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KYBERNETIKA — VOLUME 24 (1988), NUMBER 3

ON OPTIMUM EXPERIMENTAL DESIGN
FOR RIDGE ESTIMATES

EMIL HORVATH

In the paper a method minimizing the summary variance of a ridge estimate for an unknown
vector parameter of a linear regression model is suggested. The minimization is performed
under the condition that the norm of the bias divided by the norm of the unknown vector para-
meter is bounded from above. From the corresponding extremal problem a new optimality
criterion in the regression experiment is deduced. In particular, this criterion follows the known
A-optimality criterion for least-squares estimates.

1. INTRODUCTION

A. The Standard Linear Regression Model and Ridge Estimates

Let p" = (v, ..., yx) be the vector of observed real random variables satisfying
the standard lincar regression model

(1) Ey = FB, Dy =1,

in which F is the regression N x m matrix, rank F = m, and f is the m-dimensional
unknown parameter.

The least-squares estimate §* = (F'F)™' FTy of B belongs to the class {f*(h):
he H = <0, + )} of ridge estimates of the form
(2) pr(hy = (F'F + hI)"* F'y .
These estimates were introduced by Hoerl and Kennard []] The basic matrix
characteristics of *(h) are
D p(h) = E[B*(h) — E (] [B*(h) — E p*(h)]";
bias f*(h) = E *(h) — §;
W p(h) = E[p*(h) — F] [B*(h) — BI"
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and they can be written as

(3) D p*(h) = (M + hI)™* M(M + hI)™*;
4) bias  f*(h) = —h(M + hI)"' B;
(5) W B*(h) = (M + hI)™" (M + W2BBT) (M + )™,

where M = F'F is the information matrix.
Let t(M, h) denote the summary variance, b(M, h, f) the square of the bias and
w(M, h, B) the quadratic loss function of the ridge estimate. That means

t(M,h) = TrDp*(h);
b(M, h, B) = |bias p*(h)]? ;
w(M, b, f) = Tr W p*(h) .

il

For these basic numerical characteristics of the ridge estimate the following
equalities hold:

(6) (M, h) = TeM(M + hI)~2;
(7) b(M, h,B) =W B"(M + hI)™2 B;
(8) w(M, h, B) = t(M, h) + b(M, h, B).

Relations (3)7(8) are very well known; see, e.g., any paper in the references.

The main argument in favour of using the ridge estimate is that for any e R™
there exists some h = h(f) > 0 such that w(M, h, B} < w(M, 0, B), i.e. according
to the value of the quadratic loss function “w”, the ridge estimate is better than the
least-squares estimate (cf. [3], [4]). (A considerable improvement can be expected
when the minimum ecigenvalue of the matrix M is sufficiently small; cf. [3].)

The most applied method of choice of the optimum “h” is also based on the
function w(M, h, B) of the variable “h™; in particular the optimum “h”" is given by

h* = arg min w(M, h, f).
heH

However, there are many other methods of choice of the appropriate “A” (the
most important of them are presented in [5]). In all of them the regression matrix F
in model (1) is fixed. Usually, this cannot be assumed, and the experimenter has
possibility to prepare the experiment (measurements) in different ways, and each
of them leads in general to another regression matrix. Consequently, it makes sense
to design the linear regression experiment for ridge estimates optimally. This means
we have to find simultaneously the adequate regression matrix and the adequate
ridge parameter. )

Remark 1. A similar approach is applied in [2], but for the case of a fixed h > 0.
Taking the limit & | 0, one general optimality criterion for ridge estimates is com-
pared with the classical optimality criteria.
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B. Notations

Consider the linear regression model
©) Ev(x) =f'(x) B
with uncorrelated measurements (observations) y(x), x e X, in which

(a) X isacompact set;

(b) fT(x) = (fi(x), ..., fulx)), where fy, ..., f, are real, continuous and linearly
independent functions defined on X;

(¢) Bis the m-dimensional unknown parameter.

In addition without restrictions on generality assume that D p(x) = 1 (cf. [2]).

