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KYBERNETIKA CI{SLO 4, ROCNIK 6/1970

On the Uniform Almost Sure Convergence
of Losses for the Repetiton of a Statistical
Decision Problem

STANISLAV JILOVEC

The uniform almost sure convergence and the convergence rate of losses of two types of decision
processes for independent non-Bayesian repetition of a weight-finite statistical decision problem
are established.

INTRODUCTION

We shall consider a sequence of statistical decision problems having identical
structure known to the statistician. Only the observations, parameter values and
statistician’s decisions may be changed at each step. Our approach will be non-
Bayesian i.e. no probability assumptions are made about the parameter values,
they may alter quite arbitrarily. As for the statistician it is assumed that, in every
step, he has at his disposal, besides the observable value, an estimate of the one-
dimensional distribution (i.e. the relative frequency vector) of the parameter values
in the preceding steps.

This problem was first treated by Hannan [3] and developed e.g. in [10], [14],
[4] and [5].

In all these papers, it is shown that the difference between average risk of a certain
decision process over the first n steps and (a,), the risk of a decision function which
is optimal against the relative frequency vector &, of the parameter values in the
first n steps, approaches zero (or has an upper bound approaching zero) if n tends
to infinity; the convergence rate is establislied as well.

As far as it is known to the author, few results are concerned with the convergence
of losses, especially with the almost sure convergence. Under the supplementary
assumption that the Bayes envelope functional is differentiable, a slowly non-uniform
almost sure convergence is proved in [11] and a uniform almost sure convergence
for a more complicated decision process based not on Hannan’s idea but on Black-
well’s one is proved in [12]. Let us note that Van Ryzin [15] and Subert [13] indic-
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ating difficulties at proving a uniform almost sure convergence deal only with a
uniform convergence in probability.

In the present paper we shall construct a decision process B,, n = 1, 2, ..., where
B, is, roughly speaking, a Bayes decision function against an estimate of 4, or a,
so that not only

but also

and the convergence is uniform in all sequences (a,, a, ) of parameter values.
We shall simultaneously determine the convergence rate in the sense that, for every

@
@

monotone sequence {b,,},,=1 of positive numbers satisfying Y. b < o0,
n=1

0
b, (way B;) — (@) » 0 as.
n=1
uniformly in all sequences of parameter values.

PREREQUISITES

If E and A are non-empty sets, then the symbol E# denotes the Cartesian product

E*=XE, where E,=E, acA.
acd )

If x € E* and a € 4, then (x), denotes the a-th coordinate of the point x. Therefore
x = {(x)a}sea- Further, if & is a o-field of subsets of a set and 4 is finite non-empty
set, then %4 denotes the minimal ¢-field over the class

{XE,:E,e# forall aeA}.
aed

The symboli denotes the cardinality of the set E, and if E is a subset of a fixed set,
then y; denotes the characteristic function (indicator) of the set E. The letter N will
denote the set of all positive integers, the letter R the set of all real numbers and £ the
o-field of all Borel subsets of R.

If A is a finite non-empty set, then R4 is isometrically isomorfic to the A-dimensional
Euclidean space if we define addition, real scalar multiplication, inner product
and norm by

X + y= {(x)a + (y)a}aeA H

ex = {e(X)a}aea »

*p =3 (%) (¥)as

aed



[l = (9, 1

respectively. If x;, i = 1,2,... n, is a sequence of points in R4, the symbol X, will
denote the arithmetic mean
12
%, =— 9%, neN,
n i=1
and
%o = 0eR™.

The symbol (2, &, P) will denote a basic probability space. If X = {X,:te T}
is a family of random variables or random vectors, then (X) will denote the o-field
induced by X, i.e. the minimal o-field with respect to which the X ,’s are all measurable.
The operation of expectation is denoted by E. If X is a random vector on (@, &, P)
to R* and if E(X),, ae 4, are finite, then EX is defined by EX = {E(X).}.es-
The conditional expectation of a random variable ¥ given a g-field & will be denoted
E(Y| #) and the value of E(Y | #) at w € Q by E(w, Y| #). If # = B(X) we shall
write E(Y | X) instead of E(Y| #(X)). Similarly, for conditional probability, we shall
use the symbols P(E | #), P(w, E | #), P(E | X). Other symbols and terminology
will be used in accordance with [8] or [2].

