiN"(zi,w),
z; € Ey an arbitrary statistical estimate of Fj(z;) determined by {¢F (w)}i\';l and by
the symbol FN(2), 2 E E; an arbitrary joint [-dimensional distribution function cor-
responding to the F “(zi),1=1, 2,...,l. Evidently, under quite general condmons
the theoretical values o(F, «), :c(F a) can be estimated by the values

., 1 be se-

SO(FN) a) = X:TI\IJ‘EO() Ep-ﬁg(l‘) E(w)):
2(FN,a) = argmin{E zg(z, EW))| 2 € X m(e)},
where

l
:mXFN‘(a,’), N—:(Nl,...,NI).

i=1

Theorem 4. Let for : = 1,2,...,!
(kp‘(ai) — 26;, ICF_(ai) + 26i). If

1. either the assumptions 1, 3 and 4 of Theorem 2 or Theorem 3 are fulfilled
2. forie{1,2,...,1},

e . N
P {w : ZFN, C ZF‘ (Sup ‘Fz(zz)ﬂ F (Zz)\)} — N, oo 1
* i

and simultaneously for every t > 0and a v > 0

a; € (0,1), & > 0 be arbitrary, Z; =

P{w s (M) sup [Fi(z) = BV (20)] > 1) —nimoo 0,
then for every ¢t > 0

Plo (min;) |o(F,a) = o(FY, )] > t} s mmin (¥, )—c 0. (32)
If moreover

3. the corresponding assumption 5 of Theorem 2 or 3 is fulfilled
then also for every t > 0

P {w : (miin N;y) ||z (F, a) - x(Fﬁ, a)||? > t} — min(N,)—o0 0. (33)
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Proof. Let, first, the corresponding assumptions of Theorem 2 be fulfilled. It
follows from the assumptions and from the elementary properties of the probability
measure that (in this case) for every ¢t > 0

P{ :(mmN |<p(F,a)—<€(Fﬁ,a)|>t}

! 1
_P{w:QZ(Ni)" [Li'*'CZL;':lSUP ; (2) Fi(2:)l }
i=1 j=1

N, " o
+P {w : ZFN,- ¢ Zr, (SUPIF"(ZZ;*F‘ (z')f‘) for at least one 7 € {1, .. -,l}}

1

+P{w:sup|F(z,) FN(z)] > 0.6 foratleastoneié{1,2,~--,l}}

*5F {w (V) sup [ () = Fi(=)] > T—Fz‘—T}

Nl .
+P {w cZon & Zp, (suP’F‘(z‘giF‘ (Z')‘> for at least one i € {1, .. -,l}}

+P {w :sup | Fi(zi) — FiN'(zi)I > 9;6; for at least one i € {1,2,..., 1}} .
(34)
The first assertion (the relation (32)) of Theorem 4 follows (under the assumptions
corresponding to Theorem 2) from the last system ! the inequalities and from the
assumptions. If the corresponding assumptions of Theorem 3 are fulfilled, then
replacing (in the last relations) the constants L; + CE Ly, i=1,2,..., 1 by the
constant | I + C L’ we can obtain

P {w : (m‘in Ni)y lp(F, ) — o(FN, a)| > t}

] __tv;
< Z: P{w : Y sup |FN (21) = Fi(=z:)| > ZI[ILtiCL’]}

2 —pNi z 4 .
+P {w : ZFN, ¢ Zr, (SUP“'('Z‘Q F ‘)l) for at least one 1 € {1,--~,l}}

> 9,8; for at least one i € {1, 2,...,1}}.
(35)
Evidently, the assertion (32) (under the corresponding assumptions of Theorem 3)
follows from the last inequality. N
Replacing, furthermore in the relations (34), (35) (min; N;)”|o(F, @) — o(FN, o)
by (min; N;)*||z(F, @) — (F~, a)||* and employing the corresponding results of
Theorem 2 and Theorem 3 we obtain (by the same technique) the validity of the
relation (33). u

+P{ Filzi) — FN(z)

Theorem 4 deals with arbitrary statistical estimates FiN'('), N;=1,2,... of the
one-dimensional marginal distribution functions F(),i=12..., [. Furthermore
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we focus our attention on the case when FiN‘(-), N; = 1, 2,... are empirical distri-
bution functions.