The model (9) —- called the standard linear regression model of experiment — is
sufficiently comprising in the sense that it covers a wide range of situations for
designing an experiment (compare with [2]). In this model we use the following
notations:

N ... afixed natural number; N = m

n oo = (Xg, os Xy)s X1y ..., Xy€X; the exact design of the regression experiment
of size “N”’

y(n) ... N-dimensional vector with components y(x,), ..., y(xy)

F(n) ... the regression N x m matrix with the rows fT(x,), i = 1,...,N

M(n) ... theinformation m x m matrix equal to F"(y) F(n)

Py ... the set of all exact designs of size “N”

My ... = {M):ne By}

My ... the set of all nonsingular matrices belonging to M,

By = {ne By M(n) e MY

g ... the discrete probability measure on X supported by a finite set; the asymp-

totical design of the experiment

M(E) = TS0 &)

S ... the set of all asymptotical designs

M= (M) Ee )

M* ... the set of all nonsingular matrices from M

RO, . - .. the set of all positive semidefinite m x m matrices
ROF ... the set of all positive definite m x m matrices

The set By is nonempty (|21, [6]). Consequently, for n e B and he H we can
define the ridge estimate f*(y, k) by
(10) B*(n, k) = [M(n) + hI]~* F'(n) y(n)
(compare with (2)).

It is evident that the equalities (3) —(8) will be used also in the case of M = M() e
€ My, i.e. for the ridge estimate (10) with the same interpretation.
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2. THE A,-OPTIMALITY CRITERION
Natural attempts to consider an optimality criterion as a function of the matrix
W B, h) = [M(n) + I [M(n) + B2BE™] [M(n) + hI]!
(compare with (5)) meet with the following two difficulties:
(a) such a function will depend on the unknown vector f;

(b) we cannot use asymptotic designs for such criteria function.
Therefore we shall use another approach and consider the function

v, (4)=Tr 4 I:A + 1% A(A) 1]*2 if AeRYY,

it

=+ it A¢RO
where d € {0, 1) and /1(/4) is the minimal cigenvalue of the matrix A4.

The statistical justification of this function will be given in Proposition 1. In
Proposition 3 it will be shown further that there is a matrix M} € M; such that
P (M) < P, (M) for all M from My. This matrix will be called 4,-optimal in Wy
and the exact design 7 such that My = M(y}) will be called A -optimal in Py.

Evidently, in the case of d = 0 we obtain the usual A-optimality criterion for least-
squares estimates.

Let in the model (9) m = 1. It is easy to verify that for each d e {0, 1) the A4,
optimum exact design 1 € By is concentrated at points x7, ..., x5, each of them
is the argument of the minimum of the function f~*(x), x € X. Therefore, for m = 1
the A -optimality criterion does not present anything new.

Further, we shall assume that the dimension of the model (9) is at least equal to 2.

A. Justification and First Properties of the A,-optimality Criterion

For d e €0, 1) denote by I, y the set
Lyn = {(M,h)eMy x H:b(M, h, ) £ d*f"p for all feR")

and consider the minimization problem
(11) INF (d, N) = inf {s(M, h): (M, h) e T, 5} .

The interpretation of (11) is based on the fact that (M(y), h)e [,y iff
|bias *(n, R)|/||B] < d for any nonzero f e R™.

Proposition 1. INF (d, N) = inf {¥,(M): M e Iy }.

Proof. For M e MMy and h e H the following series of equivalences hold:

b(M, h, ) < d*B"B forall BeR™

had T -2
h? sup E—(M)— b < d* (the supis over f e R™)
# B'B
W[k + A(M)]? < a2
<~

d
h £ —— AM).
=L i
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Hence Iy y = {(M, h): M e My, h < (d/1 — d) A(M)}. Since the function (M, h)
of the variable “A” is strictly decreasing at every fixed nonsingular information
matrix M ([3], [6]). it holds:
INF (d, N) = inf {I[M, 'Td’*i z(.w)] ‘Me we;}
i ¢

=inf{¥,(M): MeM} . !

Proposition 2. Let d,, d,, d;, ... be the sequence of numbers from (0, 1) tending
to some d e {0, 1) and let M, M,, M5, ... be the sequence of matrices from M
tending to the matrix M. Then

(a) MeMy;

(b) lim ¥, (M,) = ¥, (M).

Proof. Evidently M € My, since My is a compact sct ([2], [6]). Assertion (b)
will be proved in two steps. In both the implication ([2]) M, - M = A(M,) — A(M)
will be used.

(1) If M is nonsingular, then the convergence ¥, (M,) to ¥,(M) follows from the
continuity of the matrix addition, multiplication and inversion, and from the con-
tinuity of the function “Tr”.

