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KYBERNETIKA —VOLUME 18 (1982), NUMBER 4 

QUASI-NEWTON METHODS WITHOUT PROJECTIONS 
FOR UNCONSTRAINED MINIMIZATION 

LADISLAV LUKSAN 

This contribution contains a description of a class of quasi-Newton methods without projec­
tions for unconstrained minimization which are modifications of quasi-Newton methods with 
projections proposed by Davidon. An algorithm which realizes a class of quasi-Newton methods 
without projections is given and its efficiency is demonstrated on test functions. 

1. INTRODUCTION 

Recently Davidon [1] has proposed a class of quasi-Newton methods which can 
find a minimum of the quadratic function 

F(x) = i(x - Jc)T G(x - x) 

after a finite number of iterations with inexact line searches and which are efficient 
for general unconstrained minimization. Here x is an n-dimensional vector and G 
is a symmetric positive definite matrix of the order n. Davidon's methods are iterative 
methods whose iteration has a form 

(1.1) 

•x+ = x - gHg 

u+ = ßu — XV 

H+ = Я + - PđíPdf - - PHy(PHyf + 
a 

(ïи-w')(íй-ra')' 

b 

»b (a 

where g is the gradient of the objective function F(x) at the point x, H is a symmetric 
positive definite matrix of the order n and Q is a steplength such that F(x+) < F(x). 
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(We use the notation x+ = x - QHg instead of the standard notation xk+l = 
= xk - QkHkgk, k = 1,2,...). At the same time 

a. = uTy • 

P = vT
y 

and 
a = (PHyf H'1 PHy 
b = (PHy)T H~l Pd 
c = (Pd)T H~xPd 

where d = x+ — x, y = g+ — g, v = d - Hy and where P is a projection matrix 
into the subspace spanned by vectors u and v. H is an arbitrary symmetric positive 
definite matrix and u = Hg in the first iteration. 

The projection matrix P is the essential feature of Davidon's methods but it com­
plicates the algorithm of a class of these methods. We can write the projection 
matrix P in the form 

P = F(VT//-1V)~1 V1//"1 

where V = [w, v] is a matrix which has two columns u and v. At the same time the 
matrix recurrence formula in (1.1) can be written in the form 

H+ = H + PUA(PU)T 

where U = \d, Hy\ and A is a 2 x 2 matrix which must be taken so that the quasi-
Newton condition H+y = d may hold. If we combine both above expressions 

W e 0 b t a i n H+=H + VBVT 

where 
B = ( V 1 / / " 1 ^ - 1 FH-1[7A . t/TH"1V(FTif"1F)"1 . 

We need not use the last expression for 2 x 2 matrix B but the matrix B must be 
taken to keep the quasi-Newton condition H+y = d valid. In this way we obtain 
a one-parameter class of quasi-Newton methods with parameter tp whose iteration 
has the form 

f x+ =x- QHg 
(1.2) \u+ = pu - m 

[H+ =H + llP(vvT - <pu+(u+)T) 

The matrix recurrence formula in (1.2) is much easier than that in (1.1) but there 
exists no simple choice of the parametes <p except for the value q> = 0 which corres­
ponds to a rank - one update in (1.1). 

In this paper we are proposing an analysis of the class of quasi-Newton methods 
without projections whose iteration has the form (1.2). Most attention will be devoted 
to the choice of the parameter (p. Also several various forms of the quasi-Newton 
methods without projections will be shown. Moreover, we shall describe an algorithm 
which combines several quasi-Newton methods without projections and show the 
results of numerical experiments with this algorithm. 
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2. ANALYSIS OF QUASI-NEWTON METHODS WITHOUT PROJECTIONS 

This section is devoted to the choice of the parameter cp in (1.2). We use notations 

e = uTH'hi 

a = uTH~h 

T = vTH-1v 
and 

y = uTH~1d = a + a 

<5 = vTH~id = T + 0 
and 

A = /?2(ET - a2) 

B = /?<5(ET - <r2) 

C = <52(£T - ff2) 

D = (jSo- - or)2 = (<5<r - yxf 

Positive definiteness of the matrix H implies £ > 0 and x > 0 for u + 0 and v + 0 
respectively. Moreover from the Schwartz inequality we obtain ET — <r2 = 0 so that 
we have A _ 0 and C 2: 0. Furthermore D _ 0 as a square of a real number. 

First we shall study the conditions for positive definiteness of the matrix H + . 

