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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 3 

ASYMPTOTIC THEORY OF PARAMETER 
ESTIMATION FOR GAUSS-MARKOV RANDOM FIELDS 

MARTIN JANŽURA 

The simultaneous estimation of the mean value and the spectral density of a Gauss-Markov 
random field is understood as a parameter estimation problem with a regular parameter family 
of probability distributions. A method for estimating is proposed and its asymptotic pro­
perties are investigated. Namely, the consistency, the asymptotic normality, and the asymptotic 
efficiency are proved. 

0. INTRODUCTION 

For the statistical analysis of spatial data on a regular lattice we use the Gauss-
Markov random fields to serve as the probability models. Due to Rozanov's [7] 
result, this natural assumption yields a quite easy form of the spectral densities 
with a finite number of unknown parameters. Since there is a one-to-one relation 
between these parameters and a corresponding vector of covariances, we can estimate 
the unknown parameters via estimating the covariances. The present paper is mainly 
devoted to deriving the asymptotic properties of the estimate as it is usual in the general 
theory of statistical estimation. We prove the consistency, the asymptotic normality, 
and the asymptotic efficiency, which are the typical properties of a maximum likeli­
hood type estimator (though our estimator is not exactly the maximum likelihood 
one). 

The proposed method of estimation does not generalize the techniques of time 
series analysis, which is quite uneasy in case of higher dimension random fields. 
Rather, it employs the ideas of the theory of Gibbs random fields as it was developed 
in frame of statistical mechanics. In spite of the fact that we do not explicitly need any 
result of this theory and all the steps could be performed without mentioning this 
connection, many of the results here are obtained by re-formulating the general 
results concerning statistical analysis of Gibbs random fields (cf. [4]). 

For the approach to the Gaussian random fields from the Gibbsian point of view 
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see Dobrushin [1], and Kiinsch [5] who has already proved some of the results 
with the aid of a bit different methods. The main improvement of the present paper 
consists in the assumption of unknown mean value and in the treating the problem 
of the LAN (locally asymptotic normality) condition and the efficiency. 

1. GAUSS-MARKOV RANDOM FIELDS 

By random field we mean a stochastic process on a d-dimensional lattice Zd, 
its distribution is a probability measure defined on the space •M1C~~ with the appro­
priate product er-algebra. If the distribution is translation invariant we call the random 
field stationary. 

Let us denote by R = {r <= 3Cd; 0 < \r\ < co} the system of all non-void finite 
subsets of the lattice &d (the symbol \r\ is used for the cardinality of the set r). 

A random field is Gaussian if the projections ~Pr, r e SK, of its distribution P 
are given by the appropriate finite dimensional normal distributions. 

A random field {Xt}tsSd is jSf-Markov, 0$Sfe R, if for every r e S\ the con­
ditional distribution of Xr = {Xt},Eir, given Xj = Xj for/ $ r , depends only on the 
values xj for / e dx,r = {k $ r; (k - Sf) n r * $}, i.e. 

P,-(- | xjj £ r) = ¥,-(• | xjj e -xir) a.s. [P] . 

A random field is regular if its distribution P, restricted to the tail a-
algebra f) ~{Xj, j i i'"}, is a trivial zero-one probability measure. 

•TeSt 

Rozanov ([7], Theorem 3) proved that a stationary Gaussian random field is 
j5?-Markov regular iff its spectral density is given by the expression 

/(l) = c(l-I«(0e^')-' 
tsse 

for X e [-Tt, 7t]d = Jf
d (the scalar product is meant by tX). 

In this paper we shall deal only with the random fields of such a type. 
Since the spectral density is a non-negative real-valued function, we may also 

write 
f(?) = c(\ - £ « ( . ) cos fAY1 , 

tsX 

and the symmetry a(t) = a(—t) must hold for every r e Sf, which implicitly means 
that the set SS must be symmetric, i.e. S? = — S?. 

Let us denote a(0) = c - ' , a(t) = — c~r a(t) for t e Sf, a(t) = 0 otherwise. Then 
we can easily see that 

a(t) = (27x)~d l,t e-itXf(i)-x dA for every t e 2£d , 

i.e. {a(t)}te&<i arethe Fourier coefficients of the function reciprocal to the spectral 

density. 
Simultaneously, according to the well-known one-to-one correspondence, the 

Fourier coefficients of the spectral density / are given by the covariance function, 
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R(k) = (2ny \Jd emf(X) dX = E[X,+k - /.] [X, - M] 

for every k, t e iSf1, where fi = EX, for every t e Sd is the constant mean value. 