Now we shall consider the statistical decision problem 2 = (4, D, w, (X, %),
{v,,},,E 4) where A and D are two finite non-empty sets, (X , %) is a measurable space,
{v,,},,EA is a family of probability measures on & and w is a real function on 4 x D,
The set A will be referred to as the parameter space, D as the decision space, (X, Z)
as the sample space and w as the weight or loss function. The statistician observes
a random variable whose distribution is v, if the parameter is a. Of course, the
parameter is unknown to the statistician. On the basis of the observed value the
statistician has to make a decision incurring loss w(a, d) if he decides d and Nature
chooses a. Since A and D are finite, the function w is bounded. We shall denote

v=13v,,
acA
fn:%’ acA
dv

The function ¢ defined on R* by
0) = inf T(0h [w(e, 60 ) v 0

where 4 denotes the set of all mappings  on X to D such that, for every d e D,
671({d}) e & will be called the Bayes envelope functional.

A mapping Bon X x R*to D is called an optimal procedure if there is an ordered
set (Do, <) such that

(i) Do=D,



252 (i) if d, &’ € Dy, d + d’, then max (w(a, d) — w(a, d’)}) > 0 and min (w(a, d) —
B w(a’ d,)) < 0, acAd acA
(iit) if d € D — Dy, then there is a d’ € D, such that min (w(a, d) — w(a, d') > 0,
(iv) B(x, &) e Dg,
(v) B(x &) =d lfz (8)a (wla, @) — wla, d)) f.(x) = 0 for all d' > d and
(&) (W(a, d) — w(a, d)) fx) > O for all &’ < d, d' * d.

Let us note that the existence of an optimal procedure is guaranteed by the finiteness
of the set D. Evidently,

(5,8 : Bl &) =dleZ x #4, deD
B(x,c&) = B(x, &), ¢>0.

If B is an optimal procedure, then r; will denote the function on R* x R4 defined by
e 1) = 50 [t o) ) ).

It is easy to prove the following properties of rg:

ry('zlciéi» ’1) =i21 ¢y rﬁ(éi’ ’1) B

& m) 2 1, &) = ol8),
. rE en) = rg&,m), ¢>0,
) r&m) = 18 0 S ryln = &,0) = riln = &),
b)) r&m) = G )zl = &0~ rll - &m).

Lemma 1. If B is an optimal procedure, a;e R4, n;eR*, i =1,2,...,n, and
o = 0 R4, then

él(r awm) — @) £
= r?(ﬂn “iiai’ a,) —éflrp(n.- = flie1 = a5 1)) .

Proof. Using the above properties of r; we obtain the following chain of equalities
and inequalities

2 (e n) - ofa) =



" n

(rﬂ(li @) = i Z apm) = ri 3 3,0 =

]
i

i =1 j=1

I

j=1

< i~ az @) =l = % an) +

T 0= 3 amins) = b = 3 ap ) =
= o= 500 ) = 3~ 5 m) = s = S ) -
= 7g{ta —ji“f’ a,) —élrp(m = fliey — @)

This proves the lemma.
Using (2) instead of (1) we obtain

Lemma 2. If f is an optimal procedure and a;e R, m;e R*, i = 1,2, ..., n, then

S () — @) 2 ~rolosm) +

i=1
n—1 n—1
+ "ﬂ(ﬂn - Z a;, ’7..) + Z rﬁ(’li — Niv1 + Qi 'Ii)-
. =1 i=1

We shall consider that the decision problem 2 = (4, D, w, (X, %), {Va}eea)
is repeated in such a way that 4, D, w, (X, &) and {v,},., remain the same, only the
observations, parameter values and statistician’s decisions may be changed at each
step. Nature first selects a sequence a = {(a);},y of parameters. To every a e A"
there corresponds a sequence Iq,, l},EN of observations (1e measurable mappings
on (Q, #) to (X, &)). We shall assume that the repetition of 9 is independent in the
sense that
(Gl) for every a € A", g, ,, i € N are stochastically independent.

Further we shall assume that

(G2) Pg;l =vw,, acA", ieN

which corresponds to our assumption that {v,},., is in all steps the same. As men-
tioned in introduction, in every step, the statistician knows, besides the observed
value, an estimate of the relative frequency vector of parameter values in the preceding

253
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steps. Under these assumptions, approximation to the Bayes envelope functional
is a good measure of the efficacity of decision processes. Various arguments why this
is so are given e.g. in [3], [12] and [15].