Lemma 2.1. Let H+ be a matrix defined in (1.2) where H is a symmetric positive 
definite matrix of order n and j8 + 0. Then the matrix H~1/2H+H-1/2 has n - 2 
unit eigenvalues and each of the other eigenvalues is a solution of the quadratic 
equation 

' I2 - pX + q = 0 
where 

(2.1) p = _ _ _ _ (A + D) + l 
ß ßx V 

= _ _ _ ! (B + D) 

Moreover X\jp' 2: 0 and A2/p' = 0 for ET — c2 > 0 where X\, X'2 and p' are the deri­
vatives of Xi, X2 and p with respect to the parameter <p respectively {Xx and X2 are 
the roots of the quadratic equation (2.1)). 

Proof. If we use expression H+ = H + VBVT we obtain 

H-1/2H+H~1/2 = / + _ - 1 / 2 V B V T / r 1 / 2 

This matrix has n — 2 unit eigenvalues which correspond to n — 2 linearly indepen­
dent eigenvectors from the orthogonal complement of the subspace spanned by 
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columns of the matrix H 1 /2 V Remaining two eigenvectors can be written in the form 
H~1/2Vz so that the corresponding eigenvalues must satisfy the equation 

(/ + BVH1V)z = Xz 
or 

det((l - X)I + BVrH~lV) = 0 

where I is the unit matrix of order 2. The expression H+ = H + VBVr is equivalent 
to the matrix recurrence formula in (1.2) only if 

-cpj], cpa 1 
cpa, (1 - cpa2)\p] 

After substituting this matrix into the above determinant equation, we obtain (2.1) 
after some algebraic manipulations. 

Now let £T - a2 > 0. Then from (2.1) we have p' = (A + D)//3T + 0. Differen­
tiating the quadratic equation (2.1) with respect to the parameter cp we obtain 

2XX' - p'X - pX' + q' = 0 

If 2X — p = 0 further differentiating gives 2X'(X' — p') = 0 (since p" = 0 and q" = 0 
from (2.1)) and X\\p' ^ 0 and X'2\p' = 0 hold. If 2X - p + 0 then 

- [ • 

Í _ — 
2 Л' = 

After substituting the roots Xt and A2 of the quadratic equation (2.1) into the last 
expression we can see that X[jp' ^ 0 and X'2\p' = 0 if and only if 

_ _ Î . 
2 P' 

which is equivalent to the inequality 

q{p')2 - pp'q' + (q'f _ o 
If we use (2.1), we have after some algebraic manipulations, q(p')2 — pp'q' + (q')2 = 
= — (et — a2) D//?2

 = 0 and the Lemma is proved. • 

Theorem 2.1. Let H+ be a matrix defined in (1.2) where H is a symmetric positive 
definite matrix of order n and /J + 0. When ET — tr2 = 0 then H+ is positive definite 
if and only if fid > 0. When ET - a2 > 0 then H+ is positive definite if and only if 
B + D > 0 and q > 0, where <j is defined by (2.1). 

Proof. Lemma 2.1 implies that H+ is positive definite if and only if p > 0 and 
q > 0. Let £T — <T2 — 0 Then u and u are linearly dependent i.e. u = fxv for some p. 
so that E = /xa, a = nr, a = p.fi, y = /J.5 and therefore A + D = 0, B + D = 0. 
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Thus we have 

p - 1 = q = -

from (2A) so that H+ is positive definite if and only if /35 > 0. Now let ex — a2 > 0. 
Then three cases occur: 

(a) If B + D = 0 then q > 0 implies /?<5 > 0 so that B + D = B > 0, which is 
the contradiction. 

(b) If B + D < 0 then A + D > 0 (since A + D ^ 0 and the equality A + D = 0 
implies the equality B + D = 0) and the derivatives p' and q' have opposite 
signs. Let p' > 0 and q' < 0 (the proof for p' < 0 and q' > 0 is analogous). 
Then for sufficiently small values of the parameter q> we obtain p < 0 so that 

-W(§Hff<° 
and for sufficiently large values of the parameter <p we obtain q < 0 so that 

But Aj is a monotone function of the parameter q> by Lemma 2.1 so that Xl < 0 
for all values of the parameter (p and H + cannot be positive definite for any value 
of the parameter cp. 

(c) If B + D > 0 then A + D > 0 (as in the case (b)) and the conditions p > 0 
and q > 0 are equivalent to the conditions p(B + D) > 0 and q(A + D) > 0. 
But from (2.1) we have 

p(B + D) - a(A + D) = C + D ^ 0 

so that q > 0 implies both p(B + D) > 0 and q(A + D) > 0 and H+ is positive 
definite if and only if q > 0. D 

Theorem 2.1 gives conditions for positive definiteness of the matrix H+ in (1.2) 
which are sufficient for the direction s+ = —H+g+ to be a descent one. The para­
meter <p in (1.2) must be taken in accord with these conditions. 

