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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 2 

On a Solution of an Optimization Problem 
in Linear Control Systems with Quadratic 
Performance Index 

NGUYEN CANH 

This article represents an iterative procedure for determining of the optimal control for the 
linear control systems, with a quadratic performance index, using special Hilbert space. The 
results, obtained in this paper, will be useful for solving of linear problems, in which the admis­
sible control is a measurable, bounded function, with values in any determined convex set. 

1. FORMULATION OF THE PROBLEM 

We shall consider the linear control system defined by the vector differential 
equation 

(1) ^-=A(t)x(t) + B(t)u(t) 
dí 

with initial condition 

(2) X U = xn 

Here x(f) is an n-dimensional state vector for each t, u(t) is an r-dimensional 
control vector and A(t) and B(t) are n x. n and n x r matrices, which are continuous 
in the time t. The control u(t) will be called an admissible control if every component 
ut(t) of the control vector u(t) is measurable and satisfies the constraint 

(3) Ht)\ = l, i = l,2,...,r, 

for any time over [0, T\. We shall denote the set of admissible controls by U. 
The performance index to be used below is defined as 

(4) J[u] - f V w Q(t) *(') + «*(')R <*)} d< • 



Here Q(t) is an n x n positive semidefinite symetric matrix which is continuous 109 
in the time t, R is an r x r positive definite diagonal matrix with positive constant 
elements, T is a fixed time and * denotes the transpose of a matrix or of a vector. 

The problem is then to choose an appropriate admissible control vector u(r) 
so that the performance index J[u] is minimized, subject to (1) and to the additional 
condition. 

The procedure used for solving this problem will be based on the method described 
in the article of T. Fujisawa and Y. Yasuda [2], in which a similar problem has been 
explained. 

All necessary theorems and illustrative example will be mentioned. 

2. FORMULATION OF THE OPTIMIZATION IN THE HILBERT-SPACE 

Let Hm be a real Hilbert-space of m-dimensional functions square integrable 
over the time interval [0, T] 

(5) Hm = | y | y = j ; ) , ykeL2[0,T], k = 1, 2 , . . . , m l . 

Let us denote the inner product of two m-dimensional vectors x and y in the 
Hilbert-space Hm by (x, y)m, which is defined by 

(6) (x, y)m = f Tx*(t) y(t) dt = £ f %(t) yt(t) dt. 
Jo « = 1 Jo 

xi(t)> J;(t) are ith-components of the vectors x(t) and y(t), and the norm of any 
element x e Hm by 

(7) | | x | m = + V ( x , x ) m . 

Lemma 1. The set of the vector functions in the vector space defined above satisfies 
the following axioms of addition and scalar multiplication of inner product 

(8) (x, x)m ^ 0 for each x e Hm , 

(9) (x, x)m = 0 implies x = 0 almost everywhere , 

(10) (x,y)m = (y ,x ) m , 

(11) (<*1*1 + «2*2, y)m = «l(*l» y)m + « 2 (*2 . Y)m 

for any real numbers aj and a2. 



110 Proof. According to the defining above, we shall have 

( x , x ) m = f x * ( f ) x ( f ) d t = £ fx*(i)dt. 
Jo i = 1 Jo 

The integrand of the last term of the equation is a positive definite quadratic form. 
Hence (8) and (9) obviously hold. 

Now we shall proof the thirth property 

(x, y)m = fx*(t) y(t) dt=t Fx{t) y{t) d. = 
Jo . i=1 Jo 

= £ [Tyit)xtt)at- ry*(t)x(t)dt = 
i = 1 Jo . Jo 

= (y,x)m. 

The relation (10) is proved. Finally 
m /.r 

((a-x. + a2x2), y)m = £ (ajXu + a2x2j) y, df = 
i = 1 Jo 

» f t » ft-

= «i Z xny«d* + «2;X x2iy;dt = 
•=i Jo i = 1 Jo 

= ai(xi»y)m + «2(x2,.yjm- ,, 

The lemma above is proved. 
Then the state vector x(t) (0 ^ t ^ T) will be in f/„ and the control vector can 

be taken in Hr. 

Lemma 2. The set of admissible control U defined above is a convex bounded 
and strongly closed in the Hilbert space Hr. 

Proof. First, we shall prove the set U is convex. It means that for every ue U 
and v e U and for 0 £ 9 ^ 1 the points (1 — 0) u + 9v also belong to the set U. 