SOME AUXILIARY RESULTS

First of all, we shall introduce the almost sure uniform convergence. It is well
known that the random variables Z,, n € N, converge to zero almost surely if, and
only if, for every ¢ > 0

o
lim P(U {|Z,| 2 ¢}) = 0.
n—wo k=n
Therefore, it is natural to define the uniform almost sure convergence in the following
way duc to Parzen [9].

‘Let T be a non-empty set and let {{Z,,},.v:f€ T} be a family of sequences of
random variables on probability space (@, &, P). We shall say that {Z, ,},.y con-
verges to zero almost surely uniformly in ¢ € T, and write Z,, — 0 a. s. uniformly
in t € T, if, for every ¢ > 0,

lim P(U {|Z..| 2 ¢}) =0
Kk~ k=n

@

uniformly in te T.
Using the method of the proof of Theorem 16. A in [9] and results of Section 29.1
in [8], we obtain the following form of the strong law of large numbers.

Theorem 1. Let {b,.},,eN be a monotone sequence of positive numbers converging
to zero, T be a non-empty set, {Z,,: te T, ne N} be a family of random variables
on (Q,%,P)and {#,,:teT, neN} be a family of sub-o-fields of & such that

’ Fiy= {0, Q} s
BZei:i=1,2..,0)CF sy Frnrys teT,neN.
If the series
L]
Y bio¥Z,,), teT,
n=1
are convergent and uniformly bounded, then

bn Z:l(zt.n - E(Zr,n l gt.n)) -0

a.s. uniformly in te T. "



Theorem 2. Let {b,,},,EN be a monotone sequence of positive numbers such that

b} < .

D8

il

n=1

Let T be a non-empty set and {Z,,,:te T, ne N} be a family of random variables
on (Q, &, P). If there is a constant ¢ < oo such that, for every te Tand ne N,

(Y 2,)?  en
then o
b, Z": Z,;—0
a.s. uniformly in te T. o

w
Proof, The convergence of the series Y b? and the monotony of the sequence

n=1

{by}sen imply

Y 2% < 0.
=1

Therefore, for every € > 0, there is a I, € N such that
2% =
—: > b <&
&% k=1,

1€ 1 = 2%, then
P(U {16 % 2. 2 6)| <

IA

A U (hYzdza)s

. 2ksnp<2k+l

P{ max |b,YZ,|2¢ =

Te 2ksns2k+t =1 -

IIA

Ms TbMs

2k+1

< P{bzk.zl |z, z ¢ =

k=1,

2k+1cb;k

which proves the theorem. Let us note that the last but one inequality follows from
the Tchebychev inequality.

Treating conditional expectations and conditional probabilities we shall often
use the following lemma without further reference.

255



256

Lemma 3. Let h;, i = 1,2, be measurable mappings on (2, %) to (X, %))
respectively, and ¢ be a Borel measurable function on (X, x X,, &, x &,).
If # and & , are independent sub-o-fields of &, then

E(w, o(hy, hz) i F,) = j¢(h1(w')’ hZ(“’)) dP(a)’) = Eo(hy, hz(“))) :

Proof. Using decomposition of a measurable function into its positive and
negative parts, monotone convergence theorem and additivity of integrals, it is easy
to reduce the general case to the case where ¢ is a characteristic function. But the
class € of all sets C such that the asserted equality is true for ¢ = y, is a monotone

n

system containing all sets of the form {J F, ; x F,;where F, ;e #, and F, ;e &,,
i=1

i=1,2,..., n. Therefore, ¥ = f‘, x & ,. This concludes the proof.

Lemma 4. Let Z,, k = 1,2, ..., r, be integrable random variables on (2, &, P)
suchthatZ, — EZ,, k = 1,2, ..., r, arelinearly independent*. Let c,, k =0, 1,...,r,
be real numbers. If max |¢,| > 0, then

15ksr

r

P{Y aZy =co} < 1.

k=1
Proof. Let us assume that
r
Y aZy=co as.
k=1

Then

Y aEZ, = ¢
k=1

and therefore

Y edZi — EZ) =0 as.

k=1
which contradicts the linear independence of Z, — EZ,, k = 1,2, ..., 1.
Lemma 5. Let Z,, k = 1,2, ..., r, be integrable random variables on (Q, &, P)

such that Z, — EZ,, k = 1,2, ...,r, are linearly independent. Then there exist
real constants 1 > 0 and ¢ > 0 such that

supsupP{x £ Y ¢ Z, Sx+ 1} S1—¢
C xeR k=1

* As far as we speak about the linear independence of random variables, we identify the
equivalent random variables.



where
C={(cisc .. &)icieRi=1,..,7,Y ] =1}.
i1

Proof. Let us assume that the lemma does not hold. Then, for every n € N, there
are real numbers X,, ¢, 1, .2, -+ Cn,» Such that

P{x,, <Y carZi %, + »1‘} >1-2"".
k=1 n

Since Z, are finite functions and [c,,,ll < 1 the sequence {x,},.x must be bounded.
Hence, there is a subsequence {n,»} ien such that

x’ll_’xi

Cn,‘k = Cx .

