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K Y B E R N E T I K A ČÍSLO 4. R O Č N Í K 6/1970 

On the Uniform Almost Sure Convergence 
of Losses for the Repetiton of a Statistical 
Decision Problem 

STANISLAV JILOVEC 

The uniform almost sure convergence and the convergence rate of losses of two types of decision 
processes for independent non-Bayesian repetition of a weight-finite statistical decision problem 
are established. 

INTRODUCTION 

We shall consider a sequence of statistical decision problems having identical 
structure known to the statistician. Only the observations, parameter values and 
statistician's decisions may be changed at each step. Our approach will be non-
Bayesian i.e. no probability assumptions are made about the parameter values, 
they may alter quite arbitrarily. As for the statistician it is assumed that, in every 
step, he has at his disposal, besides the observable value, an estimate of the one-
dimensional distribution (i.e. the relative frequency vector) of the parameter values 
in the preceding steps. 

This problem was first treated by Hannan [3] and developed e.g. in [10], [14], 
[4] and [5]. 

In all these papers, it is shown that the difference between average risk of a certain 
decision process over the first n steps and s{a„), the risk of a decision function which 
is optimal against the relative frequency vector an of the parameter values in the 
first n steps, approaches zero (or has an upper bound approaching zero) if n tends 
to infinity; the convergence rate is established as well. 

As far as it is known to the author, few results are concerned with the convergence 
of losses, especially with the almost sure convergence. Under the supplementary 
assumption that the Bayes envelope functional is differentiable, a slowly non-uniform 
almost sure convergence is proved in [11] and a uniform almost sure convergence 
for a more complicated decision process based not on Hannan's idea but on Black-
well's one is proved in [12]. Let us note that Van Ryzin [15] and Subert [13] indie-



ating difficulties at proving a uniform almost sure convergence deal only with a 
uniform convergence in probability. 

In the present paper we shall construct a decision process B„, n — 1, 2,..., where 
Bn is, roughly speaking, a Bayes decision function against an estimate of a„^l or an 

so that not only 

but also 

- - f Ч - Һ
 вò - в(ãn) -> 0 

n ;=i 

- X w(ai' вì) - e(a») -»° a-s-
И i = l 

and the convergence is uniform in all sequences (a., a2,...) of parameter values. 
We shall simultaneously determine the convergence rate in the sense that, for every 

monotone sequence {b„}™=1 of positive numbers satisfying £ fo^ < oo, 
n = l 

ft. f (w(ai7 B.) - e(oB)) - 0 a.s. 
11=1 

uniformly in all sequences of parameter values. 

PREREQUISITES 

If E and A are non-empty sets, then the symbol EA denotes the Cartesian product 

EA = XEa where £ „ = = £ , aeA. 
aeA 

If x e EA and aeA, then (x)a denotes the a-th coordinate of the point x. Therefore 
x = {(x)a}aeA. Further, if J5" is a <r-field of subsets of a set and A is finite non-empty 
set, then 3FA denotes the minimal cr-field over the class 

{ X Ea : Ea e & for all aeA} . 
aeA 

The symbol E denotes the cardinality of the set E, and if £ is a subset of a fixed set, 
then XE denotes the characteristic function (indicator) of the set E. The letter At will 
denote the set of all positive integers, the letter R the set of all real numbers and Si the 
cr-field of all Borel subsets of R. 

If A is a finite non-empty set, then RA is isometrically isomorfic to the A-dimensional 
Euclidean space if we define addition, real scalar multiplication, inner product 
and norm by 

x + y = {(x)a + (y\}aeA , 

ex - {c(x)a}aeA , 

xy = S (x)a 00 . . 



•••• H = (**)1/2> 
respectively. If xh i = 1,2,. . . n, is a sequence of points in RA, the symbol x„ will 
denote the arithmetic mean 

1 v 
x„ = — 2, xi > neN , 

n i = i 

and 
x0 = 0 e RA . 

The symbol (i2, S", P) will denote a basic probability space. If X = [X, : f 6 T} 
is a family of random variables or random vectors, then 3$(X) will denote the c-field 
induced byX, i.e. the minimal o--field with respect to which theX/s are all measurable. 
The operation of expectation is denoted by E. If X is a random vector on (Q, SP, P) 
to RA and if E(X)a, as A, are finite, then EX is defined by EX = {E(X)a}aeA. 
The conditional expectation of a random variable Y given a er-field J* will be denoted 
E(Y| &) and the value of E(Y| &) at co e Q by E(co, Y| &). If & = J '(Z) we shall 
write E(Y| X) instead of E(Y| &(X)). Similarly, for conditional probability, we shall 
use the symbols P(E \ &), P(m, E \ &), P(E | X). Other symbols and terminology 
will be used in accordance with [8] or [2]. 