According to the property of the admissible control U we have 

(12) (1 - 9) Himm + 9vimm = (1 - 0) u; + 9vt £ (1 - 0) uimax + 0 i w , 

"irnin = t'imiii ~ ~ 1 > 

Uimax = t'imax = 1 • 

From the relation (12) it follows 

- l "*-'(i - 0 ) u , + 0t?jk l . 

f ( i - 0 K - ^ l < n . 



The convexity of the set U is proved. I l l 
It is easy to see that the set U is bounded in the Hilbert space Hr. 
In fact, for any u e U there is 

Hr = \\Í \Tu](t)át\\^rT 
•=i Jo 

hence 

IHI = V(^)-
The set admissible control U is measurable and bounded in the Hilbert space Hr, 
therefore the set U is complete in Hr. It means that any sequence {u/} satisfies the 
following relation 

||u„(f) - um(t)\\r < e 

for n, m > N(e), or in other symbols 

І [ » ř п ( 0 - " i m ( 0 ] 2 d ť } < £ 

for n, m > N(e), (the sequence { u j converges into themselves), then {u,-} has the 
limit u° e U. 

lim Uj = u° . 
J-.CO 

The solution of (1) with the initial condition x(0) is given by 

(13) x(i) = *(f) x(0) + '#(«)' f' * - X ( T ) B(T) U(T) dT 

where <P(t), the n x n fundamental matrix satisfies the following matrix differential 
equation 

(14) 4>(t)=A(t)<P(t), 

(15) #(0) = / 

(/ is n x n identity matrix). 
For notational simplicity, we shall denote 

(16) wM^p)*"1^ for '-V'.-1 

( 0 if otherwise . 

Clearly W(f, T) is an n x r matrix, and by the condition (16) we obtain 

(17) f W(t, T) U(T) dT = f' W(t, T) U(T) dT + f W(t, T) U(T) AX . 
Jo Jo J < 



112 Then the solution (13) can be rewritten as follows 

(18) x(t) = $(t) x(0) + f W(t, T) U(T) dT . 

We define a linear integral operator P on Hr by 

(19) 

Lemma 3. The linear operator 

P(u) = f W(t, T) U(T) dT . 

ator 

p(u)= f W(ř,T)u(T)dT 

defines a bounded operator and maps space Hr into space H„. 

Proof. The matrix W(t, T) is bounded in the region 0 < t ^ Tand 0 ;2 T ^ T, 
because the matrices <&(f), < P _ 1 ( T ) , B(T) are continuous with respect to the time 
variable t, which satisfies the relations 0 < t g T, therefore the (i,j) element Wv 

of the matrix W(t, x) is bounded in the region 0 < t <t T, it is meaning that exists 
a positive constant K2, which satisfies 

(20) f f \WtJ(t, T)\2 df dT < K2 < oo . 
J o J o 

Applying Schwarz inequality to the ;-th component of the term 

I Җ/ t ,т)u,(т)dт 

there holds 

(21) Җ,( ř ,т)u,(т)dт ^ | Г ; , ( ř , т ) | 2 d т |« ,(т) | 2 dт. í> 
Integrating both sides with respect to the variable t over [0, T], it follows 

(22) dř Wu(t,x) uj(x) dт Sťjj-X T)|2dT = K 2 | | u i 

Here || |J denotes the usual norm in L2[0, T]. We know that the norm of the summ 
is less or equal to the summ of the norms of the terms in this summ. Hence 

(23) Д j o ^ Д т ) u , ( т ) d т -5 *£!".. 



and for the norm of the vector 

W(t, т) u(т) dт 

in the space H„ it holds 

(24) W(t, т) u(т) dт = VW^I:WI = 

-WOO* /'-IJHI2 = VH*H|r-
It follows 

(26) P(u) Sj{nr) K\\u\r. 

By the same procedure mentioned above, we have the operator 

(26) R(u(t)) = R u(t) for t e [0, T] . 

It defines the symetric positive linear bounded operator from Hr into Hr. There 

exists a positive constant M > 0 such that 

(27) (u,Ru\ ^ M(u, u)r = M| |u | | * . 

Let M be the smallest eigenvalue of the positive definite matrix R. 

The operator Qx is also symetric, positive linear bounded operator from Hn 

into H„. 

Then the performance index can be written as follows 

(28) 

Here 

J[и] = (P(u) + g, Q(g + P(u)))„ + (u, Ru)r 

g = #(t) x(0). 

This equation can be expanded to give 

(29) J[u] = (g, Qg)n + 2(Qg, P(u)\ + (P(u), Q P(u))n + (u, Ru)r. 

Now let P* be the adjoint operator of P, then P* maps H„ into Hr and satisfies 

the relations 

(30) P*(u) = f W*(t, T) u(t) dt, 

(31) (x,P(u)) = (P*(x),u), 

where x e H„ and u e Hr. 