A direct computation shows that 

Za(t)R(t + k) = S0k 
ts3C 

holds for every ks2Kd (here S0k is the known Kronecker's symbol), wherefrom we 
conclude that the infinite matrix A = (<<-(/ — s))t seSi is inverse to the infinite 
covariance matrix R = (R(t - s))tseSd. 

Using the above results we may express the conditional expectation 

E[X, - [> | X„ s + t]= £ a(s - t) [Xs - n] , 
se-2» + t 

the conditional variance 

E[Xt-n- I a(s-t)[Xs~fi]Y = c, 
saSe+t 

and, finally, the conditional density 

dP,(.v, | x„ s 4= t) = 

= exp { - \ «(0) x? - hxt - xt £ a(t - s) xs\ [Z,(xs, s # t)]~' dx, , 
snW+t 

where h = —/(Y^a(r), and Z,(.xs, s =f= t) is the appropriate normalizing constant. 
ley 

The formula above indicates that a stationary Gaussian random field may be 
understood as a Gibbs field with a finite range pair potential U, given by 

U{t}(xt) = i a(0) x, + fix,, teSd 

U((s)(A-„ xs) = a(; - s) x,xs, t, s e S" , t #= s . 

This approach to the Gaussian random fields, developed by Dobrushin [1] and 
partly by Kiinsch [5], will not be explicitly followed in this paper, nevertheless it 
seems useful to realize this connection. 

2. PARAMETER FAMILY OF GAUSS-MARKOV RANDOM FIELDS 

Let us suppose the set SC to be fixed. We denote Jt = {0} u {k e S£; k >- 0} c 
c 3Ed, where ">-" is some linear, e.g. the lexicographical ordering. 

Then the spectral density may be written in the form 

fD(k) = [2 . X U(k) cos kX] ~' for every X e Jd , 
ksJt 

where 1/(0) = \ a(0), U(k) = a(k) for k e J4 \ {0^, and for the mean value we have 

ft.tr = - [ 2 . Z U ( f c ) ] - ' . / 7 = -fv(0).h. 
keJl 
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From now, we shall not distinguish between a random field and its distribution 
and we shall use the term "random field" rather for the distribution. 

Thus, every random field under consideration is determined by the (1 + |„#|)-di-
mensional vector parameter ' = (h, U) = (h,{U(k)}keJ(), where l i e f may be 
arbitrary and the vector fie f ' J | should guarantee a correct definition of the 
spectral density. In order not to complicate further steps, we assume 

U e T>M = {U = {U(k)}keJ( e »W ; fv(k)~' = 2 . £ U(k) cos kX > 0 
keJl 

for every X e J'd] . 

The set of considered parameters is therefore given by the Cartesian product 
9M <g> 1>J( = 0 which is an open subset of ,'Mi + ]Ji{ thanks to the strict positivity 
which is required in the definition of the set 1)M. 

For every vector parameter 0 = (h, U) e 0 there exists exactly one stationary 
Gaussian jS^-Markov random field P e with the mean value fihiV and the spectral 
density fv. Thus, within the estimation problem we shall deal with the parameter 
family 

P = { P V o 
of probability distributions. 

First of all we shall show that the parameter family P satisfies a basic regularity 
condition which makes possible to construct asymptotically optimal statistical 
procedures. 

For fixed 9 e 0 and p e m1 + {Jt] we denote 

S e p = {reS\; 9 + | r | ~ 1 / 2 p e 0 } . 

(Note that J\0 p + 0 since 0 being open.) For the simplicity of the notation we shall 
write 

P?/p instead of P0/^'^, f e f i „ , 

for the corresponding finite dimensional projection. 
The parameter family P is said to be locally asymptotically normal (LAN) if for 

every fixed 9 e 0 and P E . ^ 1 + ' " * ' it holds 

d P o p 

= exp {pT A® - 1 pT r„p + G£} for every r e «e>p , 

where 

and 

dP,e 

G° -+0 in probability [Pe] 

V(A«) => N1 + M|(0, r.) for r s 2£*, 

i.e. A® tends in distribution [Pe] to the (1 + |^#|)-dimensional normal distribution 
with zero mean and the covariance matrix F0 . 

The convergence r /* S:d is defined to satisfy the condition l^"!"1- \V\\ ~* 1 f° r 

every k e &d, where rk = r n (f - k). 
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For every t" E !>\ with Vk =j= 0, k e ,///, let us define 

/V(x,,) = Kl" 1 !^ , 
tsir 

and 

%w = mr'iw+i.. fee^. 
tefit 

Obviously 

EPe[/V] = ^ i W and EPe[iWr,t] = Af„jP(fc) = R„(k) + nlv . 