Now we shall consider the statistical decision problem 3) = (A, D, w, (X, 9S), 
{va}aeA) where A and Dare two finite non-empty sets, (X, 3C) is a measurable space, 
{vo}aeA is a family of probability measures on 9C and w is a real function on A x D. 
The set A will be referred to as the parameter space, D as the decision space, (X, SC) 
as the sample space and w as the weight or loss function. The statistician observes 
a random variable whose distribution is va if the parameter is a. Of course, the 
parameter is unknown to the statistician. On the basis of the observed value the 
statistician has to make a decision incurring loss w(a, d) if he decides d and Nature 
chooses a. Since A and D are finite, the function w is bounded. We shall denote 

v = Z v «' 
aeA 

fa ~ —". as A. 
dv 

The function Q defined on RA by 

Q(^) = infUilUa,d(x))fa(x)dv(x) 
SeA aeA J 

where A denotes the set of all mappings <5 on X to D such that, for every d e D, 
5~l({d}) e 9C will be called the Bayes envelope functional. 

A mapping /? on X x RA to D is called an optimal procedure if there is an ordered 
set (D0, -<) such that 

(i) D0 c D , 



252 (ii) if d, d' e D0, d 4= a", then max (w(a, d) — w(a, d')) > 0 and min (w(a, d) — 
aeA aeA 

- w(a, d')) < 0, 

(hi) if d e D — D0, then there is a d' e Z)0 such that min (w(a, d) — w(a, d') ^ 0, 

(iv) p(x,l;)eD0, 

(v) p(x, £) = d if X (£)„ (w(a, d') ~ w(a, d))fa(x) = 0 for all d' >- d and 
ae.4 

£(£)„ W«» d') - w(a> <*))/«(*) > ° for a11 d' <d,d' + d. 
Let us note that the existence of an optimal procedure is guaranteed by the finiteness 

of the set D. Evidently, 

{(x, £) : p(x, g) - d} eX x ®A , deD 

P(x, c£) = P(x, «*), c > 0 . 

If /? is an optimal procedure, then rp will denote the function on RA x RA defined by 

r„(!;,r,) = l(Z)aUa,P(x,>l))fa(x)dV(x). 
aeA J 

It is easy to prove the following properties of rp: 

r/ i(Zc.^.") = E c i r^i»'7) . 
i = l i = l 

r /€, i0«r#,0-<<€). 
r ^ ct0 = t>(£» l) » c > 0 , 

(1) r,(£, -) - r # , 0 = rfa - €, C) - r/i, - & n), 

(2) r„(£, n) - r„(£, f) ^ r,(C - f, Q - r„(C - I, i.) . 

Lemma 1. Jj" ft is an optimal procedure, aiBRA, n,eRx , i = 1,2,..., n, and 
f/0 = 0 e R ,̂ then 

E(r/)(a;>"i)- e(S-)) = 
i = l 

= r/i("« - £ ai»«») - .Cr/)(Mi - "i-i - ah vi) • 
i = l i = l 

Proof. Using the above properties of rp we obtain the following chain of equalities 
and inequalities 

E(r/>(«..".)- e(a«))-= 
i = l 
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= I W I aj, q.) - r,( £ a„ „.)) - ^ £ «/, £ aj) = 
i - i j = i ; = i j = i J = I 

= rn( £ «;>O - >>( £ a,-, £ a,) + 
J = I j = i j = i 

n- 1 i i 

+ £ W £ «... >?,) - i>( £ a^-.,+,)) ^ 
i = i J = I j = i 

= rn(tln - £ tJj, £ aj) - r^(nn - £ a,, i?„) + 
J ' = I J ' = I j = i 

n - l i i 

+ £ W i i - £ Oj. »?i+i) - rf(ni - £ flj. fid) = 

i = i j = i j = i 

i i - l 

= r„(i/n - £ aj, £ a,) - £ (rpfoi - £ a,, i/,) - ^ ( i / , - . - £ a}, 17,)) = 
j-=i j = i i = i j = i J ' = I 

= rifan - £ a j , a„) - £ r^n, - - ,_ , - a;, if,). 
j = i i = i 

This proves the lemma. 
Using (2) instead of (l) we obtain 

Lemma 2. If /3 is an optimal procedure and a; e R'4, ij; e RA, i = 1,2,... , n, tften 

£ Wai,i/,) - e(fl-)) == — »**0ii»-»i) + 
i = l 

n - l n - l 
+ r/j(»Jn - £ a j , nn) + £ 17,(17, - */,+ , + a;, IJ,) . 

j = i i = i 

We shall consider that the decision problem 3> = (A, D, w, (X, #*), {v„}oe^) 
is repeated in such a way that A, D, w, (.X", $") and {vfl}fleyl remain the same, only the 
observations, parameter values and statistician's decisions may be changed at each 
step. Nature first selects a sequence a = {(a),};eN of parameters. To every aeAN 

there corresponds a sequence {a„,i}i6N of observations (i.e. measurable mappings 
on (£2, $f) to (X, #")). We shall assume that the repetition of 3) is independent in the 
sense that 

(Gl) for every a e AN, gaA, i e N are stochastically independent. 
Further we shall assume that 

(G2) Pa" 1 = v(fl)(, aeA\ ieN 

which corresponds to our assumption that {va}aeA is in all steps the same. As men­
tioned in introduction, in every step, the statistician knows, besides the observed 
value, an estimate of the relative frequency vector of parameter values in the preceding 



-54 steps. Under these assumptions, approximation to the Bayes envelope functional 
is a good measure of the efficacity of decision processes. Various arguments why this 
is so are given e.g. in [3], [12] and [15]. 