114 Thus equation (29) can be written as 

(32) J [u] = (g, Qg\ + 2(P*(Qg), u)r + (u, P*(QPu))r + (u, Ru)r. 

It can be proved as follows 

(33) (P*(Qg),u)r = (Qg,P(u))r = 

= f dtg*(t)Q(t) f W(t,r)u(r)dz. 
Jo Jo 

Changing the order of the integration in (33), it yields 

(34) (P*(Qg), u)r = r | T { W*(t, T) Q(t) g(t)}* dt u(r) dr . 

Equation (34) shows that 

(35) P*(Qg) = f TW*(t, T) Q(t) g(t) dt. 

From (35) it follows that 

(36) P*(Q P(u)) = f dt W*(t, T) Q(t) f' W(t, s) u(s) ds . 

Changing the order of integration (36), it yields 

(37) P*(Q P(u)) = fT j fT W*(t, T) Q(t) W(t, s) dt) u(s) ds . 
J o Umax(r,s) J 

Since 

(38) (P*(QP))* = P*(QP) 

the linear bounded operator P*(QP) on Hr into Hr is self-adjoint. 

Moreover since 

(39) (P*(Q P(u)), u)r = (Q P(u), P(u)\ ^ 0 

for arbitrary u e Hr, the operator P*(QP) is positive. 

By defining 

(40) a = (g, Qg)n, 

(41) h = 2P*(Qg) e Hr, 

and 

(42) L = P*(QP) + R, 



the equation (32) can be rewritten as 

(43) J[u~\ = (L(u), ii), + (h, u)r + « . 

The operators P*(QP) and R are self-adjoint and strictly positive, hence the operator 

(44) L* = L, 

and L is strictly positive. Therefore 

(45) (L(u), u), = (Q P(u), P(u))„ + (Ru, u)r ^ (Ru, u)r £ M||u||2 

which hold for any u e Hr. 
The minimization problem is to find u° e U such that 

(46) J[u°] = min J[u] . 
ueU 

Theorem 1. There is one and only one element u°, which is solution of the problem 
demonstrated above. 

Proof, a) Prove the existence. Functional J[u~\ ^ 0 for any u e Hr, hence exists 
its nonnegative infimum on U. From property of the infimum, there exists a sequence 
{u j of elements of U such that 

(47) lim J[Ui~ = inf J[u~] . 
£->co ueV 

Now we shall show that the sequence {u,} converges strongly to an element u° e Hr. 
In order to achieve the above desired aim, we shall use two following addition 

equations, which hold for arbitrarily chosen elements u and v of 7Jr 

(48) (R(u - v), u - v)r + (R(u + v), u + v)r = 2{(Ru, u)r + (Rv, v)r) , 

(49) (QҢҢ u + v\ \ „ u + v\ \ / „ u - v\ „ /u - v 
+ g h pI—r-\ + S) + Qp ——)> p 

2 ) )„ \ \ 2 J \ 2 

= ^{(Q(P(u) + g), P(u) + g)„ + (Q(P(v) + g), P(v) + g\] . 

After some simply changes of these above equations it follows 

(50) (Q P(u - v), P(u - v))„ + (R(u - v), u - v)r = 

= 2(J[u] + J [ v ] ) - 4 j | ^ p J . 

We see that 

(51) (Q P(u - v), P(u - v))„ + (R(u - v), u - v)r ^ 

^ (R(u - v), u - v)r l> M\\u - v | 2 . 



116 Using the relations 

(52) 0 = M\\uj - u ; | |
2
 = (Q P{ut - uj), P(u{ - u,))„ + 

+ (R(u( - uj), u ; - uj)r = 

= 2(J[uř] + j[u/])-4Jp^] 

and because of the fact that the set U is convex and the points u;, u ; belonging to U, 
the point (u ; + uy)/2 also belong to U, therefore 

(53) j r U ^ l = infj[u]. 
. 2 ueU 

From (52) and (53) we obtain 

(54) 2 ( J [ u ; ] + J [ u , ] ) - 4 J ^ ^ ± ^ ] = 

= 2(J[u ; ] + J[uj]) - 4 inf J [u] . 
uetf 

Let i, j tend to infinity, then the right-hand side of the above inequality tends to zero, 
and hence 

(55) | u , - Ujjr -> 0 for i,J-+ao, 

the set U in the space Hr is complete, there is a sequence {u j in U such that 

(56) lim u ; = u° 
i->00 

and U is a closed set in Hr, hence u° e Hr and 

(57) lim J [ u ; ] = J[u°] , 
i-»00 

(58) J[u°] = inf J [u] = min J[u] . 
ueV ueV 

b) Prove the uniqueness. We suppose that, u° and v° are two distinct optimal 
points. Since the strictly convexity of the functional J[u] yields, for any 9 e (0, 1) 

(59) J[0u° + (1 - 9) v°] < 6 J[u°] +(l-9) J[v°] = J[u°] 

J[u°] = min J[u] 
ueV 

which is the desired contradition. 
Now we shall find the necessary and the sufficient condition for an optimal control. 