Now we shall study conditioning of the matrix H+. We shall use the condition 
number of the matrix H~ 1/2H+H~1/2 as a measure of conditioning of the matrix H+. 

Lemma 2.2. The roots Xt and X2 of the quadratic equation (2.1) satisfy inequalities 
Xx = 1 § X2 if and only if <p ^ 0. Moreover if B + D > 0 then the quotient X2jX1 

reaches a minimum for 

(2.2) ^ ( D - B ) _ 
(A + D) (B + D) 

294 



Proof. After substituting the roots l t and X2 of the quadratic equation (2.1) 
into the condition ^ ^ 1 g A2 we obtain an equivalent condition 

I1' 1-1 
2 

This inequality has the solution p — q >. 1. But from (2.1) we have p - q== 
= <p(ei — a2) + 1 so that p — q ^ 1 if and only if <p >. 0. 

Let B + D > 0. Then also A + D > 0 and from (2.1) we obtain p > 0 and q > 0 
for the value of the parameter (p given by (2.2). Let's consider only those values of 
the parameter cp for which p > 0 and q > 0. Then from the quadratic equation (2.1) 
we have 

;f = (r + VF - I))2 

where 

r = 
" 2 7 ? 

and by diŕferentiating we obtaii i 

©'- 2r' 

V('-2 - o ( ' н (r + sJir1 - I))2 

Since r + ^/(r2 - 1) 4= 0, a stationary point of the ratio X2jX1 is given as a solution 

of the equation r' = 0. It gives the condition 

2p'q - pq' = 0 

and if we use (2.1), we obtain (2.2). Moreover 

ffi-w^ŕ+w-w 
for r' = 0 so that the stationary point of the ratio l 2 Mi i s a minimum if r" > 0. 
It gives the condition p'q' > 0 (since 2p'q — pq' = 0). But from (2.1) we obtain 

p'q' = J _ (A + D) (B + D) > 0 
P2x* 

since A + D > 0 a n d B + D > 0 . ~~ 

Theorem 2.2. Let H+ be a matrix defined in (1.2) where H is a symmetric positive 
definite matrix of order n and ft + 0. Let B + D > 0. Then H+ is positive definite 
and the condition number of the matrix H~1/2H+H~1/2 has a minimum if and only if 

. 2 (D - B) 
q> = max 0, — ü) (A + D) (B + 
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Proof. From the definition of the condition number and from Lemma 2.1 we have 

g ( H - 1 / 2 H + H - i / 2 ) = m a x ( M 2 ) 

mia(l,Xx) 

where Xx and X2 are the roots of the quadratic equation (2.1). Since we suppose that 
B + D > 0 we can use Lemma 2.2 which shows that the quotient X2\XX has a mini­
mum for the value of the parameter cp given by (2.2). By the same Lemma 
K(H~1/2H+H~1/2) is equivalent to the quotient X2\XX if and only if cp > 0. Theorem 
2.2 then holds for D - B ^ 0. 

Now if we let D - B < 0, then K(H~1/2H+H~1/2) is not equivalent to the quo­
tient X2jXx, but the roots Xx and X2 are monotone functions of the parameter <p and 
their derivatives have the same signs (see Lemma 2.1). The roots Xx and X2 move 
in the same direction when the parameter q> is changed so that K(H~1/2H+H~l/2) 
has a minimum if either Xx = 1 or X2 = 1- This situation appears only when cp = 0 
so that (p = 0 is an optimal choice of the parameter cp when D — B < 0. Now 
D — B < 0 implies B > 0 so that fid > 0 and if we set q> = 0 into (2.1) we obtain 
q > 0 so that the conditions for positive definiteness of the matrix H+ are not 
violated. • 

Theorem 2.2 gives a special value of the parameter cp which has satisfied the condi­
tion for the positive definiteness of the matrix H +. This value will be used in Section 5 
for standing the relation between the parameter 3 in (1.1) and the parameter cp in (1.2). 

3. INVERSE FORM OF QUASI-NEWTON METHODS 
WITHOUT PROJECTIONS 

Inverse form of quasi-Newton methods without projections uses the recurrence 
formula for the matrix G = H~1 instead of that for the matrix H in (1.2). We shall 
use the recurrence formula for the matrix G = H~x for computation of the value 
e = urH~1u in Algorithm 6.1. 

Theorem 3.1. Let H+ be a matrix defined in (1.2) where H is a symmetric positive 
definite matrix of order n and #5 =f= 0. Let G = H'1 and G+ = (H*)'1. Then 

[G+ = G-l\d (Gv(Gvf - xj, z+(z+f) 
(3.1) \ where 

[ z+ = SGu — yGv 

and where \j/ is a free parameter which is related to the parameter cp in (1.2) by the 
formula \j/ = cp\q (q is defined by (2.1)). Moreover if u+ is the vector determined 
from (1.2) then G+u+ = z+\q. 