The investigation of the convergence rate of empirical estimates was started by the
papers {12, 29] in the case of recourse problems and independent random samples.
The first result was directed to the optimal value estimates. Satisfactory results
(on the estimates of the optimal solution) are due to [30]. The original results were
furthermore generalized in [11, 14] and [24]. The article [27] deals with the case of
complete integer recourse. The results concerning some types of weakly dependent
random samples are presented in [16]. In this paper we continue in this last direction.
To this end, first, we recall some types of weakly dependent random sequences {3, 31].

Let {¢¥(w) :ZOO_OO, ¥w)=C¢* k=...,-1,0,1,... be a one-dimensional sta-
tionary random sequence defined on (2, S, P), B(—o0, a) be the o-algebra given by
., ¢ ¢, B(b, +00) given by ¢°, ¢**1, ... B(a, b) given by ¢%,..., (% a< b, a, b

integer. Let, furthermore, B™, m > 1 be the Borel o-algebra of the subsets of E,,.

Definition 1. {¢¥(w)}}2° _ is an m~dependent random sequence (m > 2) if there

k=—o00
exists a sequence of independent random values {n*(w)}}>°  defined on (©2, S, P)
and a B™ measurable function f(-) defined on E,, such that
CFw) = fFF ™ (w),...,nf(w)) forevery k=...,—1,0,1,....

Deiinition 2. Let {¢¥(w)}{2% ., be a strongly stationary random sequence. We

say that {¢¥(w)}[=° . is an absolutely regular random sequence with S(N) if

B(N)=sup  sup |P(A] B(~00, k)) ~ P(A)] | 0 (N — o0).
K A€B(N+k,+00)

Definition 3. We say that strongly stationary random sequence {¢*(w) }:;o_oo

fulfils the condition of ®-mixing if there exists a real-valued function ®(-) defined
on the set of natural numbers A such that

|P(B1N Bz) = P(B1)P(B2))| < ®(N)P(By),
By € B(—o00, u), By € B(u+ N, ), —00 < u < 400, N > 1, uan integer.
To recall some auxiliary assertions, let F¢(-) denote the distribution function

of {(w), F$N(-) an empirical distribution function determined by {¢¥(w)}i-, and
Epc, Epc.~ the corresponding operators of the mathematical expectation.

k=-00
sequence, m > 2. If k(z) is a B! measurable function defined on E; such that

|e(z)] < M (M > 0) for z € Eq, then it holds for t > 0, ¢t € E, that
PAw: [Epena(((w)) — Epcr(C(w))] > t}
< 2rexp{—m2Nk2W ﬁ;—z} + 2(m — r)exp {~mN—;2—}W—2},

where N, k, r are natural numbers such that N = mk +r, r € {0, 1,...,m — 1}.

Lemma 2. ([16] Lemma 2.2.) Let {¢*(w)}{2° . be an m-dependent random
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Lemma 3. ([16] Lemma 2.4.) Let {¢¥(w)}}<° . be an absolutely regular random
sequence with B(N). If k(z) is a B! measurable function defined on E; such that
l«(2)] < M (M > 0) for z € Ey, then it holds for every v < N, v a natural number,
t>0,t€E, N=1,2,...that N .

P{w:|Epc, ve(((w)) — Epuc((f(w))l >t} < 2vexp{ > No1T 0 }+4Nﬂ(v)

Lemma 4. ([16] Lemma 2.6.) Let x(z), z € F; be a B! measurable function
defined on E) such that |k(z)] < M (M > 0) for z € E;. If {¢Fw)}}2  isa
random sequence fulfilling the ®-mixing condition, then it holds for t € Ey, ¢ > 0,
N =1,2,... that
9 Af? N-1
Pl [Epe on(c(o) - Erer(C] > 0 S [N+ S - k)@(k)] .

k=1

Employing the assertions of Lemmas 2, 3 and 4 and the properties of the one-
dimensional distribution functions we can obtain the following auxiliary assertion.

Lemma 5. Let ¢ > 0 be arbitrary. If the probability measure () is absolutely
continuous with respect to the Lebesgue measure in E; and if {¢¥(w)}}2° _ is

1. an m-dependent random sequence, m > 2, then
P{w :sup |FON(2) — FS(2)| > t}

2 - 2
< ¢ {2rexp {— o e ) + 20m — ) exp{- % e} |
where N, k,r are natural numbers such that N = mk+r, » € {0,1,...,m—1},

2. an absolutely regular random sequence with B(N), then for every v < N, v, N
natural numbers it holds that

P{w :sup |[FON(2) — FS(2)| > t}
< %{2vexp {_T'N—ﬂsz 18M2}+4Nﬁ )}

3. arandom sequence fulfilling the ®—mixing condition, then for every N natural
number it holds that

36M?