Further, for every k, I e Z£A let us define 

Wp(fc, I) = (271)-" \,d 2 . cos kX . cos IX . [fv(X)f dX = 

= X /?„(/ + fc) [Rv(t + /) + /?<,(. - /)] . 
The latter equality holds due to the absolute convergence of the covariance func­

tion: £ \Rv(t)\ < oo (cf. Corollary VI1.1.9 in [8]) and the known relation fv(X) = 

= l3)ei'1. 
teZ'i 

Now, we may introduce the (l + \ji\) x (l + |y#|)-matrix 

«. _( fv(o) -2hfv(oy.\M \ 
T° - {-2hfv(oy iM w"^ + (2/o2/,(o)3. uj 

which will play an important role in what follows. By \M and \MiM we mean the 
vector and the matrix, respectively, with constant elements equal to one, while the 
unit matrix will be denoted by \MtM. 

Lemma 2.1. The matrix *P6 is positive definite for every 0 e 0 . 

Proof. For every c e PI, b e ,̂ '1"*1 we may write 

(c, bY T6(c, b) = /.,(()) (c - 2hfv(0) . \J
Mb)2 + 

+ 2 . (2K)-d {,„( £ K cos kxyfv(xy dX __: 0 
keJl 

while the equality occurs only for b = 0, c = 0. • 

Theorem 2.2. The parameter family P is LAN with 

A« = - l ^ ' I ^ O V - /.*.„, {M f>t - MlhV(k)}keM) 
and the positive definite Te = I V 

The proof will be given in Section 5. • 

Now, let us introduce the transform 

<P: 0 -> 3il + ]Jil 

defined by the formula 

*(«) = - U . p . \Mh,v(k)\keM) for every 8 = (h, U) e 0 . 
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Lemma 2.3. The transform <P is one-to-one. 

Proof. Let 0(8) = $(8) for 6, S e 0 . Then nh,v = Hn.o and Rv(k) = R0(k) for 
kej{. 

Let us denote hux(X) - [f0(X)y- . fv(X) - \ ~ \og {[fD(X)yL fv(X)}. Since 
hv D ^ 0 it must be J^ / i^ 0(X) dX ^ 0 and by symmetry also j ^ h o „(!) dX ^ 0. 
But LJVoW + h0,v(X))'dX = r , . ^ ) - / ^ ( [ / o W ] - 1 - [fv(x)y-)dx = 0 
by assumption and therefore $sdhv,0(X) dA = \sah0,v(X) dX = 0. Since hux, ^ 0 
it must hold hvX = 0 a.s. [dX\. And it is possible only if/t = f0 a.s. [dA], wherefrom 
we directly conclude that U = U and therefore also /) = h. • 

< » - ( > 
Let us denote by 

'*,y=o,...,|u»| 

the Jacobi matrix of the transform <P at the point 0 e 0 . 

Lemma 2.4. For every 9 e 0 the matrix J(0) is equal to *P0, and all its elements are 
continuous on 0 . 

Proof. The identity J(G) = *P0 can be obtained by direct differentiation, while 
the continuity of the matrix elements is straightforward. • 

Corollary 2.5. The transform <£> is regular on the open set 0 which namely means 
that the open subsets of© are mapped on the open subsets of 4>(&) c .#' + i*"l. 

3. PARAMETER ESTIMATION 

Suppose we are given a collection of observations xr = {x,},er e . # | f ' , f~ e SL 
generated by a random field P°° e P with an unknown parameter 0° e 0 . We shall 
treat the problem how to estimate 0° from the given sample. 

The transform <?-> has been introduced in order to estimate the parameter 0° via 
estimating the transformed parameter 

4>° = 0(0°) = -0v > l ; O , {Mho,vo(k)}keM) . 

The latter one can be easily estimated, namely we set 

$r(xr)= ~(flr(xr), {Mr,k(xr)}ksJl) 

(see Section 2 for the definition of the terms). Then $r is an unbiased estimate 
of <P°, and its asymptotic properties are investigated in the following theorem. 

Theorem 3.1. The estimate $r is consistent, i.e. 

$r -> 00 a.s. [Peo] , 

and asymptotically normal, i.e. 