(2) If M is singular, then 27(M,) > + oo. Since

WM > (1= )P40,
it holds:
lim ¥, (M,) = +o0 = ¥(M). 0

Proposition 3. There is a matrix Mj e My such that W,(M}) = inf {¥,(M):
Me ‘JH;},

Proof. Evidently 9y is a nonempty set. From this and from the property of the
infimum it follows that
(12) inf {¥,(M): M ey} =lim ¥Yy(M,) < +o
for a sequence M, M,, M5, ... of matrices from My .

Since My is compact there exists a strictly increasing sequence (1), 1(2), 1(3), ...
of natural numbers such that the sequence M), My, M), ... tends to a matrix
M* e Mty

Let the matrix M} be singular. Then according to Proposition 2 ¥,[M ] — +o0;
but this is in contradiction to the relation (12). Thus M} € My and from Proposition 2
it follows that

lim ¥,[M ] = 'IIJ(M:) : O

Remark 2. Since Proposition 2 remains true when substituting My — M, Pro-
position 3 is valid after this substitution as well.
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B. Further Basic Propositions

In this section we shall prove two basic propositions connected with minimization
of the function ¥ ,(M).

Proposition 4. The function gy: d € <0, 1)~ min ¥, (M) has the following pro-
perties: Mey

(a) is strictly decreasing on the interval <0,1) from the value gy(0) =
= min {Tr M~ ': M e M3} to the limit value zero;

(b) is continuous.

Proof. It is easy to verify that ¥, (M) > ¥,,(M) for every 0 £d, < d, < 1 and
M e M, . Conscquently, using the notation
(13) M} = arg min ¥, (M)

MeMy*

we have:

gxldy) = Yo (M3) > V0, (M3) Z gx(dy) .

Let now M° e My be an arbitrary matrix and let dy, d,, d;, ... be an arbitrary
sequence of numbers from <0, 1) tending to 1. Since 0 < gy(d,) < ¥, (M°) for all
positive integers “n” and lim ¥, (M°) = 0, we have also lim gy(d,) = 0.

Thus the first part of the proposition is proved.

For the proof of the second part, let d €(0, 1). If d,, d,, ds, ... is a sequence
of numbers from (0, 1) strictly increasing to “d”, then, according to the first now
proved part of this proposition, the inequality gy(d) < gy(d,) holds for all natural
numbers “n”.

Let § > 0 be fixed, but arbitrary. According to Proposition 2, there is n(8) such
that for all positive integers “n”, n = n(8), there holds: ¥, (M) + & > ¥, (M}).
Thus

0< g.’\'(dn) - gw(d) = Wd,‘(MZ‘) - llld(Mﬁ <é

for all n Z n(8). This is equivalent to the continuity of gy from the left.

The continuity from the right will be proved as follows:

Let d € <0, 1) and let dy, d, d5, ... be a strictly decreasing sequence of numbers
from (0, 1) tending to *“d”. Since

gN(dn) < QN(an) < gN(d)
for all “n™, we obtain:
(14) lim gN(dn) = !/N(d) .

Set My = Mj. Since M) eWiy, there exist a strictly increasing sequence
q(1), g(2), 9(3), ... of natural numbers and a matrix M* from iy such that M;”) —
— M*. Suppose that M* is singular. Then, according to Proposition 2,

lim gy[d,,] = + oo. But this is a contradiction since
n—o

lim gu[dy,] = lim gx(d,)
ne Ao
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and the last limit is, according to (14), bounded from above. Thus M* e My and

lim gv(dn) =1i gN[dq(n)] = lim lpd,,(..)[M:(n)] = '[/d(‘w*) = (/N(d) B

n—o -

which together with (14) give the required continuity from the right. ]

Remark 3. For the function g: d € {0, 1) — min { ¥ ,(M): M & M} we can formulate
a proposition analogous to Proposition 4.

Proposition 5. Let de (0, 1) and let d,,d,,d;,... be a sequence of numbers
from <0, 1) converging to “d”’. Let further
(15) M MM,
be the sequence of matrices given by the relation (13). There holds: if M* is a cluster
point of the sequence (15), then M* € M and ¥,(M*) = gy(d).

Proof. Let M* be a cluster point of the sequence (15) (at least one such point
exists). Let My M .M ... bea subsequence of the sequence (15), con-
verging to M*. In the following series of equalities, the first is a consequence of
the continuity of gy (Proposition 4), the second follows from the definition of gy,
the third holds trivially and the fourth is evident from Proposition 2:

gu(d) = lim gy(d,) = lim ¥, (M) = lim @, [M7 = ¥,(M¥). |
now o nsam

Remark 4. For d € (0, 1) denote the argument of the minimum of the function
¥, on M by the symbol M*(d). Let d,,d,, ds, ... be a sequence of numbers from
<0, 1) tending to “d’’. Evidently, on 9 the following analogy of Proposition 5 is
valid:

Every cluster point M* of the sequence M*(d,), M*(d,), M*(d;), ... belongs
to the set M and g(d) = ¥, (M*).