Proof. If we use the expression H+ = H + VBVT, we obtain 

G+ = G - GV(B~1 + VT'GV)"1 VTG 
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by the well-known Voodbury theorem. Let Q = (B 1 + VTGV)~1. Then the quasi-
Newton condition G+d = y holds only if 

Ç = \~Њ фy 1 
У L *y, 1/<5(1-^ 2 )J 

(3.2) 

for some value of the parameter i/> so that (3.1) is proved. The formula \j/ = cpjq 
can be obtained by comparing elements of matrices Q and ( B - 1 + VTGV)~1 (the 
elements of the matrix B are given in Section 2 and the elements of the matrix VTGV 
are numbers e, a, a and T). The formula G + u + = z + \q follows from (3.1), from 
the expression u+ = [Su - ocv, from (2.1) and from the formula \j/ = cpjq. • 

The inverse form of quasi-Newton methods without projections based on Theorem 
3.1 uses the iteration 

Gs = -g 
X+ = X + QS 

z+ = bz — yw 
G+ = G - l/<5(wwT - ipz + (z+)T) 
where 
w = Gv = -(gg + v) 

and where now y = zTd and 3 = wTd. G is an arbitrary symmetric positive definite 
matrix of order n and z = g in the first iteration. We must use values e = z T G _ 1 z , 
a = z T G" 1 w and T = wTG~1w instead of those given in Section 2. 

4. PRODUCT FORM OF QUASI-NEWTON METHODS 
WITHOUT PROJECTIONS 

Product form of quasi-Newton methods without projections uses recurrence for­
mula for a rectangular matrix S of full rank in the factorization H = SST. It is advan­
tageous for the minimization with linear constraints (see [6]). 

Lemma 4.1. Let 

H + VBVT = (/ + VabTVTH-v)H(l + H~1VbaTV) 

where a and b are two-dimensional vectors. Then 

"-"•[-V.1 
the expression for H + VBVT a Proof. After arranging the expression for H + VBVT and comparing the coeffi­

cients we obtain 
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so that 
del B = -(det [a, b])2 = 

a ľ Ьt\ , , , ч2 = - 1 . = ~(a^b2 - a2bt)
2 

a2, D2 

But 

(4.1) 

abr-bar-\ u ° u

 fli*--•«-*»] 
L ^ P i — a,o 2 , « 

and det B ~ —cp (see the proof of Lemma 2.1) so that the Lemma is proved. fj 

Theorem 4.1. Let H+ be a matrix defined in (2.1) where H is a symmetric positive 

definite matrix of order n and [1 + 0. Let cp § 0 in (1.2) and let B + D > 0 and 

q > 0 (q is defined by (2.1)). Then 

f H+ = RHRT 

where 

X = / + (v + J(<p)»+)U(q)»-s/(<p)-+Y 
S + (i J (q) + (per - ax) J (cp) 

Proof. Conditions B + D > 0 and q > 0 imply the positive definiteness of 

the matrix H+. Suppose that H+ = RHRT where R = / + H.fcTvTtf-1. Then 

det R = V1? since det # + / d e t H = qby Lemma 2.L Since 

(/ + VabTVTH-1)~1 = I - — VabTVTH-1 

<Jq 

the quasi-Newton condition //+_y = d can be written in the form 

H(I + ff-1V&aTV)>> = ( i - -j. VabTVTH-x\ d 

or 

VbaTVTy + — VabTVrH-xd = v 

Multiplying the last equation by the vectors (H~xd)T and yT we obtain 

R + — P = <5 

v« 
S + - 1 R = /? 

v<? 
where 

UTH-xVabrVTH-xU &.]• 



Now Lemma 4.1 implies 

Q - R = dTH~lV(abT - bar) VTy = 

= [* 3~ [ - V9. + 0 "] [j] = (/?y " K<5) ̂  = (^ " aT) V> 

Moreover det(UTH^1Va6TFT//-1U) = 0 since the matrix abT has rank 1 so that 

PS - QR = 0 

Now we have four equations for four unknowns P, Q, R, S. These equations have 
a unique solution which can be written in the form 

4° 7 
lą + (ßa - ax) Ję] 

i"p, Q-| = i p + (j3<T-«T)vvjr 

if A = S + p V^ + (fia - a T ) V ^ * °- T a u s w e ° b t a ' n 

abT = (UTH-'V)-"\?