£Po<|-r|1/2 ($r - 0°)) -> N1 + M|(0, Te.) for r S ^ . 
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Proof. The consistency follows from the rf-dimensional ergodic theorem (Theorem 
VIII.6.9 in [2]) and the asymptotic normality is proved in Lemma 5.5 and Theorem 
5.4. D 

Remark 3.2. For the asymptotic normality in the preceding theorem it is important 
to use the unbiased estimates Mrk, k e Jl, because the bias of the estimate M*tk(xr) = 
= 1^1"' £ xtxt + k could be bigger then the random fluctuations (cf. Remark 3A4 

tefk 

in [5]). 

Now we may define the estimate of the original parameter 9° as the inverse trans­
form of the estimate of the transformed parameter, i.e. 

Qir = 0~'($r) = 4>-l(-fir,{-Mrtk}keJt) . 

Unfortunately, the estimate 9f- is correctly defined only for 

$r- e <Z>(©), 

and the estimate {Mftk}keJt of the second moments does not in general ensure 
the positive definiteness of the empirical covariance function, which is a necessary 
condition here. Nevertheless, the following theorem holds. 

Theorem 3.3. The estimate Qr = 0~\$r) is defined with probability tending 
to one for V / XA. 

Proof. Thanks to the regularity of the transform 4> on the open set 0 , the image 
<f(9°) of 9° is an inner point of $(0). 

Therefore with some c > 0 we have 

P°°(<ly e <*>(©)) >: Pe°([|<fv - *°D < s) - I for -V /> %* 

due to the consistency of the estimate $r. D 

Thus, we could define the estimate Qr for $r £ (p(0) arbitrarily, but it seems con­
venient to define the estimate in a way which at least partially respects the given 
estimates of the moments, e.g. 

9V = <P~l(-(ir,{-Mrtk}keJt), 

where M f 0 = Mro and Mr<k — 0 for k 4= 0. 

The estimate Qr, obtained in such a way, need not be unbiased but its asymptotic 
properties may be easily derived. 

Theorem 3.4. The estimate Qr of the parameter 9° is consistent and asymptotically 
normal with the covariance matrix XV^. 

Proof. The consistency follows immediately from the continuity of the transform 
<P~\ Proving the asymptotic normality, we may proceed similarly as Rao [5] in 
Theorem 6a.2(11) and Theorem 6a.2(III). D 
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4. EFFICIENCY 

In this section we turn our attention to the question of efficiency of the estimate. 
Usually, an estimate is said to be (asymptotically) efficient if its (asymptotic) variance 
assumes minimal available value. But, this definition is meaningful only with some 
classes of problems and therefore we shall follow the general theory of efficiency 
based on Rao's definition of the notion. 

The estimate Qr of a parameter 9 e 0 is said to be asymptotically efficient (in sense 
of Rao) if for some non-random (1 + \J4\) x (1 + |^|)-matrix Ce 

\r\xl2 (8V - 0 - \r\-' C0 lr) -> 0 in probability [P9] 

for V 7 &a, where 

, . /v v / d l o g ^ U 
lAX^ ~ { d0, l 'j = 0,...,\M\ 

is the score vector. 
The definition states that Qr, appropriately centered and scaled, is asymptotically 

linearly related to the score vector / ' . 
It can be shown (cf. e.g. [9]), under the general LAN model, that, roughly speaking, 

if Qr is any other estimator satisfying some regularity condition, 

lim P6{|-f|1/2 (&V - 9) 6 Jf} = lim Pe{|r|1 /2 (&V - 0) e jf} , 
r/,Zd ir/2d 

where Jf is a (l + |^//|)-dimensional bounded convex set symmetric about the origin, 
i.e. Qr attains the maximal possible concentration about the true value of the para­
meter. For further discussion of this rather complicated problem see e.g. [3]. 

Here, we shall show that the estimate Qr of a parameter 9° e 0 , introduced in the 
preceding section, satisfies the Rao's definition of asymptotic efficiency. And again, 
we shall at first prove the property for the transformed parameter <P° = <£>(90). 

Lemma 4.1. The estimate $r is asymptotically efficient with C^o = *Pe0, i.e. 

\r\i/2($r - <P° - i T r l ^ S v O - O in probability [Pe°] . 

Proof. The statement follows immediately from the rules for differentiation, 
namely 

dOj fc=o d<Pk ddj k = o 

and Lemma 5.10 together with Lemma 5.5. • 

Now, we can easily obtain the result for the original parameter. 

Theorem 4.2. The estimate Qr of the parameter 9° is asymptotically efficient with 
CQO = T0O , i . e . 

| ^ | 1 / 2 (Qr - 9° - \r\~> ToV/f) - 0 in probability [P°°] 
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Proof. Using the idea of the proof of Theorem 6a.2(lll), [6], the statement 
follows from the preceding lemma. Q 

Since the LAN condition is satisfied in our case we may conclude that the proposed 
estimator is asymptotically optimal in the sense described above. 