Since the function Tr M~ " is strictly convex on 9" (cf. [2], Proposition IV.3.),
in the special case of d = 0 the matrix M* is determined unambiguously (compurc
with Proposition 1V.32. in [2]).

C. Comparison with the 4-optimality Criterion

Introduce the following notations:

@o(B) = FTBITr (M7) ™" ;
b¥(d, f) = b [Mf:, i), /s] :

wH(d, f) = w [M,f, . i y M), /)’:I .

(We recall that d € €0, 1)} and M is defined by the relation (13); hence it is an A,
optimum matrix.)
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Proposition 6. For all 0 < d < 2[1 + m ¢q(B)]™" we have:
wH(d, B) < Tr(Mg3)~".
Proof. Since b*(d, B) < d*Bf for all f e R™, we have:
(16) wr(d, B) = PAME) + b*(d, B) £ V,(MJ) + d*BTB.
If now v, = ... = v, are eigenvalues of the matrix My and “d” is chosen as in
the assumption of this proposition, then

., . m d -2 m
Y (ME) + d*pp = ka<vk -+ . 7(;1),") + d* @o(B) Y. ol <
k=1 - k=1

<[Tort+ (1 —dPov,'] + md? ef)v,' =
k=1
m=1
=Yoo+ =1+ (1 = d)? + md* gp(B)] oyt < Tr(Mg)™Y,
k=1

because — 1 + (1 — d)? + md® g,(f) < 0. ]

Then the ridge estimate f*(n;, h}) with b} = (d/1 — d) [M(})] and 0 < d <
< 2[1 + m py(B)] " is, according to the loss function “w”, better than an arbitrary
least-squares estimate from the class {f*(y, 0): n.& By }.

ifm @o(B) < 1,ie. if mB"B < Tr (M7)~! (which is valid when A(M7) is sufficiently
small), then it follows from Proposition 6 that w*(d, f) < Tr(Mg)™ ' for all 0 <
<d< 1.

In the following proposition we will attempt the “percentual” reply. Hence we
introduce these new notations:

c=d(l—d)"'; T=<, +w);

t 1
[ + S
2 _ 2
Qm,d(t) = 7(r +'C) - 77(m Q(l ti) , eT;
1 1
-
1 m—1
an(d) = sup gn,d(1) -
tel
Proposition 7. The following inequality
w*(d, B) < 5
o S a,d) +d
Tr (M:)_l ( ) (Po(ﬁ)
is true for every d e (0, 1).
Proof. Using (16), we have
w*(d, §) Pu(M7)
17 AP < T%o) L g2 6 (B).
(1) T S T o)
Let now M e My be an arbitrary matrix and let v, > ... = », be its eigenvalues.
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Put 1, = vfv,, k= 1,...,m — 1. We have

ft Lot !

) — S s
(18) v M) (nte) (tw 1 ¥ (L+cp
Tram! LI ! + 1 .
z‘1 tm‘l
Therefore
(19) sup M < = sup et ).

MeMy + T:’\/I’1 - el
1<ksm-1
where g,(t,,...,1,_,) is the function of variables ..., t,—, (t; €T, ..., 1,,_, € T)
defined by the right-hand side of (18) Evidently
m— 1
YAt + 07+ [(m = D+ ]
Qd(ﬂ-,-»»: r,,;—1)= =l T

m—1

Sl + o=

Since
ﬁt@#ﬁ.’ﬂﬁﬂﬂf < afd) <
it (m—1)7!
forall 1, € Tand every “k”, 1 < k < m — 1, is valid, then
i+ )2+ [(m = D)1+ )] S ad) it + (m—1)71]

forall t, € Tand every “k”, 1 £ k £ m — 1, is valid, too. Hence
T+ 97+ [ - 00+ T @S5+ (- )7
Thus g(t;s ..o tyy) < a,(d) for all f,eT,..., l,,,;;e T, and consequently
(20) A,(d) £ a,(d).