K ^\(VTH-"U)~l = 

= i r /^v<pir-<5v<p T 
x\\ - av<?]LV^ + y V^J 

after some algebraic manipulations (since elements of the matrix U T // _ 1 Vare num­
bers y, S, a, 0). After substituting the matrix abT in the expression R — I + VabTVTH~1 

we obtain (4.1). • 

Theorem 4.1 can be used for derivation of the product form of quasi-Newton 
methods without projections. Let H = SST and H+ = S + (S + ) T . The product form 
of quasi-Newton methods without projections uses iteration 

x + = x — gSg 

a = v + V ( ^ ) (PH - <*t5) 

b = V(<?)c - V(<P) 0 5" - >'D) 

Й + = - í i + - fiaЛ(«5« - ľù) 

S + = S (l + - ãbт 

(4.2) 

where 

U =5 + /?V(<0 + (/^-^)vV 
and where now g = ST0. 5 = —gg,y = STy and £ = d - >>. S is an arbitrary non-
singular matrix and u = g in the first iteration. We must use values a = uTy, /? = 
= v y,y = aTd, 3 = vTd, a = MTM, a = wTi5 and T = vTv instead of those given 
in Section 2. 
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5. THE RELATION BETWEEN THE QUASI-NEWTON METHODS 
WITHOUT PROJECTIONS AND THE DAVIDON'S METHODS 

The Davidon's methods use matrix recurrence formula (1.1). If P is the unit 
matrix of order n, then (1.1) defines the classical variable metric methods. The matrix 
H+ in (IT) is positive definite if and only if b > 0 and 9(ac — b2) + b > 0. The last 
inequality serves for determination of the special values of the parameter 9. If P is 
not the unit matrix then b > 0 is not satisfied automatically. We shall show below 
that the condition b > 0 is equivalent to the condition B + D > 0 which is used 
in Theorem 2.2. 

Now we shall study the relation between the parameter & in (1.1) and the parameter 
<p in (1.2). It enables us to find some special values of the parameter q>. 

Lemma 5.1. Let H be a symmetric positive definite matrix of order n and let 

£T - a2 > 0. Then 

A + D 

b = 

and 

ac - b2 = 
£T — a1 

Proof. By definition (see Section 1) we have 

h b~\ = (PUyH-'PU = XfH'^Vi^H^V)-1 VTH~lU = 

-[uafcrB;] 
The matrix VTH 1Vis nonsingular since zx — a2 > 0. If we use definitions of A, B, 
C and D, we prove the Lemma after some algebraic manipulations. Q 

Lemma 5.1 implies that, provided ET — a2 > 0, b > 0 if and only if B + D > 0. 

Theorem 5.1. Let H be a symmetric positive definite matrix of order n and let 
£T - a2 > 0. Let p + 0 and B + D + 0. Then the recurrence formulae (1.1) and 
(1.2) give the same matrix H+ if and only if 

(5.1) <p — (1 - BS) 
K ' ^ (A + D) (B + D) V P } 
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т(єт — a2) 

B + D 

т(єт — °2) 
C + D 

T(ET — *2) 

.2 _ „ 
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Proof. If we compare the expression H+ = H + PUA(PU)T with the matrix 

recurrence formula in (IT), we observe that the elements of the matrix A are linear 

functions of the parameter ,9. Since elements of the matrix B depend linearly on 

elements of the matrix A, we can suppose that the parameter q> is a linear function 

of the parameter ,9 i.e. 

q> = JUS + v 

for some \i and v. If we compare the optimally conditioned quasi-Newton method 

without projections which is given by Theorem 2.2 with the optimally conditioned 

Davidon's method proposed in [1], we obtain equations 

+ v = 0 
b - a 

c - b 

ac- b2 

2 ( D -

(А + D) (B + D) 

whose solution gives (5.1). • 

Now we can determine values of the parameters <p and \\i in (1.2) and (3.2) which 

correspond to standard values of the parameter 9. These values are given in Table 1. 

Table 1. 

Parameter 9 Parameter ę Parameter цr 

1 

2 

3 

4 

5 

6 

0 

1 

b 

1 

т 2 D т 2 D 
1 

2 

3 

4 

5 

6 

0 

1 

b 

1 

(А + D) (B + D) 

т 2 D 

(B + D ) 2 

2 т 2 D 

(B + D ) 2 

т 2 D 

1 

2 

3 

4 

5 

6 

0 

1 

b 

1 

(А + D) (B + D) 

т 2 D 

(B + D ) 2 

2 т 2 D 

(B + D) (C + D) 

2 r 2 D 

1 

2 

3 

4 

5 

6 

b+ a 

a- b 

ac- b2 

c - b 

ac- b2 

1 

(А + B + 2D) (B + D) 

т2 

(B + D) (B + C + 2D) 