5. AUXILIARY RESULTS AND LIMIT THEOREMS 

In this section we fix 9 = (h, U) e 0 and p = (h, U~) e i#1 + l'"1. Omitting the 
indices, we shall write R and R~ for the covariance functions, jand/for the spectral 
densities, /i and p for the mean values corresponding to the random fields P° and 
pe+hH-%^ respectively. 

In Section I we have denoted A = (a(t — s))tjS6a.„ the infinite matrix inverse to the 
infinite covariance matrix R. Similarly, we introduce the infinite matrix B = 
= (b(l - s))lse£,, defined by 

6(0) = 2U~(0) 

b(t) = b(-t) = U~(t) for teJi\ {0} 

6(f) = 0 otherwise. 

Obviously, A + [f\~ll2 B is inverse to R~. 

All expectations, variances etc. are meant with respect to the random field P° 
in this section. 

For the simplicity let us denote 

gr = /<. Brr lr + h \ r for every V e ft . 

Lemma 5.1. It holds 

(i) i lim \r\-l Tr ( (B^R^/ ) 2 ) = U~TW^,.«U~ ; 
•r/sed 

(ii) lim \r\-> &R,-i'gr = j(0) (h - h /(0) 2 lT
MU~)2 . 

Proof. We may write 

i |f-|-'Tr((B^-R^)2) =. i 1 1 b(k) 6(/) . 
k,le&d 

. I \r\~x \r n(f - t)n(rT - t)n(r - k- f)| R(t - 0R{t + k) • 
teS" 

But \f-\~1 \T n (V - 0 n (f - t) n (f - k - t)\ -* 1 for V / 2£* for every 
fixed k, 1, t e 2£A, and therefore, due to the dominated convergence theorem., the limit 

* I I *(*)*(*) I *('-/)*('+&) = 
k,le£d tsSTd 

= i 1 1 v » U~(l). I [J?(( - /) + *(t + 01 [*(' + fc) + *(< - fc)l = 
= v~Tw^U~. 
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Similarly, we can show 

|^ | -11„B„„1„-IRO)=/(0); 
teXd 

\r\-' 1TB,-„R„„ 1 , - - / ( 0 Y 2 . 1 \ U ~ ; 

\r\-' l T B „ „ R „ „ B r , , l „ - * / ( 0 ) . (2 . 1T„U~)2 , 

which (if we realize /( = —hf(0)) proves (ii). rj 

For any N x N-matrix D we denote 

£>(Z>) = max \cj\ 
; = i , . . . , / v 

where c., j — 1, ..., JV are the eigenvalues of the matrix Z). 

Lemma 5.2. For every fixed A e £# it holds 

(i) lim exp {--1- iA|f |"1 / 2 Tr(B„ rR r„)} [Det ( l , , r - \X\r\ " 1 / 2 B„„R„„)] " , / 2 = 

= e x p { - i A 2 U ~ T W ^ U ~ } ; 

(ii) lim exp {-\l2\r\ - ' gT R„„(l„„ - iX\r\" 1/2 B„„Rr„)-» g„} -
-f/IStd 

= exp { - i A 2 . /(0) . (ft - h . /(0) . 2 . 1T U~)2} . 

Proof. Denoting K„ = £ |A(t)|, K* = £ \R(t)\ we have S(iX\r\'i/2 B „ r R r r ) < 
teitd teXd 

= |TT|-1 / 2 | A | K 6 K R < 1 for sufficiently large \r\. 
Thus, we may write 

[Det (I„„ - iA|^|"1/2 B,,„R,-„)]-1/2 - exp {± £ „ - Tr [(iX\r\^2 B„„R,-„)"]], 
Ji = 1 

Since 
| T r [ ( i A | i T | - 1 / 2 B r r R r r ) " ] | = | y^ | [g ( /A | i r | - 1 / 2 B r r R„„) ]" = 

^l^ l ' -^dAl^K,)" 
it holds 

| f „-' Tr[(iA|r|-1/2Br„Rrr)"]| = f (n + 2)"1 \r\~"'2 (\X\KbKR)"+2 < 
n = 3 » = 1 

= (|A| K„KR)2 |log (1 - \r\'1/2 \X\ KbKR)\ - 0 for TT / a* . 