Let us denote

F=U N {x,,‘ Y e L S X, 4 —1-}
j=1i=j k=1 n;
Evidently
P(F) =1,
r
Fe{Yez =1}.

k=1

Therefore

r
P{Y ez, =x}=1.
k=1
Since this contradicts the Lemma 1, the proof is complete.
Lemma 6. Let Le R and let {Z},.y be a sequence of independent and equally

distributed random vectors on (2, &, P) to R*. If (Z, — EZ,),, a€ A, are linearly
independent, then there exist real constants | > 0 and x > 0 such that, for every

neN and ce R* — {0},
J_L,,)
|

. L
n ax
supP{X§Z'ch§x+L}§xm ("c
xeR i=1

Jn

Proof. It follows from Lemma 5 and Kolmogorov-Rogozin inequality (seee.g. [1]).
Up to the end of this paper we shall assume that there is given a statistical decision
problem 9 = (4, D, w, (X, Z), {Va}aea) With finite 4 and D. Further, if a e A" and



i €N, then the symbol a; will denote a point of R* such that
(@)n=1 for (a);=m,
0 for (a);%m.

Lemma 7. Let {{h, }in:a€ A"} and {{h },v:a€ A"} be two families of
sequences of independent integrable random vectors on (Q, &, P) to (R4, )
such that

(i) for every ae A", the families {h,;:ie N} and {h,, : i e N} are independent
and equally distributed,
(i) Ph;} = Phyh if a,=aj.

Let B be an optimal procedure and d, d' € D, d + d'. Let us denote

Ful) = {0 55 1) = & BT hos) + I, () = 4
Lifa) ={k:a=a,j<k<i},
Fifa) = Bk, hapes ke {1,2,.., i} — I (@),
mfa) = (max {1, T, {a))™¥?, xeX,aed",
: ieN,jeNu{O},i>j,

Then there exist real constants x and | such tha't, for every ac AV, xe X, ieN,
jeNu {0}, i > j, there holds

P(w, F, (x)| #:£a)) £ »n; [(a) max (|2, (@) ~ ki ()]

Proof. Let us recall that, for x, y € R*, the symbol xy = " (x), (¥}, denotes
meAd

) as.

the inner product in R*. From the definition of optimal procedures it follows that,
ford<d, d+d,

(045, 3 o) = ) < {03 0 huso) < ).

{w: ﬁ(x;:;1 o @) + by (o) = d} = {o ::;gllv (@) > —v hy, (@)}

where v = {(w(a, d) — w(a, d)) ful*)}sea- \

If in these formulae ,, <’ is replaced by ,, <’ and conversely, the modified formulae
are valid for d' < d, d+d’. Hence, denoting by J(x, 1) either of the intervals
{ay o + A), (@, & + Ay we have :

O Fu) = {0 vhos) € S0 ), ~o{h (o) — i )} =

={o: ¥ ki) — Eh,u) € J((@), ol f0) — h, (@)}

kel 4(a)
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Ww) = —vh (0) — 3 vEh. —15;«0 h, (@) .

kel (y(a) =
kgl y(a)

From (ii) it follows that for every m € A there are a subset 4,, < A4 and real constants

cm. je A, ke A, such that, for every i e N and a e A" satisfying (a); = m the func-

tions (h,,; — ER, ) k € A, are linearly independent and

(4) (Bayi — ERy )y = Y (h,; — Ehyik as,jed.
[

If Ay, = 9, then h, ; = h, ; = const € R* a.s., therefore* F, (x) ~ 0 and the lemma

is proved.
Assuming 4, + 0 and denoting

ﬁa.i = {(ha.i - Eha.i)m}meA(.,;‘ ’
ﬁ:’x,i = {(h;,x - Eh;.i)m}meA(a)‘ 2

foi = { 2 20 drence,
Jjed

we obtain, according to (3) and (4),

Fui) ~ {5, X tua o) 20(a), 5,05 (0) = o))}

If §,, =0 or I, {a) = 0, the lemma obviously holds. In the opposite case, the
desired result follows from the finiteness of D and Lemma 6.