т 2 

1 

2 

3 

4 

5 

6 

b+ a 

a- b 

ac- b2 

c - b 

ac- b2 

1 

B + D 

т 2 (D - B) 

B + D 

т 2 (D - B) 

1 

2 

3 

4 

5 

6 

b+ a 

a- b 

ac- b2 

c - b 

ac- b2 

1 

(А + D) (B + D) 

0 

(B + D) (C + D) 

0 

1 

2 

3 

4 

5 

6 
Ь- a 

(А + D) (B + D) 

0 

(B + D) (C + D) 

0 

First five values in the Table 1 satisfy the condition q > 0 which is necessary for the 

positive definiteness of the matrix H+. The last value satisfies this condition only 

if 05 > 0. 
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6. THE IMPLEMENTATION OF QUASI-NEWTON METHODS 
WITHOUT PROJECTIONS 

There are three possible ways of implementing quasi-Newton methods without 
projections. We can use the basic iteration (1.2) or the inverse form iteration 
(3.2) or the product form iteration (4.2). In this section we shall describe an algorithm 
which uses safeguarded basic iteration. Let us state several notes first: 

1. If the search direction s = —Hg does not satisfy the condition — srg ^ e0||s|| ||o|| 
for a small positive number E0, the algorithm must be restarted. 

2. The steplength Q is chosen by the standard procedure so that the condition 
(1 — 2i) Qsrg — F+ — F :S eiQsrg holds. The safeguarded cubic interpolation 
with the initial estimate g = min (1,4(E — F)jsrg) is used, where E is a lower 
bound of a minimum value of the objective function. 

3. If B + D g 0 the basic iteration cannot be used without sacrificing the desired 
positive definiteness of the matrix H+. In this case we use another matrix recur­
rence formula 

(6.i) H*mH + ^^l±lM±M. 
yrd yr(d + Hy) 

given in [3]. 

4. The selection of the quasi-Newton method without projections is controlled 
by the value of the integer m. If m = 1, m = 2, m = 3 or m = 4, the values 
of the parameter cp from the m-th row in the Table 1 are used respectively. If 
m = 5, the optimal value given by Theorem 2.2 is used. If m = 6 we use the 
value <p = 0 if p5 > 0, and the value from the fifth row in the Table 1 otherwise. 

5. Let h = \\d\\. Then ||d|| = 0(h), \\y\\ = 0(h) and ||t>|| = 0(h). Assume also that 
Iu I = 0(h). Then all values a, jl, y, S, s, a and T are 0(h2), the value sx — a2 = 
= 0(hA) and the values A, B, C and D are 0(h8). Therefore some scaling of these 
values must be used. 

Now we are in a position to describe the complete algorithm. 

Algorithm 6.1. 

Step 1: Determine the initial vector x and compute values E : = E(x) and g : = g(x). 
Set /c := 0. 

Step 2: Test for convergence. If the termination criteria are satisfied (for example 
if ||a|| is sufficiently small) then stop. 

Step 3: In the first iteration (when k = 0) go to step 4 else go to step 6. 
Step 4: Restart. Determine a symmetric positive definite matrix H of order n (for 

example H := I, where / is the unit matrix of order n). Store diagonal 
elements GH of the matrix G = H~l when the first derivatives of the ob­
jective function are not given analytically. 
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Step 5: Set u:= Hg, z := g and s := ~-u. Set / ;= 0 and go to step 20. 
Step 6: Set s := g — glt v := x — A-, — /-/s and w := — ggx — s and compute 

T : = vTw. If T g 0 go to step 4 else go to step 7. 
Step 7: Compute E : = wTz. If e ^ 0 go to step 8 else go to step 9. 
Step 8: If / = 0 go to step 4 else set / := 0, u := ffflj, z := #, and go to step 7. 
Srep 9: Set A := Nj(T/e), u := Aw, z := /.z, £ := T and compute a := sTu, P := sTu 

and er : = uTw. If fi — 0 go to step 18 else go to step 10. 
Step 10: Set a := a/r, p := P\x, a : = a\x, y := a + a, 5 := jl + 1 and <o := 1 - a2. 

If w g 0 go to step 8 else go to step 11. 
Step 11: Set A := p2a>, B := (]8<o and D := (Pa - a)2. If B + D ^ 0 go to step 

12 else go to step 13. 
Step 12: If / = Ogo to step 18 else set / := 0, u := Hgt, z : = gx and go to step 7. 
Step 13: Select the value of the parameter <p from Table 1 according to the value 

of the integer m (see note 4 above). If either <p < 0 or <p > 104 go to step 14 
else go to step 15. 