We see that the last term of the right-hand side of (43) is a constant, minimizing J[u] 
is equivalent to minimizing 

(60) I[u] = J[u] - a = (L(u), u)r + (h, u\ . 

We may expand I[u] to 

(61) I[v] = I[u] + (2L(u) + h, v - u)r + (L(v - u), v - u)r. 

The operator L is positive, the third term on the right-hand side of the equation (60) 
is non-negative, therefore 

(62) I[v] - l[u] ^ (2L(u) + h,v - u\. 

From here we shall obtain the necessary and sufficient condition for a control to be 
optimal. 

Theorem 2. The element u° in the set U is optimal of the problem expressed 
above, i.e. 

(63) I[u°] = min l[u] , 
ueV 

if and only if the following inequality holds for any ueU 

(64) (2L(u°) + h, u°)r S (2L(u°) + h, u)r. 

Proof, a) To prove the necessity, let q be an element of U, such that 

(65) (2L(u°) + h, q)r < (2L(u°) + h, u% . 

From the relation (61), for any point u, which is on the line-segment between qu°, 
it follows 

(66) l[9q + (l~6) u°] = I[u° + 6(q - u0)] = 

= I[u°] + 0(2L(u°) + h,q- u°) + 

+ Q~(L(q - u°), q - u°) . 

The operator L is bounded, the set U also is bounded hence (L(q - u°), u - u°) 
is bounded and therefore it exists a positive number K > 0 such that 

(67) (L(q-u0),q-u0)r^||L||||q-u0f g K . 

By choosing the value of 6 sufficiently small, the value of the right-hand side of the 
equation (66) may be smaller than the first term / [u°] , due to the convexity of the 
set U the point O.q + (1 • — 6) u° belongs to the set U, which is a desired contradiction. 



b) The sufficiency is evident. We shall use the inequality 

(68) 7[o] - / [u°] £ (2L(u°) + h,u- u°)r > 0 , 

hence I[u~\ ;> J[u°] for any u e U. 

3. ITERATIVE ALGORITM FOR FINDING THE OPTIMAL SOLUTION 

For the first approximation u0 e U can be chosen arbitrarily. Suppose that ukeU 
of the k-th cycle has been found. Then one cycle of iteration is as follows: 

(i) We compute 2L(ufc) + h, where L and h are given by (42) and (41). 
If 2L(uA) + h = 0, then the optimality condition is satisfied for u° = uk. We set 

uk = u° and the iteration terminates. 
If otherwise go to (ii). 

(ii) We shall find vkeU such that 

(69) (2L(ufc) + h, vk)r = min (2L(ut) + h, u)r. 
ueU 

If the following equation holds 

(70) (2L(uk) + h,uk)r = (2L(uk) + h,vk)r, 

then the optimality condition is satisfied and let uk = u°, the iteration terminates. 
If otherwise go to (iii). 

(iii) We shall find 0k (0 < 8k < 1) such that 

(71) / [ ( l - 6k) uk + 0kvk] = min / [ ( l - 6) uk + 0v„] 
o g e g i 

and calculate uk+1 = (1 - 0k) uk + 8kvk. Go back to the step (i) of the following 
cycle. 

The sequence {u,} of control, which is founded above, converges to an optimal 
control u°. 

Now we shall show the convergence of the procedure demonstrated above. We shall 
prove l[Uk] ~* I[u°] a n d j |u° — ut| | ~* 0 as k -* oo, provided that the iteration 
does not terminate in a finite number of cycles. 

The sequence {/[ufc]} is the monotone sequence, that is -f[uft + 1 ] < /[ufc] for any k. 

In fact, for 0 ^ 0 ^ 1 the following inequality holds 

(72) I[uk+l] S / [ ( l . ~0)uk + 6vk] = I[uk + 6(vk - uk)] = 

= / [ o j + 6(2L(uk) + h,vk- uk)r + 

+ e\L(vk - uk), vk - uk) . 



As the iteration does not terminate at the fc-th cycle, as above there is 

(73) (2L(uk) + h, vk - uk) < 0 . 