Lemma 8. Let {{h, ;}..y : a € A"} be a family of sequences of independent integr-
able random vectors on (Q, &, P) to (R*, #4) such that

(i) for every ae A" and i € N, one of two following conditions holds:

(is) the functions (h, ; — Eh, ), me A, are linearly independent,

(i) there is m, ;e A such that (h,; — Eh,)),, me 4 — {m,}, are linearly
independent and
Y (ha; — Ehy)m = 0 as.

med

and
@ Phii = Phyh if a,=aj.

*For F,GE Y, we write F~ G if P(F—~ A U(G— F))=0.



Let B be an optimal procedure and d, d’ € D, d % d'. Let us denote

6ude) = {0 B, 3. hus0) = B, T hoa) =
Lfa) ={k:a,=a,j<k<i},
%, fa)=Bhx:ke{l,2,...,i} — I, (a)),
;. {a) = (max {1, 1, (a)})""',
xeX, aedV, ieN, jeNuU{0}, i>j.

Then there exist positive real constants x and 1 such that, for every ae A", xe X,
ieN,jeNuU {0}, i > j, it holds

P, Gy, (x)| ¥:./(a)) < % m, (a) max (| (@)}, 1) as.

Proof. Using the method of the proof of Lemma 7, we obtain

G, (x) = {o :kEIZ‘](G?(h,,,‘(w) — Eh,y) € J(z(w), — v h, (@)}
where .

Hw)= - ¥ vEh 4 — lsZ,Kivh‘,,,,(w) .

kel s(a) g
1,4

If v = 0 or I; j(a) = O then the lemma evidently holds. Therefore, we shall assume
v+ 0and I; {a) = 0.

Under (i), the lemma follows directly from Lemma 6.

Under (i,) we have

Guli) ~ {03 T i) (o) ~ v o)
where "
Hﬂ,i = {(hn,i - Ehn,!‘)m}me,{—'(ma‘,) s

U, = {(U)m - (U)ma.q}msA-(m.:‘x) .
Since the (ii)}-property of optimal procedures guarentees # + 0 and |[o]|/]5,./ <
< A + 1, the lemma again follows from Lemma 6.
Lemma 9. Let {b,},.y be a monotone sequence of positive numbers such that
Y. b2 < o, B be an optimal procedure and {Yo;:acd” ieN} be a family
n=1

of measurable mappings on (R4, #4) to (R4, #*). Further, let {{h, } ..y : a € A"}
be a family of sequences of independent random vectors on (2, &, P) to (R*, #4)
satisfying conditions (i} and (ii) of Lemma 8 and the condition



(i) E(ha,dm < 0, E(Ya,i(ha, )i < o0

for every ae A", ie N and me A.
Then

bnii(’ ;a(lka,a(h..,.-),j}i:lha,j) - rﬁ(‘//ﬂ,i(hﬂ.i)’:gllhﬂ.l)) -0

a.s. uniformly in ae A",
Proof. Let us choose me 4, d, d'e D, d + d'. Let %, (a) and G, (x) be the

symbols introduced in Lemma 8§ and let
S (28 () W
Lop = xmax (Jho,q, 1),
:./(a) be the minimal o-field containing ¥; o(a) v #(h.,;). Using smoothing pro-

perties of conditional expectations, Lemma 8, our independence assumptionrand
Schwarz inequality, we get

0] l'/’(m)l WS X i X6, i) =

(i) |‘/’<m)| X6ustn P(Ga, n(")l g ;(“) ) £
;@) E(ar] v
= m; (@) B[S W"”l L, IP(Ga ;(Y)I &ifa) =
7 (@) B W Lo P(Gaf(9) | 95.0(a))) <
i, @) 75 0(@) E(WEP| WE) Lo ilay) S
71.40) 75.008) BV La,g) BOWETNC,0) <
Ei.j(“) T’v’j,o(a) (El'f/a,ilz ECu,i El‘lf(nm;) 2 ECZ’,J’)IIZ .