Wherefrom we directly obtain 

l i m e x p { - i i A | r | - 1 / 2 T r ( B r r R r „ ) } [Det ( l „ r - ;A|y/]~1/2 B„„R„„)]" 1 / 2 = 

= lim exp {-U2\r\~l \ Tr [(B„,-R„ r)
2]} = exp {-iA2U~T WJUCU~} 

r/ts* 

according to the statement (i) of Lemma 3.L 
Further, due to the given bound for the maximum eigenvalue we may also write 

(I„„ - iA |^ | - 1 / 2 B„„R„„)-* = I (\X\r\-1'2 B„„R„„)", 

n = 0 
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and therefore 

g(Rrr(lrr - /;.|^|-1/2Br,,R„,,)-1 - Rrr) = g(Rrr^(iX\r\-i/2BrrRrr)") 

- f,\x\n\r\-n/zKiKn^1 = \r\~i/2 \x\KhK2
R[\ ~ \r\-"2\k\KhKR]-x ->0 

n = 1 

for r /i 2£* . 
Since 

\A'X g tgr £ h2 + 2|M| ^ + A ' = K, 
we conclude 

| ( r | - ' gT
r(Rrr(lrr - i A l ^ l - ^ B ^ B w ) - 1 - R r r ) g , | g 

< \r\-l/2K, K1^M > 0 for r / & 
" ' ' 1 - | A | X 6 K R | ^ | - 1 / 2 

which, together with (ii) of Lemma 5.1, yields the second statement of the present 
lemma. • 

Now, let us define the linear-quadratic form 

Fr(Xr) = \X\BrrXr + h l\Xr for every 1T e ft . 

Lemma 5.3. It holds 
(i) E[F„(X,,)] = i(Tr (B„ rR,,„) + ti2 lTBy,,. 1,,) + fih 1T lr ; 

(ii) var [Fr(Xr)] = | Tr [(B,-„R,-r)
2] + gTR^g*- ; 

(iii) l im| - r | - 1 var[F„ (X,, ) ] = p T ^ 0 p . 

Proof. By direct calculation, properly substituting for the moments of the normal 
distribution, we obtain the statements (i) and (ii), while the statement (iii) is proved 
in Lemma 5.1. • 

Theorem 5.4. (CLT). The form Fr(Xr) is asymptotically normally distributed, i.e. 

&(\r\-l/2 (Fr(Xr) - E [Fr(Xr)])) =- N(0, pT4»0p). 

Proof. We express the characteristic function 

Vr(X) = Eexp{iA|r-|-1/2(F,,(X,„) - E [Fr(Xr)])} = 

= exp { - i \X\r\-1'2 Tr (B„„R,-,,)} . (2n)~^/2 [Det ( R , , ) ] - " 2 . 

. J exp {~\(xr - n 1,-)T (Rrr - U | ^ | " 1 / 2 B,,,,) (,v,- - p 1,-) + 

+ iA|f |~1/2
 g

T (x„ - n 1,,)} dxr = exp { - i iA |^ | - 1 / 2 Tr (BrrRrr)} . 

.[Det(I,-„ - \A\r\-i/2BrrRrr)]-1/2 . 

. exp {-±p\r\-1 gT-R,^(F,,,, - i A | ^ | - , / 2 BrrRrr)~
lgr} . 

Thus, according to Lemma 5.2, 
lim<?V(A) = exp{-|A2pT 'F9p} 

-tr^g* 
which proves the theorem. • 
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Lemma 5.5. It holds 

var (\r\~1/2 Vr(Xr) + pT Ar) -* 0 for r / 2£d. 

Proof. Since 
Fv = \r\ HfLr + X \rk\ U~(k) Mr_k 

keJl 

we have 
var(|^|-1 /2F„(X r) + f A°r) = M " 1 var ( £ ( M * - |^ |) U~(k) Mr>k) < 

keJt 

= |UT| l^l"1 £ ( | n | - M Y (t/~(!c))2 var (Mr.k) = 2R(0) | .// | . 
knJl 

."L(u~(k))2\r\-1 \rk\~
l(\rk\ - \r\)2^Q for r / sd. • 

ka.M 

From now, the further steps are directed to the proof of Theorem 2.2. 

Lemma 5.6. It holds 

R~ = R - | y / ' | - 1 / 2 R ~ B R = R £ ( - | - r | - 1 / 2 B R ) " . 
n = 0 

Proof. The first equality is straightforward if we realize R~ _ 1 = A + \r\-1,2B = 
= R"1 + |f |-1 /2 B. The second equality follows from the first one since @(BR) = 

= K < oo. • 

As a corollary to the preceding lemma we have 

£ \R~(t) - R(t)\ < oo , 
rear'1 

or, more generally, the convergence £ |Rp(t)| is uniform for U from some neigh­
borhood of U "Ea"i 

Lemma 5.7. It holds 

(i) lim Tr {[(R r r
 l - R~r - \r\~l'2 Brr) R^,]2} = 0; 

(i.) lim [(n - 0) R~r
 l 1,- - \r\-ll2 grf Rrr[(n - H) R~; ' l f - | T T | - ^ g r ] = 

= 0. 