On the other hand, for arbitrary t e T we have: ¢,(1, ..., f) = @, 4(1). From this
it follows that

(21) A,(d) = sup o1, ..., 1) = a,(d).
teT

Comparing (20) and (21) we obtain the equality A,(d) = a,(d), wherefrom, by
means of (17) and (19), we shall easily conclude the proof. ]

Remark 5. In the interval (0,1), the function a,(d) is strictly decreasing from the

value 1 to the limit value 0. The numbers a,,(d) can be calculated by minimizing
the function o, () on T([6]).
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D. Computation of A4 -optimum Asymptotical Design

According to the currently accepted terminology, we shall call an A optimum
asymptotical design (in the following only 4,-OAD) the asymptotical design which
leads to the matrix M*(d) minimizing the function ¥, on 9 (see Remark 4). The
problems of the computation of 4,OAD will be discussed here only briefly. Further
details, especially the proofs of the following statements, can be found in [6].

Since for @ > 0 and A4 e R}, the equality ¥,(ad) = a~"' ¥,(4) holds, and ¥,
attains on 9 minimum (Remark 2), the transition from the exact to the asymptotical
designs is justified (for the same reasons as in the special case of d = 0).

In opposite to the function ¥,, the function ¥, for & + 0 is rather complicated.
Therefore, a direct computation of the 4,-OAD is possible only in very simple re-
gression models of the experiment.

Example. Consider the regression model (9) in the form:

cax if =22 x50.

By =4 it o=xcl.
Evidently
a
E3(x) = [/:(). (0] (b> ,
where
x1f -2<x20, if —2=x20
fl(‘)*\o it 0<x<l’ folx) = if 0<x<1’
For the sake of simplicity of computations perform the designing on the finite set

X0 ={-21}.
Every asymptotical design & on X° leads for any “p”, 0 < p £ 1, to the matrix

M(p) = (417 1 (_)_ p) . We have:

L= L1 if 0<p<i
(I1=p+4cp)?® (L+c)4p
/ 4p 1 1 .
YiM(p) = — if :Sp<l1
AM()] [4p+((1~p (]+[‘)Z1—p °
+ow it p(1—p) =0

Denote p*(d) = arg mm ‘l’d[’W(p)J After some elementary computations it is

possible to verify that p*(d) e (57", 1) for all d € {0, 1). It is also possible to verify
that on the mtcrva] {571, 1) it holds:

(1) For ¢ < % there is 8* ¥,[M(p)]/p> > 0, which denotes the strictly convexity
of ¥, and the unambiguous determination of p*(d).

(2) For ¢ = 1 the function ¥, is strictly convex at the point p = % and strictly

concave in the right-hand neighbourhood of the point p = %; consequently, its
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course changes. But 6‘1",[1\1(1))]/8[; is always positive. It follows from this that in this
case p*(d) = ;.
In the following table we introduce for the same choice of “biased” values of “¢"
the adequate approximate values of p*(d) and ¥,[M(p*(d))].
c p*(d) Y IM(p*d))]

0-00 03333 2:250 000 011
0-02 0:3321 2:176 961 919
0-05 0-3301 2:074 314 135
010 03258 1-919 526 063
016 03191 1:756 518 467
0-22 0-3101 1-613 843 345
0-27 0-3002 1-:507 696 314
0-50 0-2000 IR REREEE

The choice of an iterative procedure suitable for the (approximate) determination
of the 4,-OAD is not simple. In fact, the function ¥, on Mt is in general not convex and
neither must the function, in addition, have the gradient everywhere on MM*. We
partly reduce these difficulties by means of the function ¥, , defined on R, by

— _ Tr[A + 2cr,(A)I]7" if AeRyd,
Paal ) = <+ © it A¢RM
where “q™" is a positive integer and t,(A4) = [Tr A~7]7 "%,

This function ¥, , is strictly convex and differentiable on RO

Let M e M*. Set #y(M) = Tr [M + 2¢ (M) T]~". It holds:

(22) 0 < Ty(M) — V(M) £ 2 Wy(M).
In addition we have:
(23) lim 7,(M) = A(M).
q— @

From (22) and (23) it follows that the function P, for a sufficiently large “g”
and for a sufficiently small “d” (e.g. for d < 4, which corresponds to ¢ < 0-04)
is a good approximation to the function ¥, on M". Therefore, the problem of the
minimization of the function ¥, on M" can be replaced by the problem of the mini-
mization of the function ¥,, on M*. For this new {(approximate) problem, the
optimum matrix (design) can be computed by means of Atwood’s iterative procedure

(2D

{Received September 24, 1987.)
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