Due to the bounded set U and the bounded operator L hence the value of the right-
hand side of (66) can be made less than the value of the first term l[uk] by choosing 
the value of 8 sufficiently small and 

I[uk+i]<I[uk]. 

Now we show that the sequence {/["J} converges to the minimum l[u0]. 
From the relations above, we see that: 

(75) I[uk] - /[«»] < (2L(uk) + h, uk - n°) < 

< (2L(uk) + h,uk- vk). 

We assume that there is a positive number A such that 

(76) I[uk] - I[u°] ^A>0 for any k. 

The bounded operator L is defined in the bounded set U, so there exists a number C 
such that 

(77) (L(vk - uk), vk - uk)r < \\L\\ \\vk - uk\\
2 < C . 

Then, using the relations (72), (75), (76), (77), it follows 

(78) I[uk]-I[uk+1] = 6A -62C. 

Therefore choosing 6 = 60 = min (AJ2C, 1) we shall have 90C = min (AJ2, C); 
it follows 

(79) A - 60C = m a x ( A - —, A - c\ = 

= max (Aj2, A - C). 

From I[uk] - I[uk + 1] ^ 9A - 92C yields 

(80) I[uk] - I[uk + 1] ^ 90(A - 80C) = 90 max C 

a) If C ^ Aj2, it is that A - C ^ C, it follows 

A-C<A-~- = ± 
2 2 

and 

(81) m a x ( ! , ^ - C ) = ! = m i n ( ! , C 

A - C . 



b) If C ^ .4/2, it is that A - C ;> C, it follows 

2 2 

and 

(82) max (—, A - C J = J - C >= min (—, CY 

From the relations (80), (81), (82) follows the inequality 

(83) I[uk] - I[uk+.]| > 90 min (~, c\ > 0 . 

The constant 0O min (zl/2, C) is independent of k, therefore, the above inequality 
implies I[uk~] -» — oo if A: -> oo, which is the desired contradiction. 

Thus, the convergence of {-/"["&]} to the minimum has been shown. 

According to the relations (61) and (64) it follows 

(84) I[Uk] - I[u°] ;> (L(uk - u°), uk - u°)r ^ M||u° - ut||r
2 . 

From (84) we see that 

I["*] -* I[u°] implies ||u° - uk\\ -» 0 . 

This completes the proof of convergence. 

4. ILLUSTRATIVE EXAMPLE 

We shall consider the linear control system defined by the system differential 
equation 

(85) x1(0 = x2(0, 

x2(t) = u(t) 

with initial state 

x,(0) = 1 , 

x2(0) = 1 

and — for terminal time T — 4 — terminal state 

x,(T) = 0 , 

x2(T) = 0 . 



It is required to choose an appropriate admissible control u(t) so that the per- 121 
formance index, 

j [ „ ] = i £ T [ x ï ( ř ) + и2(í)]dř 

is minimized, subject to the constraint |«(t)| ;= 1 for 0 __ t __ 4. 
For the system (85), the additional conditions, we have 

A = 
0 1" , в = 

"0" 

0 0_ 1_ 

where 

c(ř) = Ф(t) x(0) + Ф(t) Ф~l(т) ß(т) и(т) dт . 

Ф(t) = -GЗ-
'Чr;] 

For the performance index, we have 

- G 3 - -*• 
According to the equations (16) and (30) we have respectively 

W(t, T) = 

W\r, t) = [t - M ] . 
According to the equations (40) -r- (43), the performance index is of the form 

for r = 1 

-т + / 

1 

where 
•!["] = (L(M)> u)i + (l1- M)i + a 

L(u) = (P*(QP) + R) (u). 

P*(QR(M)) = P(._ - ř) ("' i(ř_ - T)M(T)dTdřl , 

^(") = ^ j (i! " O l ( í_-T)u(T)dTdí 1 +i»( í ) , 

h = 2P*(Qg), 



J i ' l W o ) ! 
LoiJL*2(o)J' 

* . £ + • _ . _ ! * + «.., 
6 2 3 

a = 20,6666. 

Results of iterations 

N° of cycles J[uk] (2Lun + h, uk - v") 

1 
2 
3 
4 

20,666666 
6,718735 
4,009219 
3,383828 

42,666666 
4,531717 
2,224769 
1,076131 

Fig. 1. 



The computational results obtained after four cycles are shown in the table 1 123 
and Fig. 1. 

Table 1 indicates the minimum value J[u] = 3,383828 and the error J\u J — J[w°] 
after four iterations. 

The derived sequence of controls uk(t) is plotted in Fig. 1. 

(Received April 11, 1972.) 
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