Step 14: If PS g 0 go to step 12 else set <p : = 0 and go to step 15. 
Step 15: Set q : = (<5 - <p(B + D))//?. If q g 0 go to step 4 else go to step 16. 
Step 16: Set / := 1. Set « : = / ? « - OLV, Z := (5z - yw)\q, p := xp and H := H + 

+ (vvT — <puuT)lp. Set \j/ := <p\q, <5 := T<5 and adjust the diagonal elements 
Gn of the matrix G = H~l by the rule Gu := Gu - (w2 -\jjz2)\8, when 
the first derivatives of the objective function are not given analytically. 

Step 17: Set s := -Hg and go to step 20. 
Step 18: Set v :-= x - Xj and w := Hs. Compute a := sTv and T := sTw. If either 

a g 0 or T ^ 0 go to step 4 else go to step 19. 
Step 19: Set w := v + w and H := H + 2vvT\a - wwT\(a + T). Set w := s - ggu 

compute £ := —QvTg1 and adjust the diagonal elements Gu of the matrix 
G = H'1 by the rule G;i := G;i + 2S2/<T - w2/(<r + ^), when the first 
derivatives of the objective function are not given analytically. Go to step 5. 

Step 20: If -sTg ^ 10~3||s|[ \\g\\ go to step 21 else go to step 4. 
Step 21: Set xx := x, gx := g and Fr := F. Use a standard procedure to determine 

the steplength Q SO that 0-99QSTg1 <; F - F, g 0-0lQsTg1 holds, where E 
and g are the new values F := E(x) and g := g(x) at the point x := xt + 
+ QS. (These values are determined in the present step by use of a standard 
procedure). 

Step 22: Set k := k + 1 and go to step 2. 

The diagonal elements GH of the matrix G = H~1 adjusted in the steps 4, 16 and 19 
of Algorithm 6.1 serve to the determination of optimal differences for computation 
of the first derivatives of the objective function by the method of Stewart [7]. Algo­
rithm 6.1 uses three integers k, I, m. Here k is an iteration count, / is a working 
integer which indicates that the basic iteration was successful and m is a controlling 
parameter for the choice of a quasi-Newton method without projections specified 
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by user. In the step 21 of Algorithm 6.1 we can use any procedure for the determina­
tion of the steplength (see note 2 above). 

Algorithm 6.1 uses one symmetric matrix//of order n and 9 n-dimensional vectors 
x, x1, g, gu s, u, v, w and z, i.e. it needs approximately n(n + 19)/2 words in compu­
ter storage. Each basic iteration of Algorithm 6.1 uses two matrix by vector products, 
9 scalar by vector products, 6 inner products and two symmetric tensor products i.e. 
approximately n(3n + 16) multiplications. 

7. NUMERICAL EXPERIMENTS 

Efficiency of Algorithm 6.1 was tested by means of 18 examples proposed in [5]. 
Results of these tests are shown in Table 2. 

Quasi-Newton methods without projections 

m= 1 m = 2 m = 3 m = 4 m= 5 m = 6 

1 45-51 4 5 - 5 0 4 6 - 5 1 4 8 - 5 3 4 5 - 5 1 4 5 - 5 1 
2 45-89 3 1 - 6 8 2 6 - 6 5 45 -118 2 6 - 5 8 6 0 - 9 3 
3 34-41 3 6 - 4 9 3 5 - 4 4 2 8 - 3 8 4 1 - 5 2 4 0 - 5 2 
4 106-127 4 8 - 6 4 5 0 - 7 2 4 4 - 6 7 5 3 - 7 2 4 7 - 6 2 
5 39-43 3 7 - 4 1 5 0 - 5 6 3 6 - 4 1 3 7 - 4 1 3 5 - 3 9 
6 42-45 4 7 - 5 0 44—47 7 8 - 8 8 4 1 - 4 5 6 2 - 6 7 
7 A 35 -47* 5 7 - 6 8 * 5 2 - 5 9 * 3 7 - 4 1 * A 
8 6-13 6 - 1 3 6 - 1 3 6 - 1 3 6 - 1 3 6 - 1 3 
9 20-28 1 7 - 2 5 1 7 - 2 6 1 8 - 3 0 1 7 - 2 5 17 -26 

10 194-260 118-157 131-173 112-177 133-187 136-190 
11 A 105-141 108-144 136-182 83-120 87-125 
12 123-185 107-237 100-194 110-298 122-176 122-188 
13 110-128 78-116 82-103 104-149 8 4 - 9 9 198-245 
14 A 106-152 100-125 135-276 123-149 176-221 
15 183-213 93-109 162-181 148-196 141-159 114-127 
16 42-93 47-112 4 2 - 9 6 4 1 - 9 3 4 3 - 9 3 4 1 - 9 1 
17 45-83 4 4 - 8 3 4 5 - 8 3 5 0 - 8 9 44—82 4 6 - 8 5 
18 4 - 8 4 - 8 4 - 8 4 - 8 4 - 8 4 - 8 

Each column in the Table 2 corresponds to a value of the integer m (choice of quasi-
Newton method without projections). Each row in the Table 2 corresponds to one 
example (our numbering 1 —18 is identical with [5]). A pair of values in the Table 2 
which are separated by a stroke are the number of iterations and the number of func­
tion evaluations. An asterisk in the row 7 shows that an alternative local minimum 
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was found (instead of global minimum). The letter A indicates that 300 iterations did 

not suffice to find a minimum. 