[l/\

A IAHIA

Obviously

Yk U2 <2xMr 1, xeN,

k=1

Yo’ = (AT %), xneR
e e

Using these inequalities, we obtain

3 nf=% T rszas Y ks

i=j+ meA i=j+1

@i=m
<2 (xIa)? < (A(n — H)* < (An)'2
meA
where

x7)(a) = Z i (@)

261
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and, hence

n n—-1 n
(6) Y mfa)mye(a) = Y mjola) ¥ mifa) £ An.

=1 i=1 i=j+1

i>j
According to (5), (6), (iii) and (ii), there is a real constant c such that, for every n e N
and g e AY, it holds

(5,1 (100 80 (O = en.
Therefore, according to Theorem 2,
) © b U |G o 9Vm(X) = O as. uniformly in ae 4Y.
i=1 i ’

Since for &, 77, 9 € R4,

BEn) = e 9) =5, (wlom, ) = vl ) O JZM.,,.(X) dunx)

med d,d’eD,
d*d

where
M = B n) = 4, B, 9) = 4,

the lemma follows from (7) and the finiteness of A and D.
If we use Lemma 7 instead of Lemma 8 in the method of proof of Lemma 9,
we obtain,

Lemma 10. Let {b,,},,eN be a monotone sequence of positive numbers such that

Y b2 < 0, B be an optimal procedure and {y,;:ae A", ie N} be a family
n=1

of measurable mappings on (R*, #%) to (R*, #*). Further, let {{h, },y: a € A"}
and {{h} ;}in : a € AN} be two families of sequences of independent random vectors
on (Q, &, P) to (R4, #4) satisfying conditions (i) and (ii) of Lemma 7 and condition
(iii) of Lemma 9. Then

bnli (rﬁ(‘l’a.i(hn.i)’jg; ha,)) = rﬂ('pd.i(ha,i)’;; hay + hp)) -0

.

a.s. uniformly in ae A",
MAIN THEOREMS

Throughout this section we shall assume that there is given a decision problem
D = (4, D, w,(X, &), {Va}aca) With finite 4 and D and a family {g,;: a € 4", ie N}



of generalized random variables i.e. measurable mappings on (Q, &, P) to (X, )
satisfying conditions (G1) and (G2).

Theorem 3. Let {b,,},,EN be a monotone sequence of positive numbers satisfying
fb,f < o, B be an optimal procedure and {{h, }.n:ae A"} be a family of
;:;uences of independent random vectors on (2, &, P) to (R*, #*) such that, for
every i e N and a e A¥, the following conditions hold

() Eh,,=a,

(i) Ph]! =PhZ, if a;=ad},

(iii) E(h, )2 <0, meAd,

(iv) the o-fields B(hay, Gay -k = 1,2,...,1) and B(g, ;. ,) are independent,

(v) the functions (h,; — Eh, ;),, m€ A, are linearly independent,

or there is m, ;€ A such that (h,; — Eh, ), me A — {m,}, are linearly
independent and

EA(h,_i),,, =1.

Then

™M=

(w((@)s B(Ga,i> Fai-1)) — (@) ~ 0

i

i

b,
. i=1

a.s. uniformly in a € A®. .
Note. If Z,, k = 1,2, ..., r, are random variables with finite dispersions, 4, k =
=1,2,...,r, are real numbers and

ci;=E(Z:— EZ)(Z; - EZ)), i,j=1L2,..,r,
then

max | Y A | =0
. 15jsr i=t
if, and only if,
Yz, —EZ)=0 as.

i=1

Hence it follows that the covariance matrix C = (c;, ;)I, j=1 has rank m if, and only if,

the linear subspace £(Z;, Z,, ..., Z,) spanned by Z1, Z,, ..., Z, has rank m. There-
fore (v) is implied both by (A,) and by (As) in [14].
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Proof. For ae A" and neN, let us denote
0ua) = by T (@) B hus-1) = @),
04a) = b, 3 (ra ) — ofa),
9() = b, 5 0@ B i) = 7 i)
0a) = b, 3 (e Fui-s) = e ).
0(a) = (6, 3 (hui — 0. @),
087(@) = by T (shas = @ Fie) = s = 1 )
0@) = =b Y rlhas — a Fuies).
07(@) = b3, (e = @) i)

0'¥(a) = b, Zl(r,,(ai, By i-y) — of@,)) .
First we shall prove that, for every I = 2,3,...,7,
(8) 0(a)— 0 as. uniformly in ae 4¥.
For I = 3 and I = 5, (8) follows from Lemma 9 if we set i, ; = a; and ¥, (x) =
= X — a,; respectively.
Applying Theorem 1 with &,y = B(h, ;5 ga;i:i=1,2,..,n) and Fopsy =

= B(h,;:i=1,2,...,n), we obtain (8) for I = 2 and | = 6, respectively. Evidently,
there is a real constant ¢ such that

rﬁ(bni;l(ha,i - ai)5 'I) Sec ZAlb"‘gl(ha.i - ai)ml > NE RA.