1BN2

N + Z(N‘—Ic )]

Theorem 5. Let fori=1,2,...,1 a; € (0, 1), 6 > 0 be given, Z; = (kp,(o;) —
265, /CF,((X,‘) + 2(51‘). If
1. either the assumptions 1, 3 and 4 of Theorem 2 or Theorem 3 are fulfilled,

2. at least one of the following assumptions is fulfilled (simultaneously) for every
ie{l,2,...,1}

Plw:isup |[FON(2) — FS(z)| > t} <
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a) {€¥(w)}{S] is a sequence of independent random vectors, 0 < ¥ < 3
b) {€F(w)}f> . is an m-dependent random sequence m > 2,0 <v < 3,

¢) {€F(w)}{Z . is an absolutely regular random sequence with B(NV:),
0 << 352, 4(N) ™ BIN]] =N, oo 0 for a v € (0, 1),

d) {€F(w)}}> . is a d-mixing random sequence such that

Ni-1
. 1 ¢ 1
limsup A I; (N; = k)P(k) < +o0, O<wv< 3
3. FNi(z;),i=1,...,1 is one-dimensional empirical distribution function deter-
mined by {E}“((.u)}kN;1
then for every ¢t > 0 .
p {w - (min N;) |o(F, o) — p(FY, a)| > t} —min(N;)—o0 0 (36)

If moreover the corresponding assumption 5 of Theorem 2 or 3 is fulfilled, then also
for every t > 0

P{w: (min No)*|J2(F, @) = o(FY, @)l* > t} —minviy0 0 (37)

(z] =k iff k <z < k+1, k integer.)

Proof. The proof of Theorem 5 follows from Theorem 2 {8], Theorem 4 and
Lemma 5. o

6. CONCLUSION

In the paper the stability of the stochastic programming problems with the indi-
vidual probability constraints was investigated. In particular the main attention
was focused on the special cases in which the regions F(F, ) (fulfilling the re-
lation (3)) can be replaced by several subsets (fulfilling the relation (4)) of the
one—dimensional marginal distribution functions space. Employing the Kolmogorov
metric the achieved results were applied to the empirical estimates of the optimal
value and the optimal solution for some types of weakly dependent random samples.

APPENDIX

The aim of this section is to prove Propositions 2,3 and 4.

Lemma A.1. Let §; >0, a; € (0, 1), € > 0 be arbitrary. If G1(z1) is an arbitrary
one—dimensional distribution function such that

Gi(21) € (Fy 5,(21), F1,5,(21)) for z1 € (kp(c1) — 61 — €, kp,(a1) + 6 +e),
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then
lkr, (01) — kg, (a1)[ < 6.
Proof. Since it follows from the assumptions that
Gikr,(o1) — 61 — €') < Fi(kp, (1)) < Gr(kp (a1) + 61 +€)

for every ¢’ > 0, we can see that the assertion of Lemma A.1 holds. : O

For a better imagination we present a simple picture.

1 Fi(z1)
1—-0:1'
. ; " : : i j ; 21
0 \,_/T kpy(on)—61 i i
5 1 kr (o)
kF‘l (ay)+6,

We recall one well-known assertion that deals with the relationship between the
optimal value and the optimal solution. .

Lemma A.2. ([19] pp. 54.) Let K C E, be a nonempty, convex set. Further,
let h(z) be a strongly convex with a parameter p > 0, continuous function on K. If

zg is defined by the relation

T = arg xrréllg h(z),

then )
|z — zo||* < =|h(z) — h(zxo)| for every z € K.
P

Proof of Proposition 2. Since it follows from the relations (15), (16), Lem-
ma 1 [18] and Lemma A.1l that
!
AlXp(a), Xe(a)] S C Y6,
i=1

we can (according to the assumption 1) see that the relation (19) holds. Consequent-
ly, it remains to prove the second part of the assertion (relation (20)). To this end,
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first, it holds from the assumptions 2, 4 of Proposition 2 that X’ = H2=1 Ki(kr, (o) +
8;) 1s a nonempty, compact, convex subset of E,. Consequently, according to the
assumption 4 of Proposition 2 there exists unique z(X') = arg min{g(z)|z € X'}. It
follows, successively, from the properties of the Euclidean norm that

lz(F, &) = 2(G, &)|I* = ||z(F, @) — 2(X") + z(X') — 2(G, a)||?

= lla(F, @) —2(X")+2(X") ~2(C, a)[[2+2(x(F, ) =2(X") » 2(X)~2(G, a)),
and simultaneously

l(z(F, o) — 2(X")) — (2(X") = 2(G, a))||?