SOME AUXILIARY RESULTS 

First of all, we shall introduce the almost sure uniform convergence. It is well 
known that the random variables Z„, n e N, converge to zero almost surely if, and 
only if, for every e > 0 

lim P( U {\Zk\ £ e}) = 0 . 
n-oo k = n 

Therefore, it is natural to define the uniform almost sure convergence in the following 
way due to Parzen [9]. 

Let Tbe a non-empty set and let {{Z,,„}neN : t e T} be a family of sequences of 
random variables on probability space (Q, y, P). We shall say that {Zr„}„eAr con­
verges to zero almost surely uniformly in t e T, and write Zr „ -» 0 a. s. uniformly 
in r e T, if, for every e > 0, 

l i m P ( U { | z t , n | ^ e } ) = 0 
k->ao k = n 

uniformly in t e T 
Using the method of the proof of Theorem 16. A in [9] and results of Section 29.1 

in [8], we obtain the following form of the strong law of large numbers. 

Theorem 1. Let {bn}neN be a monotone sequence of positive numbers converging 
to zero, Tbe a non-empty set, {Z(>„ : teT, neN} be a family of random variables 
on (Q, Sf, P) and {J%>B : t e T, neN} be a family of sub-a-fields of ST such that 

Kt = (°> G] > 

M{Zt,t : i = 1,2,... , n) <= ^tin+l c #"r>„+2 , te T, neN . 

If the series 

tbU2(Zt>n), teT, 
n = l 

are convergent and uniformly bounded, then 

b„Z(Zt,n - E(Zr,„ [&,,„)) -> 0 

a.s. uniformly in te T. 



Theorem 2. Let {bn}neN be a monotone sequence of positive numbers such that 

t b\ < oo . 
n = l 

Let Tbe a non-empty set and {Z(„ : t e T, n e N} be a family of random variables 
on (Q, y , P). If there is a constant c < oo such that, for every r e T and ne N, 

E(i\Zlti\y < en 
1 = 1 

then 

b„tz>,i-*0 
i = i 

a.s. uniformly in t e T 

Proof. The convergence of the series £ b\ and the monotony of the sequence 
n = l 

{K}neN imply 

f 2»b\n < oo . 
n = l 

Therefore, for every e > 0, there is a /E e N such that 

If / > 2'', then 

Ц Î2kb2
2k<E. 

Є* fc = 7. 

I,(u{|ь„i;zм|kЄ}|ś 
п & 7 i = l 

š f p ( U {\ьnІz,л\^є})< 
fc = 7. 2 " < П < 2 < < + 1 i = l 

< f p { max \b„І Z ( i i | ^ є } < 
* = 7. 2"Şпś2fc + i i = l 

=Ş Ë P{Ь2, E |z ( i i | ^ є} g 
fc = 7. i = l 

= Z 
fc = I . є 

which proves the theorem. Let us note that the last but one inequality follows from 
the Tchebychev inequality. 

Treating conditional expectations and conditional probabilities we shall often 
use the following lemma without further reference. 



256 Lemma 3. Let hh i = 1, 2, be measurable mappings on (Q, J ^ ) to (Xh #",) 
respectively, and cp be a Borel measurable function on (Xt x X2, 3Ct x 3C2). 
If 2Fx and #"2 are independent sub-a-fields of Cf, then 

E(co, cp(hx, h2) | 3F2) = \cp(hx(co'), h2(co)) dP(co') = E<p(hu h2(co)) . 

Proof. Using decomposition of a measurable function into its positive and 
negative parts, monotone convergence theorem and additivity of integrals, it is easy 
to reduce the general case to the case where cp is a characteristic function. But the 
class <€ of all sets C such that the asserted equality is true for cp = %c is a monotone 

system containing all sets of the form U - 7 i j x F2fi where F1Je^r
1 and F2ie !F 2, 

i = i 

i = 1, 2 , . . . , n. Therefore, <€ = & x x CF2. This concludes the proof. 

Lemma 4. Let Zk, k = 1,2,..., r, be integrable random variables on (Q, Cf, P) 
such that Zk — EZk,k = 1, 2 , . . . , r, are linearly independent*. Let ck,k = 0,1,..., r, 
be real numbers. If max \ck\ > 0, then 

l § * § r 

P{ £ ckZk = c0} < 1 . 
*=1 

Proof. Let us assume that 
r 

Z ckzk = co a.s. 
* = i 

Then 

t. ckEZk = co 
t = i 

and therefore 

£ ck(Zk - EZk) = 0 a.s. 
*=i 

which contradicts the linear independence of Zk — EZk, k = 1, 2,..., r. 