Proof. Let us denote Drr = Rrr - R ^ - \r\~112 RrrBrrRrr. Then 

T r ^ R ^ " 1 - R - - | ^ r i / 2 B , , . ) R f , ] 2 } = 

= Tr{[Ry2R;-^D,^R-; / 2][RV;R;- iD„,R^ l / 2]T} < 

= [C(R#) e(Kr') e (R^ 2 ) ] 2 . Tr {Dt,.D
T,r} 

due to a well-known result of the matrix calculus 

From Lemma 5.6 it follows that 

Drr = | - r | -V- [RrrBrrcRrcr + R 7 ^ B ^ R ^ + R ^ c I W < , R ^ ] . 

Hence, if we substitute this expression into T r(DwDT . , .) we can easily find that 
all the terms tend to zero and therefore T r ( D „ D T \ tends to zero for r s 2£d. 

ill 



Since 

[Q(Rl,2)Q(R7r
l)i>(Rr7'2)]2 £ max / ( l ) [min / (A) ] - ' [min/(2)] - 2 < C < oo , 

the proof of (i) is completed. 

In order to prove (ii) let us denote 

qr = [(/i - fi) R ~ 7 ' 1,- - \r\-ll2sr]-

Then we may write qTRY ,q f <. e{Rrr ^n-R-rr ') (Rrrl-c)7 (Rrr~*)- Obviously, 
it holds 

\*~\~l .lT
rR7r.lr^f(0) 

| ^ | - 1 . l T - R ; t . B r , - . l r - / ( 0 ) . 2 . 1 T , U ^ 

\-T\-1 .irR~rR7ir.lr^f(0)2 

j - r j - 1 . l ,TR;,-R; rB,„-. lr - / ( 0 ) 2 . 2 . 1T,U~ 

\r\~> . lT-B,- rR;,-R; rB,- r . lr - / ( 0 ) 2 . (2 . 1T,U~)2 . 

Further, since /(0) - /(0) = |iT|" 1/2 . 2 . l ^ U~ / (0 ) / ( 0 ) and /< = -hf(Q), we 
have 

| f" | 1 / 2 ( / ( - /I) = | ^ | 1 / 2 ( - / ; / ( 0 ) + (h + | l / | -1 / 2 / ,) /(0)) = 

= hf(0) - /!/(0)/(0) [2 . 1T,U~] - / ( 0 ) [/? + / i . 2 . 1T,U~] . 

Using all these results we obtain 

(R7r~rY (R7r~r) -» 0 . 

And again g(R~; * Rr,7R~,7*) < max/(A) [min/(A)]"2 < C, < co and the proof 

is finished. • 

Lemma 5.8. It holds 

(0 lim {i log Det (R~7 ' R r r ) + i Tr (lrr - Rrr ' Rrr)} = ~ i v~T W ^ U ~ 
r/sed 

(ii) lim JT̂ V1 - l^R^1 .lr*-/®-1-
r/xd 

Proof. Since, according to Lemma 5.6 

R ~ 7 % , = lrr + \r\~112 R ~ 7 ' R ~ ^ B R W 

and 

Q(RrrlR7zdBR^r) £ C3 < oo , 

we obtain by the same arguments as in Lemma 5.2 that 

lim {i log Det ( R ~ - ] R,-,-) + \ Tr ( l r r - R~/ ' R,,-)} = 
r/xd 

= - I l i m l T r ^ W - R — ' R , , - ) 2 ] . 
r/zd 

Therefore by the obvious inequality 

| | T r [ ( L , - - R ^ ' R , - , - ) 2 ] - i T r [ ( | T T | - 1 / 2 B w R f V ) 2 ] | < 

g i T r ^ R ; / 1 - R,;,1- - | ^ | - 1 / 2 Brr) Rri)
2] , 
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together with Lemma 5.1 (i) and Lemma 5.7 (i) we finish the proof of the first state­
ment. 