To compare known methods for the unconstrained minimization Table 3 has been 

set. Columns of Table 3 correspond to the new method with m = 5, the original 

algorithm of Davidon [ l ] and the classical variable metric methods which use P = I 

in (1.1). (The DFP method, the BFGS method and the method of Hoshino use the 

New method 
m= 5 

Davidon 

[1] 
DFP BFGS 

Hoshino 

[3] 

1 4 5 - 5 1 50-55 217-232 69-75 5 6 - 6 2 
2 2 6 - 5 8 3 7 - 9 4 31-72 3 2 - 7 4 2 6 - 6 6 
3 4 1 - 5 2 41-57 34-40 36-49 3 4 - 4 3 
4 5 3 - 7 2 4 8 - 7 8 103-125 4 8 - 6 3 5 5 - 7 3 
5 37-41 34-40 102-119 5 0 - 5 6 5 0 - 5 6 
6 4 1 - 4 5 39-42 A 5 0 - 5 3 8 0 - 8 6 
7 3 7 - 4 1 * 4 3 - 5 5 * A 3 9 - 4 5 * 47-54* 
8 6 - 1 3 8-22 6 - 1 3 6 - 1 3 6 - 1 3 
9 17-25 18-34 79-93 20-29 25-33 

10 133-187 149-261 A 107-146 117-140 

11 83-120 95-146 A 188-224 227-263 
12 122-176 122-220 101-174 103-242 98-196 
13 8 4 - 9 9 78-123 268-295 108-144 133-148 
14 123-149 101-171 A 114-163 135-159 
15 141-159 151-181 A 132-147 136-148 
16 4 3 - 9 3 46-289 4 8 - 8 5 4 2 - 9 1 48—87 
17 4 4 - 8 2 63-304 51-88 4 7 - 8 4 4 8 - 8 5 
18 4 - 8 5 - 1 2 2 - 7 2 - 7 2 - 7 

Quasi-Newton methods without projections 

m= 1 т я = 2 m= 3 m = 4 m= 5 m — 6 

1 68-212 59-186 68-210 65-200 49-152 41-127 
2 39-162 42-215 35-154 49-212 37-147 35-153 
3 69-240 53-192 43-146 51-205 52-177 35-116 
4 95-515 49-297 62-371 58-328 64-374 71-409 
5 41-214 45-240 37-193 44-239 32-170 35-185 
6 68-363 56-301 54-283 55-307 45-241 52-275 
7 A 38-306* A A A A 
8 7 - 6 3 7 - 6 2 7-63 7 - 6 2 7 - 6 3 7 - 6 2 
9 19-158 17-143 19-148 18-139 18-137 19-130 
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values of the parameter 9 from the first, the second and the third row in the Table 1 
respectively). The meaning of numbers in the Table 3 is the same as in the Table 2. 
Finally Table 4 contains results for finite difference versions of the quasi-Newton 
methods without projections when the first derivatives were computed by the method 
of Stewart [7]. Only first 9 tests are given in the Table 4. The meaning of numbers 
in the Table 4 is the same as in the Table 2 again. 

The same termination criteria, namely \\gk\\ g 10~8 or Fk ^ 10~16 or \xk — 
- x t_i[| ^ 10~8 and l ^ - i — xk-.2\\ _; 10~8 were used for all methods in Tables 
2 - 4 . 

8. CONCLUSION 

The numerical experiments show the high efficiency of the new algorithm. It has 
about 50% less storage requirements and uses about 30% less number of multiplica­
tions than the original algorithm of Davidon. The new algorithm also allows to use 
the Stewart's method for optimal choice of differences and it is very effective when 
analytical derivatives are not given. The new algorithm has been implemented in the 
software package for optimization and nonlinear approximation SPONA (see [4]) 
as program POPT 49. Moreover the inverse form of quasi-Newton methods without 
projections has been implemented as program POPT 50. It uses updating the Choleski 
decomposition of the matrix G and the double dog-leg strategy proposed in [2]. 

(Received October 20, 1981.) 
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