Lemma 5. Let Zk, k = 1, 2 , . . . , r, be integrable random variables on (Q, Cf, P) 
such that Zk — EZk, k — 1, 2,..., r, are linearly independent. Then there exist 
real constants I > 0 and e > 0 such that 

sup sup P{x s; £ ckZk ^x + l } ^ l - e 
C xeR k=l 

* As far as we speak about the linear independence of random variables, we identify the 
equivalent random variables. 



where 

C = { (c1 ,c2 , . . . ,c r ) :c i6R , i = l , . . . , r ,£c? = 1}. 
> = i 

Proof. Let us assume that the lemma does not hold. Then, for every n e N, there 

are real numbers x„, c„ ., c„>2, • ••,
 cn,r such that 

1 ^ - 1 , 
* = i 

pţx^Ź c„_kZk ś x„ + ì l > 1 - 2"" 

Since Z„ are finite functions and \c„ t | ^ 1 the sequence {x„}„eN must be bounded. 
Hence, there is a subsequence {nt}ieN such that 

x Л | -> x , 

c„.. -* c . . 

Let us dcnote 

Evidently 

Therefore 

F = U ň \x«, S í cnt>kZk = xat + ~\ . 
J=l i = J l *«1 «ij 

P(Ғ) = 1 , 

f c í t c A - 1 } . 

P{SctZi = x} = l . 
k = l 

Since this contradicts the Lemma 1, the proof is complete. 

Lemma 6. Let LeR and let {Z,}ieN be a sequence of independent and equally 
distributed random vectors on {Q, Sf, P) to RA. If (Zx — EZt)a, aeA, are linearly 
independent, then there exist real constants I > 0 and x > 0 such that, for every 
neN and ceRA - {0}, 

r v , *»»(&.') 
s u p P { x g ^ c Z j g x + L} = V W / 
*<=R i = l , • 

Proof. It follows from Lemma 5 and Kolmogorov-Rogozin inequality (seee.g. [1]). 
Up to the end of this paper we shall assume that there is given a statistical decision 

problem 9 = (A, D, w, {X, SC), {va}asA) with finite A and D. Further, if a e AN and 



258 i e N, then the symbol a. will denote a point of RA such that 

(ai)m = 1 for (a)j = m , 

0 for (a),- =(= m . 

Lemma 7. Let {{ha>i}ieN : a e AN} and {{K.i}ieN : a e AN} be two families of 
sequences of independent integrable random vectors on (Q, 3?, P) to (RA, 0tA) 
such that 

(i) for every a e AN, the families {ha.t :ieN} and {h'a.i : ieN} are independent 
and equally distributed, 

(ii) Ph^j - Ph~a.)v if a. = a\. . 

Let /} be an optimal procedure and d, d! e D, d 4= d'. Let us denote 

FaJx) - {co : p(x, £ ha») = d, p(x',i Kjco) + h'aJoS)) = d'} , 
k=i fc=i 

I i » ={k:ak = ahj <k<i}, 

&tJa) = 0(AO,„ ha.k, ke {1,2,....»} - / . » ) , 

7r(>Xa) = (max {1, / , • »} ) " 1 / 2 , xeX,aeAN, 

i e N, j e N u {0}, i > j . 

Then there exist real constants x and I such that, for every aeAN, xeX, ieN, 
jeJVu {0}, i > j , there holds 

P(co, FaJx) | SF.Ja)) < xn,Ja) max (Ij^.^co) - fta»||, /) a.s. 

Proof. Let us recall that, for x, yeRA, the symbol xy - £(x)m(y)m denotes 
meA 

the inner product in RA. From the definition of optimal procedures it follows that, 
for d < d', d + d', 

{co : P(x, £ Kjco)) -d}<={co:tv haJco) < 0} , 
k=i k=i 

i - i . - i 

{co : p(x, £ Kjco) + Kjco) = d'} c {co : £ v Kjco) > -v Kjco)} 
k=i * = i 

where v = {(w(a, d) - w(a, d'))fa(x)}aeA. 
If in these formulae „ g " is replaced by „ < " and conversely, the mpdified formulae 

are valid for d' <d, d+-d'. Hence, denoting by J(a, X) either of the intervals 
<«, a + A), (a, a + A> we have 

i - l 

•ľ, 
k=l 

(3) F.Jx) ~{co:^v Kjto) єJ(-v Kjco), - v(haJco) - h'aJco)} -

-..{co : £ < A 0 » - EAa<l) e / ( » , v(KJco) - h.Ja>) 
kel,j(a) 



where 

y(ш) = -vh'ai((o) - _£ vEha_k - X t - h a » . 
*6r,i(a) l g f c < i 

**/<,.,(a) 

From (ii) it follows that for every me A there are a subset Am cz A and real constants 
c ^ , j e A, k e Am such that, for every i e N and a s A" satisfying (a) ; = m the func­
tions (ha>; — EhaJ)k, k e Am, are linearly independent and 

(4) (ha>i - Eft,,,), = £ c$(ha>> - Eha>i)t a .s . , j sA . 
keAm 

If A(a)l = 0, then ha ; -= ha ,. = const e RA a.s., therefore* Ta>i(x) ~ 0 and the lemma 
is proved. 