= |lz(F, o) =z(X)|P+]la(X")—z(G, ))||*~2(z(F, @)~z(X') * 2(X")-2(G, a)),

where (- * -} denotes the scalar product corresponding to the Euclidean norm in E,.
Evidently, 1t follows from the last two relations that

llz(F, @) = 2(G, o)l* < 2 {llz(X") = 2(G, )|I” + [|le(X") — (F, a)|I*} . (38)

It follows from Lemma 1 [18], Lemma A.1 and the relations (6), (14), (15) that
Xr(a), Xg(a) are convex sets such that Xp(a), X¢(a) C X’ and, moreover,

’ ;
AlXp(a), X'1 <CD 6. (39)

i=1

Since Xp(a), Xg(a), X' are convex sets employing, moreover, Lemma A .2 and re-
lation (19) we obtain

l2(C, @) — =(F, a)|®

IA

3 {l9(2(X") - 3(2(G, )| + g(=(X")) - g(z(F, a))I}

IA

2{19(2(G, ) = F(z(F, )| + g(z(F, ) — (z(X"))|
I
AHg(2(X") = g(z(F, )|} < 22L'C LS
Evidently, the last system of the inequalities finishes the proof.

To prove Propositions 3 and 4 we recall the following auxiliary assertion.

Lemma A.3. ([15] Lemma 6.) Let &, > 0, € > 0 be arbitrary. If

1. k(1) is a Lipschitz function on Zr, (61 + €) with the Lipschitz constant Ly,
2. there exists a finite Ep, (£1(w)),

and if G1(z1) is an arbitrary one-dimensional distribution function such that

Gi(z) € (El’él(zl), F1,5,(z1)) for every z, € Ey,
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then
[Er £(€1(w)) — Eq, k(&1(w))] < Lkéy.

Proof of Proposition 3. First, since Xp(a) is a compact set it follows from
Lemma A.3 and the assumptions that

!
<> sl o (40)
i=1 .

Xipn(t;) Erg(z, £W)) — XiFn(fa) Ecg(z, E(w))

According to the fact that E¢ Y i_, gi(z, &(w)) is a Lipschitz function on X with
the Lipschitz constant }:i.:l L}, employing the assertion of Proposition 2, we obtain
that

' l i '
<C (ZL;) 6 (a1)

The validity of the relation (21) follows from the relations (8),(40) and (41). The

- second part of the assertion (relation (22)) can be proven by the technique einployed

in the proof of Proposition 2. o,

] !
1 f E 7 y Q2 — f E 7 y Q1
Jnf G;_q(:c &(w) = Jnf G;g(w &i(w))

Proof of Proposition 4. First, it follows from the assumptions and from
the elementary properties of the integral that

[Erg(z, £(w)) — Ecg(e, E(w))]

<

Efg(m‘, (zl, 22,..,,21)) dFl(zl)ng(Zz)...dF1(Z1)

——E[ 9(z, (21, 22, ..., 2))dG1(21) dFa(z2) .. .dFi(21)

4

Efﬂ(xa (21, 22, ., 2))dG1(21) dGa(22) ... dGi—i(21-1)) dFi (1)

—EI g(l‘, (Zl, Z9y .y Z[))dGl(Zl) dGQ(Zg) . ‘dGl_l(ZI._l)) dGI(ZI)

Moreover, for i € {1, 2,...,{},z € X

/g(l’, (21, 22,y Z])) dGl (Zl) .. .dG,-_l(z,-_l) d1;'i+1(21+1) . dF{(Z])
E,

is a Lipschitz function on Z,(6;) with the Lipschitz censtant L. Consequently, since
Xr(e) is a compact set we obtain (according to Lemma A.3 and the assumptions)
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that .
' <ILY 6. (42)
i=1

inf Epg(z, — inf Egg(z, £w
ot ry(z, £(w)) L a9z, £W))
Furthermore, it follows from the assumptions.that Egg(z, £(w)) is a Lipschitz func-

tion on X with the Lipschitz constant L’. Consequently, employing the first result
of Proposition 2 we obtain

' 1
<CL'Y 6. (43)
=1

inf E — inf E (
len(a) g9z, E(w)) chn(a) Gg(.r,f\w))

The first assertion of Proposition 4 follows from the relations (8), (42) and (43). The
second part of the assertion can be proven by the technique employed already in the
proof of Proposition 2. O

(Received December 31, 1993.)
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