In order to prove the second one we observe that 

\r\~i j lT-R-: ' lr - llArr V | _ \r\" (\rV'2 K*rr h + 

+ ll(Arr° + VtU1 -W- ) - W - ( - W + \^\~"2 ~ W ) h) - 0 for r S & 

and 
\r\-'. llArr U - 2 Y. U(k) = f(0)~l . D 

ksM 

5.9. Proof of Theorem 2.2. 

We may write 

dP e 'p 

log _ £ - (A>) = -i(Xr - /7 1,/)T R; . ; \Xr - fi lr) + 
d P r 

+ i(Xr - /< lr) Rrr(Xr - M lr) + i log Det (R~,;' Rrr) = Q 1 ^ . ) + Q^., 

where 
Qr(x,) = i(xr - n iry [R-y - R~-•] (xr - n i,-) _ 

- (fi - fi). llRrr'(Xr - fi. 1,) - i Tr (I,-r - R ~ ^ R ^ ) , 
and 

Q2- = 4[log Det(R~- 'R,-<) + T r (W - R ^ R , , - ) ] - i(fi - fi)2 . l J R ~ ; ' Iy 

Here, we have 

var(Q]jA' r) + J y - | - ' / 2 F r ( ^ . j ] = 

= var [i(Xr - fi . lr)
T [Rrr - R ~ 7 ' + \r\~ l / 2 B,- t] (Jfr - fi . lr) -

- 4Tr(L-y- - R~T>Ry.r + \r\-"2BirBrr) + 

+ [\i'T'/2 8r -(n-fi) Kr lrY(Xr ~ H • h)} = 

= i Tr [ ( ( R ^ - R ; - 1 + \r\-"2 Brr) Rrr)
2] + 

+ \\r\~112 Sr - {fi - fi) Krl • LjT R r , { M " 1 / 2 gr - (n ~ fi) Kr ' • L ] - 0 

for r s 2?d due to Lemma 5.7. And by Lemma 5.5 we obtain 

var [Qr(Xr) ~ PT K] -> 0 for t' / &' . 

Finally, in the proof of Lemma 3.7 we have shown that 

\r\1'2 (^ - fi) -+/(o) r, - f(oy h 2. iT
(lu~, 

and therefore Q2 -» - 4 pTTeP for r /• %* by Lemma 5.8. Q 

Now, let us denote 

Mr) - (Wr) - d^"'i k,(Xr) - '-Ogg* 
\ dh ( oU(k) 
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Lemma 5.10. It holds 

\r\~' var [F. (X.) + pT/. (X,,)] -• 0 for ^ . _•- . 

Proof. By direct differentiation we obtain 

#,*(*.) = -j(o) • 1. R.. (x. - . • L-) 
and 

#,_(_>) = - 2 / ( 0 ) . \T
rR;4(xr ~ . . i,-) -

- •_[(_> - . . 1 ,Y R r . R?. R. . ( ^ - - /i . V ) - Tr (R^R<&)] , 

for key//, where 

R . >(j. .) . _ ^ ( A ' 1 _ (2 re )-< f 2 c o s {j _ /) A c o s (/cA) [/(A)]- d l = 

= W(./ - /, k) for every ./, / e i f , kg .// . 
Thus, 

fir(xr) « - [ « + . 2 . i _ t r ] / ( o ) IT-R;+(X, - /< • L) -

- ±[(_V - .i . 1,-)T R^/-Rf-_/„BR^„.R-;-(X,. - ,. . lr) - Tr (R^R_. ,JlR,4 f .)] 

since 

X ir(fc) R(*'(_ , /) = \ _r B% °) (lKYd U 2 cos 0' - 0;-cos Xk • 
ke.lt keXd 

. I R(t) ei ,A/W dl = __ I R(t - ./) »(f - k) R(k - I) 
teO:d t.keS'' 

for every /, / _ 3?d . 
Thus 

\r\~x var[F..(X^) + pT/°(AY)] = l ^ - 1 _ Tr [ ( B ^ R ^ B R ^ - B f fR f f)
2] + 

+ |'r|-' [g.- - (h + M2 . i„ , i r ) / (o) R;-,1- . i . ] T Rvr[g,- - (h + / ( 2 . iT.U~). 

./(O)R^-.l.-] 

~> 0 Tor f". 3"1, similarly as in Lemma 5.7. D 

6. CONCLUDING REMARKS 

I. The method for estimating could be used in a non-Gaussian case as well. We may 
just consider random fields with spectral densities of the given form. Nevertheless, 
the deriving asymptotic properties would be much more difficult (if not impossible 
without any additional assumptions). 

II. The implementation of the method is connected with the "thermodynamical" 
properties of the random fields. We postpone this and some related questions for 
a forthcoming paper. 

(Received October 21, 1987.) 
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