Assuming A(a)( 4= 0 and denoting 

«... = {(*... - -A-.iW.-u..,, > 

£ . . « {(*;.. -Eh; , , -)mu ( 0 ) i , 

^-{Z-mU-,, 
we obtain, according to (3) and (4), 

fceJ,„,(a) 

If t5ai = 0 or Iij(a) = 0, the lemma obviously holds. In the opposite case, the 
desired result follows from the finiteness of D and Lemma 6. 

Lemma 8. Let {{ha>;}i6W : a e AN} be a family of sequences of independent integr-
able random vectors on (Q, •$", P) to (RA, MA) such that 

(i) for every a e AN and ieN, one of two following conditions holds: 

(ij) the functions (hai — Eha>1)m, me A, are linearly independent, 

(i2) there is mayieA such that (ha>; — Eha ;)m, me A — {mtti}, are linearly 
independent and 

meA 

and 

(ii) Ph~l = Ph~,xti. if a, - a\.. 

* For F.GeSf, we write F ~ G if P((F ~ G) U (G - E)) = 0. 



260 Let ft be an optimal procedure and d, d' e D, d =t= d!'. Let us denote 

G0,,.(x) = {(o : P(x, t hfl») = d, P(x, £ f c . » ) = d'} . 

I i » = {fc:«* = fli.j < fc < <}, 

< ? , » = -»(V*: fc e {1, 2 , . . . , i} - / , » ) , 

« , » - (max { 1 , / J a ) } ) - 1 ! 2 , 

x e X , a e AN , ieN , j e N u {0} , i > ; . 

Then f/iere exist positive real constants x and I such that, for every a e AN, xe X, 
i e N, j e N u {0}, i > / , it ho/ds 

P(o, G . » | < ? , » ) = x « , » max (||hflr.(to) ||, /) a.s. 

Proof. Using the method of the proof of Lemma 7, we obtain 

G . » c {o : X »(*..*(«>) - E/V*) £ I(ZH> - » * .»)} 
*e/,,y(o) 

where 
z H = - 2. »-*..* - I » *..*(0») • 

te/( ,( .) l g k < i 

«*fu(o) 
If v = 0 or /,-,/a) = 0 then the lemma evidently holds. Therefore, we shall assume 
v * 0 and J , » * 0. 

Under (i t), the lemma follows directly from Lemma 6. 
Under (i2) we have 

GaA(x) ~ {a : £ 0 h~0>k(oj) e J(z(co), - v ha>i((o))} 
kel,,j(a) 

where 

Kt " {(*..! - -*..f)u}-.M-{-..0 . 

«5,,, = {(»)» - (f)m.,,}m^-{m..,} • 

Since the (ii)-property of optimal procedures guarentees v 4= 0 and ||e||/||t».,,i|| < 
< A + 1, the lemma again follows from Lemma 6. 

Lemma 9. Let {b„}n6y ^e a monotone sequence of positive numbers such that 

£ b\\ < co, P be an optimal procedure and {\pai: ae AN,ieN} be a family 
n=l 

of measurable mappings on (RA, MA) to (RA, MA). Further, let {{ha<i}isN : a e AN} 
be a family of sequences of independent random vectors on (Q, Sf, P) to (RA, MA) 
satisfying conditions (i) and (ii) of Lemma 8 and the condition 



(iii) E(ha,;)
2 < oo , E{ika.i{KM < oo 

for every a e AN, i e N and me A. 
Then 

bni{r„(KlK,i),iKj - rf{KiK,),ZKj)) - 0 
; = i j = i ; = i 

a.s. uniformly in a e AN. 
Proof. Let us choose me A, d, d' e D, d 4= d'. Let ^tj{a) and Gai{x) be the 

symbols introduced in Lemma 8 and let 

W~{KlK.i))m, 
£,,. =xmax( |h a , ;[ | ,0 , 

S^ija) be the minimal er-field containing ^j,0{a) u ^(ha,;). Using smoothing pro­
perties of conditional expectations, Lemma 8, our independence assumption^and 
Schwarz inequality, we get 

(5) w l i r a ^ r w i f c ^ -
= K\W\ W\ Xoa,m P{GU4 *?«»)) ^ 

= « « » Ef l^ l |*tf| £„,, P (G a »| ^ » ) ) = 

= • « » E(|^}| |*» } | Cfl„P(Ga» | «?,»)) ^ 

= « , » « / » E ( | ^ | | ^ | C B , r C a . i ) g 

S ' « , » * , » E(|^,;| Cfl>l) E(^<%ti) ^ 

= « « » « y » (E|C,|2 E£, E|^J|2 E^)1'2 . 
Obviously 

£ ic- 1 / 2 < 2x112 - 1, xeW, 
t = i 

£ xm
/2 ^ (A Y>m)1/2 , x m e R . 