Using this inequality and Theorem 1, we find that (8) holds for ] = 4 and I =7,
too. Obviously,

0(a) + 69(0) = 04) = 3 0(a)-



By Lemma 1 and Lemma 2,

0."(a) = 01"(a) + @7(a) + 247(a)

©) 00(a) 2 - (02,(0) + 052(@) -
Therefore,

0P(a) + ;2 (@I2,) + 0(a) 5 0.0) 53,0,
Since

lim inf L 1,

n-w n—1

the proof is complete.
Let us emphasize that the decision procedure B(g,  Fai-1) depends on h, 4,
haay <. by -y by means of their sum only, therefore the statistician needs to know

for his decision in the i-th step, besides the observed value g, () only the sum
i-1
3 h, {w) or the arithmetic mean F, ;_(w).
i=1

If, in every step, the statistician knows the relative frequency vector of the para-
meter values in the preceding steps, then there exists a sequence {{;} .y of independent

random vectors (to R%) such that the random vectors h, ; defined by
h;=( +a;, acA"ieN,

satisfy the conditions (i), (ii), (iii), (iv). and (v) of Theorem 3. Let us note that the
assumption (v) is not fulfilled if we put {; = 0 and, as we shall see, (v) cannot be
omitted. .

If the Radon-Nikodym derivatives f,,, m € 4, are linearly independent, then there
exists. a measurable mapping ¢ on (X, Z) to (R4, #24) such that E (g, ) = a,
El(ga,)[> < 0, ae A", ie N (see [14]). Therefore, in every step, the statistician
knows an unbiased estimate of the parameter value and he can use this knowledge
for his decision, as the following theorem shows.

Theorem 4. Let {b,},.y be a monotone sequence of positive numbers such that

Y. b% < oo, B be an optimal procedure and {{h, }.y:ae A%} be a family of
n=1

sequences of independent random vectors on (Q, &, P) to (R*, %) such that, for
every a€ AY and i e N, the conditions (i), (ii), (iii), and (iv) of Theorem 3 aresatisfied.
Then

, (60 3 (o(@)e o o) = o@)* 0



266

a.s. uniformly in a € A™. If, moreover, for every ie N and a e AV, the condition (v)
of Theorem 3 holds, then

b 3 (wl(@)i B(900 For)) = (@) = 0
a.s. uniformly in a e A".

Proof. Let {h;;:ae A", ieN} be a family of random vectors such that, for
every ae A", the families {h,;:ieN} and {h,;:ieN} are equally distributed
and the families

({hei:ieN}u{g,;:ieN}) and {h;:ieN}
are independent. Let us denote
Sn(a) = bn_gl(w((a)is B(gn,iv Ea,i)) - Q(an)) s
Sia) = b".;(rﬁ(aia ha)) — €(@y) ,
n i-1
§i0a) = b, 3. (ralas X oy + hai) = rolas hed) s
i=1 =1
n i-1 . i-1
5a) = b, Zl(w((“)i’ ﬂ(ga,i’zlha,;' + k) = rylas Zl hai + hog))s
i= i= J=
n : i-1 )
§i(a) = b, T (W(@)e g Fed) = (@) g 3, By + 12 0))
< = ,
”
5:a) = ro(by 2 (o — @) @)
i=1

n i=1
5i%a) = bn,Zl(rn(ha.i = ap ha) = relha,; - aa,_Zl oy + hi0)
f- =

S7(a) = b,,‘i rolha s — a)ii hoy+ L),
acA”, neN.
First we shall prove that, for I = 2,3,...,7,
(10) S{™(a) - 0 a.s. uniformlyin ae 4.