meA me/I 

Using these inequalities, we obtain 

£ * ,»-s i ««»^z(i+x"'z(^-i/2)^ 
; = j + l meA ; = j + l me^4 fe=l 

( a ) . = m 

= 2 £ (x^(«))1/2 ^ (A(« - j))1/2 < {An)1'2 

meA 

where 



262 and, hence 

(6) I * i » ^-,o(«) = E "j,o(-) E ttiX«) ^ ^« • 
,j = l j = l i = J + l 
i> J 

According to (5), (6), (iii) and (ii), there is a real constant c such that, for every n e N 
and a e AN, it holds 

Therefore, according to Theorem 2, 

(7) l'n E^";' ZG (x) dvm(x) -» 0 a.s. uniformly in a e AN . 
i=i J ' 

ir £, ij, 0 e R-4, 

,(£, ») - rtf, &) = E E («<». -0 - W K <*')) ( $ . L - M dvm(x) 

Since for £, «, 9 € R"4, 

where 
M*,<" = {x : p(x, n) = d, j8(x, 3) = rf"} , 

the lemma follows from (7) and the finiteness of A and D. 
If we use Lemma 7 instead of Lemma 8 in the method of proof of Lemma 9, 

we obtain, 

Lemma 10. Let {bn}neN be a monotone sequence of positive numbers such that 

E b2
n < oo, jS be an optimal procedure and {\j/ai : aeAN, ieN} be a family 

n = l 

of measurable mappings on (RA, MA') to (RA, MA). Further, let {{h„ti}ieN : a e AN} 
and {{h'ai}ieN : a e AN} be two families of sequences of independent random vectors 
on (Q, 6f, P) to (RA, !MA) satisfying conditions (i) and (ii) of Lemma 7 and condition 
(iii) of Lemma 9. Then 

^ i W U U S * . j ) - rMUKblKj + Ki)) -> o 
i = l J=\ j = l 

a.s. uniformly in a e AN. 

MAIN THEOREMS 

Throughout this section we shall assume that there is given a decision problem 
2 = (A, D, w, (X, SC), {va}asA) with finite A and D and a family {ga/l :aeAN,ie N} 



of generalized random variables i.e. measurable mappings on (Q, y , P) to (X, %) 
satisfying conditions (Gl) and (G2). 

Theorem 3. Let {bn}„eN be a monotone sequence of positive numbers satisfying 

]T bl < oo, P be an optimal procedure and {{haJ}hN : a e AN} be a family of 
n = l 

sequences of independent random vectors on (Q, y , P) to (RA, @A) such that, for 
every ieN and a eAN, the following conditions hold 

0) E^ . - f l i . 
(ii) Ph'l = Pha.\v if a, = a'r , 

(iii) E(ha Jfm < oo , m e A , 

(iv) the o-fields $)(hatk, aa>k : k = 1,2,... . i) and 3S(ga_i+1) are independent, 

(v) the functions (hai — E/ia,)m, me A, are linearly independent, 

or there is maie A such that (hai — Eha ,)m, me A - {ma,}, are linearly 
independent and 

E ( a = i. 
meA 

Then 

K t ("((«).> /to.... *..i-i)) - <?(*.)) - o 
i= 1 

a.s. uniformly in a e AN. 
Note. If Z t , fc = 1, 2 , . . . , r, are random variables with finite dispersions, 2 t, fc = 

= 1, 2 , . . . , r, are real numbers and 

ctJ = E(Z. - EZ;) (Zj - EZj) , i, j = 1, 2 , . . . , r , 

then 

max | j A;c; J = 0 
l g j g r i = l 

if, and only if, 

£ A,(Z, - EZ.) = 0 a.s. 
i = l 

Hence it follows that the covariance matrix C = (Cj,j)',j*i has rank m if, and only if, 
the linear subspace y ( Z 1 ; Z 2 , . . . , Z,) spanned by Z l 5 Z 2 , . . . . Zr has rank m. There­
fore (v) is implied both by (A4) and by (A5) in [14]. 



264 Proof. For a e AN and n eN, let us denote 

<_-(«) =b„i(W((a)h /,(_._,,, B_.,_,)) - -(«-)). 
i = 1 

G l » = 6„tWa«.^.«)--(S8)). 
i = l 

e - » = ».iw(-)»4...*.,«-t)) - »•*(««.«..«-.)). 
i = i 

G i » = fc.tWa„fi..,-0 •"•/,(«„ fi_.i)), 
i = I 

G i » - r / . _ t (*_.«-««). 5.), 
i = 1 

Q-» = i . i W - . . , - a„ £,_.) - r /̂i.., - _„ „..,)) , 

Gi»= -fr»t^(fc..«-««,^.,-t). 
i = i 

•__»-•'A t &„--_). *_..). 

e_» = ^tw««.fi..,-i) -_(-.))• 
• = i 

First we shall prove that, for every / = 2, 3, ..., 7, 

(8) ( _ < » - . 0 a.s. uniformly in aeAN. 

For / = 3 and / = 5, (8) follows from Lemma 9 if we set ij/tt§t = at and t/V_,.(x) = 
= x — ai, respectively. 

Applying Theorem 1 with _-r_,l(+1 = SS(ha<i,ga,i : «* = 1, 2 , . . . , n) and #"_,„+1 = 
= _?(/._,! : i = 1, 2 , . . . , n), we obtain (8) for / = 2 and / = 6, respectively. Evidently, 
there is a real constant c such that 

r,(*. t (*..« - ««)»l) = c _£ |_„ t (fc..« - «<)«| > 1 e ^ • 
me A i = 1 

and Theorem 1, we find that (8) holds Using this inequality and Theorem 1, we find that (8) holds for / = 4 and / = 7, 
too. Obviously, 



By Lemma 1 and Lemma 2, 265 

e<>) _. e_» + e „ » + e i » . 

(9) e i » ^ 7 ^ ( e i 6 j , ( a ) + ei7-,i(a))-

Therefore, 

fo_ // .(6 ) / . , -,f7> / v. __ ^ / \ _- V /.«>, 

Since 

Є<Ҷ«) + r ^ Ч б í Э Д + ЄľЛ(a)) 5. ft(a) û I < £ » • 
&«-i í = 2 

Iim inf —— < 1 , 

the proof is complete. 
Let us emphasize that the decision procedure fi(gaJ, J_,.-i) depends on hal, 

h„a, •••, h_,i-i by means of their sum only, therefore the statistician needs to know 
for his decision in the i-th step, besides the observed value _/_,,•(&>) only the sum 
i - l 

Y, ha j(oS) or the arithmetic mean ha)i_i((u). 
J = I 

If, in every step, the statistician knows the relative frequency vector of the para­
meter values in the preceding steps, then there exists a sequence {d}ieN of independent 
random vectors (to RA) such that the random vectors hai defined by 

hoi _. f. + at, aeAN,ieN, 

satisfy the conditions (i), (ii), (iii), (iv), and (v) of Theorem 3. Let us note that the 
assumption (v) is not fulfilled if we put _; = 0 and, as we shall see, (v) cannot be 
omitted. 

If the Radon-Nikodym derivatives fm, me A, are linearly independent, then there 
exists a measurable mapping ij/ on (X, SC) to (RA, fflA) such that E ty(gaii) = at 

E||'/'(a_,i)||2 < co, a e AN, ieN (see [14]). Therefore, in every step, the statistician 
knows an unbiased estimate of the parameter value and he can use this knowledge 
for his decision, as the following theorem shows. 

Theorem 4. Let {bn}neN be a monotone sequence of positive numbers such that 

2_ b\ < co, ft be an optimal procedure and {{hati}ieN : a e AN} be a family of 

sequences of independent random vectors on (__, Sf, P) to (RA, 3%A) such that, for 
every aeAN and i e N, the conditions (i), (ii), (iii), and (iv) of Theorem 3 are satisfied. 
Then 

(*. I WW* !%,,-> Kt)) - -(an)))
+ - o 



266 a.s. uniformly in a e AN. If, moreover, for every i e N and a e AN, the condition (v) 
of Theorem 3 holds, then 

*. J.MOO.. Kda.u *.,,)) - Q(an)) - 0 

a.s. uniformly in a e AN. 

Proof. Let {h'ai : aeAN, ieJV} be a family of random vectors such that, for 
every aeAN, the families {hai:ieN} and {hoi:ieJV} are equally distributed 
and the families 

({h,.: ieN}\j {gaJ: ieN}) and {h'a>i: i e N} 

are independent. Let us denote 

SJLa) =bnl(W((a)i,p(ga,i,ha,l))~Q(an)), 
i = l 

Si1)(a) = bni(re(ai,ha,l)-e(a>)), 
i = l 

S(
n
2\a) = b„i (rp(ah % haJ + h0,) - r,(au EJ), 

i = i j = i 

S(3)W = K i (w((a)., fyJlKj + »:.«)) - ^ I X . + h,,,)) . 
; = i j = i j = i 

Sn
4)(<0 = &„ i W(a)i, /i(a0ii, U ) ~ "((«)«. /K»..«. E V , + *:..))) ' 

«=i i = i 

Si5)(a) = ^ i ( V i - « i ) . ^ ) . 
;=i 

S(
n
6)W = i-iMfc... - a„ R.,i) - r/h , . - <..,'£ fc-f. + h'a,t)), 

i = i j = i 

Si7)(a) = feniah0ii-ai,Eh0, + h0,i), 
i = i j = i 

fl£/, neJV. 

First we shall prove that, for I = 2, 3,. . . , 7, < 

(10) S„°(a) -> 0 a. s. uniformly in a e AN . 

For I = 2 and / = 6, (10) follows from Lemma 10 if we put ij/a ; == at and ^..i(x) — 
= x - a;, respectively. Applying Theorem 1 with ^",„+ 1 = ^(a0ii, ft,., lCi : i = 
= 1,2, ...,n), ^ + 1 = ^(ft,. : i - 1,2,..., n) and ^ 0 , n + 1 = Jy^.i, h'a,i+i, K.i • 
: i = 1, 2,..., n) we obtain (10) for 1 = 3,5, and 7, respectively. 