Forl = 2and Il = 6, (10) follows from Lemma 10 if we put 4, ; = a;and Vo, dx) =
= x — a,, respectively. Applying Theorem 1 with #, .. { = B(g,;, by Bai T =
=12,.., n), Foant1 = .@(h,’i i=1,2,..., n) and F, 4, = %(h:,’i, Ry i+t hait
1i=1,2,...,n) we obtain (10) for I = 3, 5, and 7, respectively. )
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(11) Sia) = 3. b, Y (w((@)o d) = w((@)i, @) Lat, 000
d ,dd :dbu i=1
where
i-1
Myt = (@ B (@), hof@) = ds Plg0d@) T ha () + B ) = d} .
iE
From our independence assumptions it follows that
(12)  Plw, M3 | gais By Bas 1 k€1, {a)) = P(w, F, (ga,{0)) | . (a)) as.

where the symbols I; (a), F, (*) and #; (a) are introduced in Lemma 7. Using the
method of the proof of Lemma 9, (11), (12) and Lemma 7, we find that (10) is valid
for I = 4, too. According to Lemma 1 we have

S0) 5 %, 54().
Since
(13) 5.0) = 5@,

it follows that
5
S,a) £ ¥ 5M(a).
=2

This proves the first assertion. As for the second one, according to (13), it suffices
to prove

S{(a) » 0 a.s. uniformlyin ae A".
Since
Sa) = 29(a) - 0@
where Q'®(a) and Q{*(a) are defined in the proof of Theorem 9, the desired result
follows from (9) and (8).

If the assumption (v) is dropped, Theorem 3 and the second part of Theorem 4
need not be true as the following example illustrates.

Example. Let A = D = {1,2}, X = {x.},
wl, ) =w22 =0, wl1,2)=w?2,1)=1,
h,; = a;. Then, for the optimal procedure § defined by

if (&) > (£)2,
mm@=iﬁE&§&L
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and the point o such that (a);—y =1, (&),; = 2, i€ N, it holds

w(@)o BGa,i Bai)) =0, i=1,2,..0,
w(( @) BGaris Feicr)) =1, i=2,3,...,
@)~ % )
Under the assumptions of Theorem 3, there is a constant ¢ < oo such that, for
every ne N and a € 4%, it holds

{E ,11_ ié:lw((a)n ﬁ(ga.i’ Ea.i—‘)) - Q(E")l = ﬁ '

Under the assumptions of the first part of Theorem 4, there is a constant ¢ < «©
such that, for every ne N and a € 4",

EL Z w((@)ir B(gais a) — (@) < 7

If, moreover, (v) holds, then, for every ne N and a € 47,

E - Z W((a)n ﬂ(ga s a 1)) - g(“

We shall not prove these assertions. They have been proved in [14] under slightly
stronger assumptions. Weakening of assumptions is reached by the use of Kolmo-
gorov-Rogozin inequality instead of Berry-Esseen one.

If we assume that, in every step, the statistician knows the unbiased estimate
of the k-dimensional (k > 1) empirical distribution of parameter values in the
preceding steps, it would be possible to construct a decision process which is ““better”
that those constructed in Theorem 3 and 4. We shall deal with this problem in a
subsequent paper.

(Received January 26, 1970.)
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VYTAH

O skoro jisté stejnomérné konvergenci ztrat pii opakovani
statistického rozhodovaciho problému

STANISLAV JILOVEC

Clanek se zabyva opakovéanim statistického rozhodovaciho problému, jehoZ
struktura je statistikovi zndma a ziistava stile stejnd. Pouze hodnoty parametrd,
pozorovani a statistikova rozhodnuti se mohou ménit v kaZdém kroku. Pfedpoklada
se, Ze statistik ma v kazdém kroku krom& pozorované hodnoty k dispozici odhad
relativnich &etnosti hodnot parametrii v ptedchézejicich krocich. UvaZovany pfistup
je nebayesovsky, tj. parametr se nepovaZuje za nahodnou promé&nnou. Kromé& toho
se pfedpoklada, Ze pfi danych hodnotach parametri jsou odpovidajici pozorovini
stochasticky nezavisla. '

Autor navazuje na problematiku formulovanou Hannanem a rozvijenou dale
v fad€ praci. Na rozdil od jinych autorl studuje vSak konvergenci ztrat a nikoliv
konvergenci rizik. Konstruuje dva typy takovych rozhodovacich procesii, Ze rozdil
primé&rné ztraty za prvnich n kroki a rizika optimalni rozhodovaci funkce vzhledem
k relativnim Cetnostem hodnot parametrii v prvnich n krocich konverguje k nule
skoro jist8. Tato konvergence je stejnomérn4 a ,,dosti* rychla (Teorém 3 a 4).

Dr. Stanislav Jilovee, CSc., Ustav teorie informace a automatizace CSAV, VySehradskd 49,
Praha 2.
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