Obviously, 

(11) S „ » = £ hn t (W((a)h d) - W((a)h d')) XM^,d, 
d.d'eDo i = l 

d*d 

where 

MdJ = {a>: p(ga,{w\ S a » ) = d , / % . » , I * - » + * i » ) = *} . 
J = I 

From our independence assumptions it follows that 

(12) P(w, Md
a

d' | gaJ, /?;,,-, ha>k : k e / , , /a) ) = P(o>, Ea,;(aa») \ #" u (a)) a.s. 

where the symbols /,•,/«.'), r\,,i(') and ^; , j(a) are introduced in Lemma 7. Using the 
method of the proof of Lemma 9, (11), (12) and Lemma 7, we find that (10) is valid 
for / = 4, too. According to Lemma 1 we have 

&VXa)zisP{a). 

Since 
4 

(13) Sи(a) = X S Д a ) , 
i= ì 

it follows that 

Sя(a)ûІsíl\a). 

This proves the first assertion. As for the second one, according to (13), it suffices 
to prove 

S^Xa) -* 0 a.s. uniformly in a e AN . 

Since 

sPKa) = ei8)(«) - Qn3X<>) 

where Q(„8Xa) a f ld Q(„3Xa) a r e defined in the proof of Theorem 9, the desired result 
follows from (9) and (8). 

If the assumption (v) is dropped, Theorem 3 and the second part of Theorem 4 
need not be true as the following example illustrates. 

Example. Let A = D = {1, 2}, X = {x0}, 

w(l, 1) = w(2, 2) = 0 , w(l, 2) = w(2, 1) = 1 , 

hai = at. Then, for the optimal procedure /? defined by 

B(x ft-1 i f (&>(*)-• 
/A*o,g-2 i f ( { ) l S ( { ) 2 , 



268 and the point a such that (a)2i_ t = 1, (a)2i = 2,ie N, it holds 

K(a),,,3(0-,., «_,.)) - 0 , i - 1,2...., 

w((a)i,^,i,/70[,i_1)) = l , . - 2 , 3 , . . . . , 

_(a„) - i . ;. 

Under the assumptions of Theorem 3, there is a constant c < 00 such that, for 
every neN and a e A^, it holds 

Ei £ Ч(-)«. %.,«. fi...-i))-в(-,) 
n i-1 v« 

Under the assumptions of the first part of Theorem 4, there is a constant c < 00 
such that, for every neN and a <_ A*, 

--Z^(-)*^.,«.U)-(<^---f • 
n 1=1 /̂n 

If, moreover, (v) holds, then, for every neN and a e A", 

EІ EЧ(4.^-А.«))-в(ð,) 
> 

We shall not prove these assertions. They have been proved in [14] under slightly 
stronger assumptions. Weakening of assumptions is reached by the use of Kolmo-
gorov-Rogozin inequality instead of Berry-Esseen one. 

If we assume that, in every step, the statistician knows the unbiased estimate 
of the fc-dimensional (k > 1) empirical distribution of parameter values in the 
preceding steps, it would be possible to construct a decision process which is "better" 
that those constructed in Theorem 3 and 4. We shall deal with this problem in a 
subsequent paper. 

(Received January 26, 1970.) 
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O skoro jistě stejnoměrné konvergenci ztrát při opakování 
statistického rozhodovacího problému 

STANISLAV JÍLOVEC 

Článek se zabývá opakováním statistického rozhodovacího problému, jehož 
struktura je statistikovi známa a zůstává stále stejná. Pouze hodnoty parametrů, 
pozorování a statistikova rozhodnutí se mohou měnit v každém kroku. Předpokládá 
se, že statistik má v každém kroku kromě pozorované hodnoty k dispozici odhad 
relativních četností hodnot parametrů v předcházejících krocích. Uvažovaný přístup 
je nebayesovský, tj. parametr se nepovažuje za náhodnou proměnnou. Kromě toho 
se předpokládá, že při daných hodnotách parametrů jsou odpovídající pozorování 
stochasticky nezávislá. 

Autor navazuje na problematiku formulovanou Hannanem a rozvíjenou dále 
v řadě prací. Na rozdíl od jiných autorů studuje však konvergenci ztrát a nikoliv 
konvergenci rizik. Konstruuje dva typy takových rozhodovacích procesů, že rozdíl 
průměrné ztráty za prvních n kroků a rizika optimální rozhodovací funkce vzhledem 
k relativním četnostem hodnot parametrů v prvních n krocích konverguje k nule 
skoro jistě. Tato konvergence je stejnoměrná a „dosti" rychlá (Teorém 3 a 4). 

Dr. Stanislav Jílovec, CSc, Ústav teorie informace a automatizace ČSAV, Vyšehradská 49, 
Praha 2. 
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